一元函数微分学:重视基础,不留盲点

合集下载

一元函数微分学

一元函数微分学

第二章 一元函数微分学一元函数微分学在高等数学中占有重要地位,是考试的主要内容之一,应深入加以理解。

在运算方面,应掌握导数的四则运算法则,以及隐函数、反函数和由参数方程确定的函数的求导公式等,并会求函数的微分。

本章的另一个重点是利用导数研究函数及平面曲线的形态,并能解决一些简单的应用问题。

第三,微分中值定理是导数应用的基础,应理解并会用罗尔定理、拉格朗日中值定理及泰勒公式,了解并会用柯西中值定理。

§2-1 导数和微分本节主要归纳总结求函数的导数和微分的主要方法。

导数与微分虽然是两个不同的概念,但它们之间也有关系:d ()()d f x f x x '=。

因此只要求出()f x 的导数,由此关系式即可得到它的微分。

所以,下面主要是总结求函数的导数的方法。

一、重要概念和重要公式1. 导数概念 000000000000()()()lim.()()()lim ()()()lim .x x x f x x f x f x xf x x f x f x xf x x f x f x x -+∆→-∆→+∆→+∆-'=∆+∆-'=∆+∆-'=∆导 数:左导数:,右导数:000()()().f x x f x f x -+''⇔=在处可导2. 导数的几何意义与物理意义 000000000()()(())()()().1()().()f x y f x x f x y f x f x x x y f x x x f x '='-=--=--'为曲线在点,处切线的斜率,切线方程和法线方程分别为物理意义:导数可表示为质点的即时速度,棒状物质的线密度,电路中的电流强度,转动物体的角速度等.3. 微分概念000000()()()0d ()()d ()~d (0)d .()()().y f x x f x y y y f x x o x y f x x y y x y y x f x x f x x '=≠∆''∆=∆+∆=∆∆∆→∆∆若函数在处可微即可导,且,则与的关系:由于,,故有,且,均为的一阶无穷小在处连续是在处可微即可导的必要但非充分条件4. 幂指函数求导公式()()()[()]()[()ln ()].v x v x u x u x v x u x ''=5. 由参数方程确定的函数的二阶导数22()d d d d d d .d d d d x t y t t t t t t t y t x x x t t t ϕψψψϕϕψϕϕ=()⎧⎨=⎩''⎛⎫⎛⎫()() ⎪ ⎪'''()()⎛⎫()⎝⎭⎝⎭=== ⎪''()()⎝⎭若,则6. 几个重要的n 阶导数公式()()()1()1(sin )sin (cos )cos()1(1)!(1)(1)![ln()].()()n n n n n n n nn n x x x x n n x a x a x a x a ππ-+⎛⎫=+=+ ⎪22⎝⎭---⎛⎫=+= ⎪+++⎝⎭;;;7. Leibnitz 公式()()1(1)()()()().n n n k n k k nn n n n uv u v C u v C u v C uv --'=+++++8. 回答下列问题000000000()()(1)lim ()()2()().||0lim 0.2()().h x h f x h f x h A A f x A hf h f h y x x y hf x f x A →=→+-+'==--'===''=若为常数,能否导出?否例如,,不存在,但若增加条件:存在,则可导出答00000()(2)()0lim (0).()(0)lim ()lim 0()(0)()(0)lim lim .x x x x x f x f x x A f A xf x f f x x xf x f f x f A x x →→→→→'=====⋅=-'===若在处连续,且,能否导出?能因为,故有答00000002(3)()()(a)()()()(b)()()()(c)()()()()(a)()()()().1(b).()()0(0)1(0)x f x g x F x f x g x x G x f x g x x x f x F x f x g x x F x x g x F x f x x f x x g x x f g x =+=⋅=+=-''====若在处,可导,不可导.在处是否可导?在处是否可导?若在处也不可导,问在处是否可导?在处必不可导,否则在处可导不一定如,,在处,,答31(0)()()0(0)0(0)(0)0.(c).()||()||0(0)(0)(0)0.()||()||0(0)(0)(0).G f x x g x x f g G xf x xg x x x f g F f x x g x x x f g F =∞''''=∞=====∞=''==-=''''====,;而,,在处,,,不一定如,,在处,和不存在,但而,,在处,,不存在,也不存在00000(4)()[].u x x u x y f u u y f x x ϕϕϕ=()=()==()若在处不可导,,而在处也不可导,问函数在处是否一定不可导?否如答000000()00[]00.x x u x x x u y f u u u u y f x x ϕϕ≥⎧=()=⎨<⎩=≥⎧==⎨<⎩==()≡=,,在处不可导,且,,在处也不可导,但在处可导二、用导数定义求导数这种方法用于求函数在某一点的导数(称为点导数),常见于求分段函数在分界点的导数及未假定函数的导数存在的条件时,但要求其导数等问题. 2002002000(0)0()0[]11(A)lim (1cos ).(B)lim (1).11(C)lim (sin ).(D)lim [(2)()]1(1cos )1cos 1(A)lim (1cos )lim (0).1cos 21(B)lim h h h h h 2h h h f f x x f h f e h hf h h f h f h h hf h h f h f h h h f h →→→→+→→→==------'-=⋅=-1设,则在处可导的充要条件为存在存在存在存在.例解00022200(1)1(1)lim (0).1(C)()||(0)(sin )|sin |sin lim lim 0.sin 10(D)()0(0)00(2)()(2)1(1)lim lim h hh h h 22h h h h f e ee f e h f x x f f h h h h h h h h h h x x f x x f x f h f h h h h h→→→→→--'-=⋅=--'=---=⋅=-⎧+≠'==⎨=⎩-+-+==取,则不存在,但,取,它在处不连续,从而不存在,但,0.(B).故选1(0)1(0)lim ()_________________.xx f f f x →'==2设,存在,则例1()11()1001(0)0lim ()lim[1(()1)]()1()(0)limlim (0)lim ().f x f x xxx x x x f xx f x f x f x f x f f x xf x e -⋅⋅-→→→→'→=+---'==∴=解0()()()(1|sin |)()0[](A)(0)0.(B)(0)0.(C)(0)(0)0.(D)(0)(0)0.()()|sin |()()().()()0()0.()(0)(0)lim lim x x f x F x f x x F x x f f f f f f g x f x x F x f x g x f x F x x g x x g x g g x --→=+='==''+=-===+==-'==3设可导函数,,若欲使在处可导,则有设,则因和在点处可导,故在处可导而例解00000()(sin )lim ()(0).()(0)()sin (0)lim lim lim ()(0).(0)(0).(0)0.(B).x x x x f x x f x f xg x g f x xg f x f x xf f f --+++→→+→→→⋅-=-=--⋅'=====-=故即故选231100()(32)||____________.()(1)(2)|(1)(1)|101()(1)limlim(2)|(1)(1)|0.1()1(1)0.()(0)||limlim (1)(x x x x f x x x x x f x x x x x x x f x f x x x x x f x x f f x f x x xx →-→-→→=++-=++-+=---=+-+=+'=-=-=+4的不可导的点的个数为,故只须考虑,,三个点.因故在点处可导且又因例解0||2)|(1)(1)|2lim()0()1.()0 1.x x x x x x f x x f x x f x x x →+-+=====不存在,故在处不可导.同理可证,在处不可导故的不可导的点为及0()(21)(32)(10099)(0)___________.()(0)(0)limlim(21)(32)(10099)99!.x x f x x x x x f f x f f x x x x→→'=---=-'==---=-5若,则例解()50(1sin )3(1sin )8()()()(0)()1()(6(6)).(6)(1)(6)(1).0(1)3(1)0(1)0.(1sin limx f x x f x f x x x x o x x f x x y f x f f f f f x f f f f αα→=+--=+=→==''==→-==+6若是周期为的连续函数,它在的某个邻域内满足关系式:,其中,且在处可导.求曲线在点,处的切线由周期性得,在已知关系式中令,得,故由已知关系式得例解000)3(1sin )8()lim 8.(1sin )3(1sin )lim(1sin )(1)sin (1sin )(1)sin lim 3sin (sin )(1)3(1)4(1).(1) 2.(6)0,(6) 2.2(6).x x x x f x x o x x xf x f x xf x f x f x f x x x x x f f f f f f y x →→→--+==+--⎡⎤+---=⋅+⋅⋅⎢⎥-⎣⎦'''=+='='===-另一方面故于是所以所求切线方程为2101()()(02)12__________________________.()1()1x x f x f x ax b x a b f x x f x x ⎧-≤≤=⎨+<≤⎩====7,设,若在,内可导,则常数,,这是一个可导性讨论的反问题,由在处可导得在处连续,故例解112111lim ()lim ()(1)0.()1(1)(1)(1)0()0lim lim 112lim 12 2.x x x x x f x f x f a b f x x f f x ax b x x ax aa x ab -+-++→→-+→→→==+=''==--+-=---==-==-,即又在处可导,有,即,也即,从而,220200000()()()0()0[](A).(B).(C).(D).lim ()lim ()0lim ()0lim ()lim ()0(x x x x x x x x f x g x f x x x g x x f x x g x x f x f x f x f x --+-+→→→→→→→⎧>⎪==⎨⎪≤⎩=======8设,其中是有界函数,则在,处极限不存在极限存在,但不连续连续,但不可导可导因,,故,即例解200200)0.(0)lim lim 0()0(0)lim lim ()0.()0.(D).x x x x x x f x g x f xg x xf x x +--+→→-→→='===-'====在处连续又因,故在处可导所以选()|()|[](A)()0()0.(B)()0()0.(C)()0()0.(D)()0()0.()|()|()()|()||()|limlim()()()()lim |x a x a x a f x x a f x x a f a f a f a f a f a f a f a f a g x f x g x g a f x f a x a x af x f a f x f a x a →→→==''===≠''>><<=--=---+=⋅-9设函数在处可导,则在处不可导的充分必要条件为且且且且令,因例解()0()0()()lim ()||()||()|()0()0()()0()()()()lim ()lim ()()()|()|.(B).f a f a x a x ax af x f a f x f a f x f a f a f x a f ag x g a g x g a f a f a x ax ag a g a f x x a '=≠+-→→→+-'⋅+''≠>=--''==---''≠=当,,时,不妨设,则在的某邻域内单调增加,而,因,故,即在处不可导故选32()33220022()3||(0)_______.40().20()00()120()6.lim ()0lim ()(0)0120().60()0.0n x x f x x x x f n x x f x x x f x x x f x x x f x x f x f x f x x f x x x f x x x -+→→=+=⎧≥⎪=⎨<⎪⎩=>'=<'=''=='=⎧≥⎪'=⎨<⎪⎩'=>10设,则使存在的最高阶数,,在处连续.当时,当时故,所以,即,,在处连续当时例解0000()240()12.lim ()0lim ()(0)0240().120()0.0()240()12.lim ()lim ()(0) 2.x x x x f x x x f x x f x f x f x x f x x x f x x x f x x f x f x f x f n -+-+→→→→''=<''=''''==''=≥⎧''=⎨<⎩''=>'''=<'''=''''''≠'''=,当时故,所以,即,,在处连续当时,当时因故不存在.从而三、复合函数求导复合函数求导时,关键要看清楚中间变量u 的选取。

一元函数微积分重点

一元函数微积分重点

微积分的基本内容可以分为三大块:一元函数微积分,多元函数微积分(主要是二元函数),无穷级数和常微分方程与差分方程。

一元函数微积分学的知识点是考研数学三微积分部分出题的重点,应引起重视。

多元函数微积分学的出题焦点是二元函数的微分及二重积分的计算。

无穷级数和常微分方程与差分方程考查主要集中在数项级数的求和、幂级数的和函数、收敛区间及收敛域、解简单的常微分方程等。

一、熟记基本内容事实上,数学三考微积分相关内容的题目都不是太难,但是出题老师似乎对基本计算及应用情有独钟,所以对基础知识扎扎实实地复习一遍是最好的应对方法。

阅读教材虽然是奠定基础的一种良方,但参考一下一些辅导资料,如《微积分过关与提高》等,能够有效帮助同学们从不同角度理解基本概念、基本原理,加深对定理、公式的印象,增加基本方法及技巧的摄入量。

对基本内容的复习不能只注重速度而忽视质量。

在看书时带着思考,并不时提出问题,这才是好的读懂知识的方法。

二、紧抓内容重点在看教材及辅导资料时要依三大块分清重点、次重点、非重点。

阅读数学图书与其他文艺社科类图书有个区别,就是内容没有那么强的故事性,同时所述理论有一定抽象性,所以在此再一次提醒同学们读书需要不断思考其逻辑结构。

比如在看函数极限的性质中的局部有界性时,能够联系其在几何上的表现来理解,并思考其实质含义及应用。

三大块内容中,一元函数的微积分是基础,定义一元函数微积分的极限及微积分的主要研究对象——函数及连续是基础中的基础。

这个部分也是每年必定会出题考查的,必须引起注意。

多元函数微积分,主要是二元函数微积分,这个部分大家需要记很多公式及解题捷径。

无穷级数和常微分方程与差分方程部分的重点很容易把握,考点就那几个,需要注意的是其与实际问题结合出题的情况。

三、检测学习效果大量做题是学习数学区别与其他文科类科目的最大区别。

在大学里,我们常常会看到,平时不断辗转于各自习室占坐埋头苦干的多数是学数学的,而那些平时总抱着小说看,还时不时花前月下的同学多半是文科院系的。

(优选)一元函数微分学ppt讲解

(优选)一元函数微分学ppt讲解

x0 x
1
(二)导数的运算 • 基本初等函数的导数公式
导数的四则运算法则
设u=u(x),v=v(x)都可导,则
反函数的求导法则
复合函数的求导法则
隐函数求导法则
设y=f(x)由方程F(x,y)=0确定,求y′,只需直接由方 程F(x,y)=0关于x求导,将y当做中间变量,依复 合函数链式法则求之。
★ f (x)在开区间(a,b)内的导函数为f '(x)
f '(a ) lim f '(x) xa
f '(b ) lim f '(x) xb
称为导函数的右极限 称为导函数的左极限
★ 设f (x)在闭区间[a,b]连续, 开区间(a,b)内的可导,记导函数为f '(x) 若f '(a 0)存在,则f (x)在a点右可导, 若f '(b 0)存在,则f (x)在b点左可导
记为y
,dy xx0 dx
或 df (x)
x x0
Hale Waihona Puke dxx x0关于导数的说明:
★ 导数是因变量在点x0处的变化率,它反映了 因变量随自变量的变化而变化的快慢程度. ★ 如果函数 y f (x)在开区间I内的每点
处都可导,就称函数f (x)在开区间I内可导.
★ 对于任一x I ,都对应着f (x)的一个确定的
2.右导数:
f( x0 )
lim
x x0 0
f (x) x
f (x0 ) x0
lim
x 0
f (x0
x) x
f (x0 );
★ 函数 f ( x)在点 x0处可导 左导数 f( x0 )和右导数 f( x0 )都存在且相等.

考研数学考试大纲解析及复习重点一元函数微分学

考研数学考试大纲解析及复习重点一元函数微分学

2016考研数学考试大纲解析及复习重点—一元函数微分学9月18日这个在中国历史上成为转折点的一天,同样也为20XX年参加考研的同学带来了重磅消息—20XX年考研大纲正式发布,下面凯程教育数学教研室老师就按章节来分析大纲的要求以及复习该章节的重点:一、大纲要求:一元函数微分学1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.(数一、数二)了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.二、复习重点本部分的重点归纳起来有四方面:基本概念方面:导数的定义,特别掌握利用导数的定义讨论分段函数在分段点的可导性理论方面:重点是罗尔定理,拉格朗日定理,会通过引入辅助函数,证明中值定理辅助函数的构造技巧性较强,能从所需证明的结论及其变形出发构造函数,要特别注意与函数的单调性和介值定理结合起来的证明题。

计算方面:重点是基本初等函数的导数,微分公式,四则运算的导数、微分公式以及反函数和隐函数的求导公式应用方面:重点是利用导数研究函数的性态,数一、数二注意物理方面的应用,数三注意解决经济问题。

高等数学讲义-- 一元函数微分学

高等数学讲义-- 一元函数微分学

第二章 一元函数微分学§2.1 导数与微分(甲)内容要点 一、导数与微分概念 1、导数的定义设函数)(x f y =在点0x 的某领域内有定义,自变量x 在0x 处有增量x ∆,相应地函数增量)()(00x f x x f y -∆+=∆。

如果极限x x f x x f x yx x ∆-∆+=∆∆→∆→∆)()(lim lim0000存在,则称此极限值为函数)(x f 在0x 处的导数(也称微商),记作0()f x ',或0x x y =',x x dxdy=,)(x x dxx df =等,并称函数)(x f y =在点0x 处可导。

如果上面的极限不存在,则称函数)(x f y =在点0x 处不可导。

导数定义的另一等价形式,令x x x ∆+=0,0x x x -=∆,则000()()()limx x f x f x f x x x →-'=-我们也引进单侧导数概念。

右导数:0000000()()()()()lim lim x x x f x f x f x x f x f x x x x +++→∆→-+∆-'==-∆ 左导数:0000000()()()()()lim lim x x x f x f x f x x f x f x x x x---→∆→-+∆-'==-∆ 则有)(x f 在点0x 处可导)(x f ⇔在点0x 处左、右导数皆存在且相等。

2.导数的几何意义与物理意义如果函数)(x f y =在点0x 处导数0()f x '存在,则在几何上0()f x '表示曲线)(x f y =在点()(,00x f x )处的切线的斜率。

切线方程:000()()()y f x f x x x '-=- 法线方程:00001()()(()0)()y f x x x f x f x '-=--≠' 设物体作直线运动时路程S 与时间t 的函数关系为)(t f S =,如果0()f t '存在,则0()f t '表示物体在时刻0t 时的瞬时速度。

一元函数微分学.docx

一元函数微分学.docx

一元函数微分学第2章一元函数微分学教学耍求1・知道极限概念数列极限、函数极限、左右极限知道极限存在的充分必耍条件2•了解无穷小量概念了解无穷小量与无穷大量的关系知道无穷小量的性质如有界变量乘无穷小量仍为无穷小量3•掌握极限的四则运算法则掌握两个重要极限掌握求极限的一般方法4•了解函数在一点连续的概念知道左连续和右连续的概念知道函数在一点间断的概念会求函数的间断点5•理解导数定义会求曲线的切线知道可导与连续的关系6•熟练掌握导数基木公式、导数的四则运算法则、复合函数求导法则掌握求简单隐函数的导数7 •了解微分概念会求函数的微分&知道高阶导数概念会求函数的二阶导数本章重点极限的计算导数的概念导数、微分的计算木章难点极限的概念复合函数导数的计算内容结构课堂教学-经济数学基础教学设计一、极限的概念 附课件演示极限一教师主页—电大在线3、函数极限二 xfxx 01im=A 1 当x Ox 吋有Axf )(记作xf )(记作xfxx Olim=A3 当xOx吋有Axf )(记作xfxxOlim 二A注意 1 当xOx时极限存在的充要条件是左、右极限相等即xfxxOlim 二 A xfxx 01im= xfxx Olim二A这充要条件常用于讨论分段函数在分段点处的极限是否存在例题3 另见导学17页跟我练习2 极限存在的两个前提条件①确定自变量的变化过程②在这一变化过程中函数值f(x)无限地逼近于一确定的常数A4、常用的一些基本极限详见导学16页附0二、无穷小量详见导学17页1、定义极限为零的量必须注明自变量的变化过程跟我练习2、性质①有限个无穷小量的代数和、乘积仍是无穷小量②无穷小量与有界变量的乘积是无穷小量3、无穷小量的倒数——无穷大量内容讲解*无穷小量三、函数的连续与间断1、定义内容讲解*函数的连续性设函数xf在点Ox的邻域内有定义若满足001 imxfxfxx则称函数xf在点Ox处连续.点Ox是xf的连续点.函数f (x)在Ox处连续等价于f (x)在Ox处左、右都连续2、初等函数在其定义域内都连续其极限值等于函数值即OOlimxfxfxx跟我练习3、分段函数的连续性的判断根据分段点处是否左右都连续例题1例题2跟我练习四、求极限的方法1、极限的四则运算内容讲解*极限的四则运算法则例题12、利用连续性求极限)(limOxfx = f(Ox)例题 33、0型或型极限的计算详见导学19页10型极限的计算方法用分解因式或分式有理化等方法消去极限为零的因子再取极限例题2例题4型极限的计算方法分子、分母同吋除以分母的最高次项不包括系数例题3 导学练习4、利用两个重要的极限求极限详见导学20页⑴XxxsinlimO二 1 (00型)可推广成中心sinlimO0二1 “即三个括号填的代数式必须一致”例题12xlim 1+x1 x二 e 或Olim1二e 都是1型可推广成e中心11 lim 或 elllim 屮心例题235、课后练习连接网页五、导数与微分的概念1、导数的定义 内容讲解*引例2内容讲解*引例3解*引例1内容讲解*导数定义函数y 二f (x)在点Ox 处的导数 是函数在点Ox 处的变化率 数的改变量 y与自变量改变量 x 的比值的极限x 0 跟我练习例题内容讲①用定义计算函数导数的步骤是第一步自变量改变量Ox+ x -Ox时计算函数的改变量y二"0x+ x)-f (Ox)它是x的函数第二步计算比值Xy第三步求极限OlimXXy当极限存在时其极限就是导数值0 /Xf 当极限②左、右导数左导数00值不存在吋函数f(x)在点Ox处不可导。

一元函数微积分学知识点总结

一元函数微积分学知识点总结
学习数学能使人们更合乎逻辑、更有条理、更严密、更精确、更深入地思考和解决问题,能增强人们的好奇心、想象力和创造性。

一、定义
导数
微分
不定积分
定积分
变限积分
反常积分
二、计算
求导数
1.复合函数求导
2.分段函数求导
3.隐函数求导
4.高阶导数求导
求积分
1.凑积分法
2.换元法
3.分部积分法
4.有理函数积分法
5.运用牛顿-莱布尼茨公式
三、应用
几何应用(数一、数二、数三)
1.导数的几何应用:“三点两性一线”(极值点、最值点、拐点、单调性、凹凸性、渐近线)
2.积分的几何应用:利用定积分计算平面图形的面积、旋转体的体积和函数的平均值
物理应用(数一、数二)
1.变化率问题
2.静水压力
3.抽水作功
4.质点引力
经济应用(数三)
1.边际
2.弹性
3.积分的简单经济应用
四、逻辑推理证明
中值定理的证明
求方程的根
不等式的证明
等式的证明
【注】整个高数上册就是在讲一元函数微积分,复习这部分要整体把握,先把整个知识框架了熟于心,在复习过程中多总结知识点
之间的联系。

由于最近五一集训营和真题大全解的事情比较忙,知识点精讲一直没有更新,真题出来之后五月份我会重点多讲解知识点,把整个一元函数部分每个知识点梳理一遍,希望同学们多多体谅!。

第3讲 一元函数微分学

第三章 一元函数微分学本章主要内容有:一元(隐)函数求导方法、微分中值定理、Taylor 公式、不等式的证明、凸函数、导数的应用(极值、函数作图等)等.I 基本概念与主要结果一 导数与微分1 导数定义1 设函数)(x f y =在点0x 某领域内有定义,若极限0)()(lim0x x x f x f x x --→ 存在,则称函数f 在点0x 处可导,并称该极限为函数f 在点0x 处的导数,记作)(0x f '. 等价形式:.lim )()(lim )()(lim )(00000000xy h x f h x f x x f x x f x f x h x ∆∆=-+=∆-∆+='→∆→→∆ 当上述极限不存在时,可研究其单侧极限,即左右导数.左导数:设函数)(x f y =在点0x 的左领域),(00x x δ-上有定义,若左极限)0()()(lim 000<∆<-∆-∆+-→∆x xx f x x f x δ 存在,则称该极限为函数f 在点0x 左导数,记作).(0x f -' 类似可定义右导数:xx f x x f x f x ∆-∆+='+→∆+)()(lim )(0000(δ<∆<x 0). 左右导数统称为单侧导数.可导的充要条件:f 在点0x 可导⇔f 在点0x 的左右导数存在,且相等.有限增量公式:设)(x f 在点0x 可导,则x y xx f x x f x f x x ∆∆=∆-∆+='→∆→∆00000lim )()(lim)(, 由此得 ).()(0x o x x f y ∆+∆'=∆称之为f 在点0x 的有限增量公式. 注意,此公式对0=∆x 仍旧成立.若函数f 在区间I 上每点都可导,则称f 为I 上的可导函数,此时,若区间I 为闭区间,则区间的端点处的导数应理解为相应的单侧导数.2 导数的几何意义函数f 在点0x 可导的充要条件是:曲线)(x f y =在点))(,(00x f x 存在不平行于y 轴的切线.若函数)(x f y =在点0x 可导,则曲线)(x f y =在点))(,(00x f x 的切线方程为).)(()(000x x x f x f y -'=-注 此说明:可导一定存在切线,但存在切线未必可导.3 导数与连续的关系(1)f 在点0x 可导,则f 在点0x 连续,但反之不成立.(2)f 在点0x 的左(右)导数存在,则f 在点0x 左(右)连续.4导函数的两大特性:(1))(x f '无第一类间断点;(2))(x f '具有介值性.其证明参看例1和例2.5 求导法则(1)四则运算法则设函数)(),(x v x u 在x 可导,则)()(),()(x v x u x v x u ⋅±在x 可导,当0)(≠v v 时,)()(v v x u 在x 可导,且 )()())()((x v x u x v x u '±'='±;)()()()())()((x v x u x v x u x v x u '+'=';.)()()()()()()(2x v x v x u x v x u x v x u '-'='⎪⎪⎭⎫ ⎝⎛ (2)复合函数求导的链式法则设)(x u ϕ=在点0x 可导,)(u f y =在点)(00x u ϕ=可导,则复合函数))((x f y ϕ=在点0x 可导,且).())(()))(((00x x f x f ϕϕϕ''='(3)反函数求导法则设)(x f y =为)(y x ϕ=的反函数,若)(y ϕ在点0y 某领域内连续,严格单调,且0)(0≠'y ϕ,则)(x f 在点)(00y x ϕ=可导,且.)(1)(00y x f ϕ'=' 6 参数方程求导法则设函数)(x f y =由参数方程 ,),(),(βαφϕ≤≤⎩⎨⎧==t t y t x 给出,若)(t x ϕ=具有反函数,)(),(t t φϕ可导,且0)(≠'t ϕ,则.)()(t t dx dy ϕφ''= 7 基本初等函数求导公式c c ,0='为常数; 1)(-='αααx x ;x x cos )(sin ='; x x sin )(cos -=';x x 2sec )(tan ='; x x 2csc )(cot -=';x x x tan sec )(sec ='; x x x cot csc )(csc -=';211)(arcsin x x -='; 211)(arccos xx --=';211)(arctan x x +='; 211)(arccot xx +-='; a a a x x ln )(='; x x e e =')(;a x x a ln 1)(log ='; .1)(ln x x =' 8 微分定义2 设函数)(x f y =在点0x 某领域内有定义,若y 在点0x 的改变量y ∆可以表示为)(x o x A y ∆+∆=∆,其中A 是与x ∆无关的常数,)(x o ∆表示x ∆的高阶无穷小量,则称函数)(x f y =在点0x 可微,并称x A ∆为)(x f y =在点0x 的微分,记作)d (d 0x A x A y x x =∆== 或 )d ()(d 0x A x A x f x x =∆==. 9 可微与可导的关系函数f 在点0x 可微的充要条件是:f 在点0x 可导.10 一阶微分形式的不变性对函数)(u f y =,不论u 是自变量,还是中间变量,都有.d )(d u u f y '=此性质常用来求函数的导数.11 近似计算与误差估计.)()()(000x x f x f x x f ∆'+≈∆+绝对误差:x x f y ∆'≈∆)(0.相对误差:.)()(00x x f x f y y ∆'≈∆ 12 高阶导数函数)(x f y =一阶导数)(x f '的导数,称为二阶导数,记作)(x f '';一般地,1-n 阶导数的导数称为n 阶导数,记为)()(x f n 或 n n n n dxy d dx x f d =)(. 二阶以及二阶以上导数都称之为高阶导数.高阶导数运算法则(1) )()())()(()()()(x v x u x v x u n n n ±=±.(2) Leibniz 公式 ∑=-=n k k n k k n n x v x u C x v x u 0)()()()()()]()([. 若干简单函数的n 阶导数:n n x n x -+--=ααααα)1()1()()( ;)2sin()(sin )(πn x x n +=; )2cos()(cos )(πn x x n +=; )1,0(ln )!1()1()(log 1)(≠>--=-a a ax n n n n x a ; n n n xn x )!1()1()(ln 1)(--=-; n x n x a a a )(ln )()(=;.)()(x n x e e =高阶导数的计算经常用到数学归纳法.13 高阶微分函数)(x f y =的一阶微分dy 的微分,称为二阶微分,记作y d 2;一般地,1-n 阶微分 y d n 1-的微分,称为n 微分,记作y d n ,即.)())(()()(1)1(1n n n n n n dx x f dx x f d y d d y d ===---二阶以及二阶以上的微分都称为高阶微分.注 (1)高阶微分不在具有形式不变性;(2)符号)(,,222x d x d dx 意义各不相同,22)(dx dx dx dx =⋅=,x d 2表示x 的二阶微分,而)(2x d 表示2x 的微分.二 微分中值定理1 极值定义3 若函数f 在点0x 的某领域)(0x U 内对一切)(0x U x ∈,都有))()(()()(00x f x f x f x f ≤≥,则称函数f 在点0x 取得极大(小)值,称点0x 为极大(小)值点,极大值、极小值统称为极值,极大值点、极小值点统称为极值点.注 极值是函数的局部性质,因此,极大值未必大于极小值.定理1(极值的第一充分条件)设函数f 在点0x 连续,在某领域),(00δx U 内可导.(1)若当),(00x x x δ-∈时,0)(≤'x f ,当),(00δ+∈x x x 时,0)(≥'x f ,则)(x f 在点0x 取得极小值;(2)若当),(00x x x δ-∈时,0)(≥'x f ,当),(00δ+∈x x x 时,0)(≤'x f ,则)(x f 在点0x 取得极大值.定理2(极值的第二充分条件)设函数f 在点0x 的某领域),(0δx U 内一阶可导,在0x x =处二阶可导,且.0)(,0)(00≠''='x f x f(1)若0)(0<''x f ,则f 在0x 取得极大值;(2)若0)(0>''x f ,则f 在0x 取得极小值.注 仿定理2,由Taylor 定理可以给出借助于更高阶导数的极值判别充分条件.2 Fermat 定理设函数f 在点0x 某领域内有定义,且在点0x 可导,若0x 为f 的极值点,则必有.0)(0='x f注(1)使得0)(='x f 的点x 称为f 的驻点或稳定点.(2)极值点未必是稳定点,稳定点未必是极值点. 对于可导函数来说,极值点一定是稳定点. 对于一般函数来说,极值点必为f 的稳定点或不可导点.(3)最值点未必是极值点,只有当最值点落在区间内部(即不是区间的端点)时,最值点才是极值点,此性质常用来寻找导数为零的点.(4)最值点必为极值点或区间的端点,或者说,最值点必为稳定点、不可导点或区间端点.3 Rolle 中值定理若函数f 满足如下条件:(1)f 在闭区间],[b a 上连续;(2)f 在开区间),(b a 内可导;(3))()(b f a f =,则),(b a ∈∃ξ,使得.0)(='ξf注(1) 几何意义:若函数f 满足上述条件,则在曲线)(x f y =上至少存在一点))(,(ξξf ,使得该点处的切线平行于曲线端点连线(x 轴).(2)此定理可推广为:若函数f 在开区间),(b a (有界或无界区间)内可导,且)(lim )(lim x f x f bx a x -+→→=, 其中极限可以是有限数,或∞+,或∞-,在),(b a 内至少存在一点ξ,使得.0)(='ξf4 Lagrange 中值定理若函数f 满足下列条件:(1)f 在闭区间],[b a 上连续;(2)f 在开区间),(b a 内可导,则在),(b a 内至少存在一点ξ,使得.)()()(ab a f b f f --='ξ 注(1) 几何意义:若函数f 满足上述条件,则在曲线)(x f y =上至少存在一点))(,(ξξf ,使得该点处的切线平行于曲线端点连线.(2)几种不同的表示形式:b a a b f a f b f <<-'=-ξξ),)(()()(;10),))((()()(<<--+'=-θθa b a b a f a f b f ;10,)()()(<<+'=-+θθh h a f a f h a f ;.)()()(ξf a f b f a b '-=-特别注意最后一式在解题中的应用.若令0,x a x b ==,则中值定理又可写成).())(()(00x f x x f x f +-'=ξ5 Cauchy 中值定理若函数)(),(x g x f 满足下列条件:(1)在闭区间],[b a 上连续;(2)在开区间),(b a 内可导;(3)在开区间),(b a 内g f '',不同时为零;(4))()(b g a g ≠,则在),(b a 内至少存在一点ξ,使得.)()()()()()(a g b g a f b f g f --=''ξξ 几何意义:若在直角坐标平面uv 内的曲线参数方程],,[),(),(b a x x f v x g u ∈⎩⎨⎧== 满足上述条件,则曲线上至少存在一点))(),((ξξv u ,使得该点的切线平行于曲线两端点的连线.6 Taylor 定理(公式)若函数f 在点0x 存在n 阶导数,则称由这些导数构造的n 次多项式∑=-=nk k n x x k x f x T 000)()(!)()( 为函数f 在点0x 处的Taylor 多项式,)(x T n 中的各项系数),,2,1(!)(0)(n k k x f k =称为Taylor 系数.带Peano 型余项的Taylor 公式:若函数f 在点0x 存在直至n 阶导数,则有).)(()()(0n n x x o x T x f -+=带Lagrange 型余项的Taylor 公式:若函数f 在],[b a 上存在直至n 阶的连续导数,在),(b a 内存在1+n 阶导数,则对任意给定的],[,0b a x x ∈,至少存在一点ξ,ξ介于x 与0x 之间,使得.)()!1()()()(10)1(++-++=n n n x x n f x T x f ξ 当00=x 时,上述两个公式又称为Maclaurin 公式.注意比较两种不同类型余项的Taylor 公式的条件与结论,前者给出了定性的描述,后者给出了定量的刻画,注意它们在不同场合的应用.几种常见函数的Maclaurin 公式:)(!!212n nxx o n x x x e +++++= ;)()!12()1(!5!3sin 1212153---+--+++-=n n n x o n x x x x x ; )()!2()1(!4!21cos 2242n n n x o n x x x x +-+++-= ; )(32)1ln(32n nx o n x x x x x ++++-=+ ; )(!)1()1(!2)1(1)1(2n n x o x n n x x x ++--++-++=+ααααααα ; ).(1112n n x o x x x x+++++=- 注意以上几个公式在不定式极限计算中的应用.7 微分中值定理之间的关系(1)Rolle Lagrange Cauchy Taylor ⇒⇒⎭⎬⎫; (2)微分中值定理的推广设函数h g f ,,在区间],[b a 上连续,在),(b a 内可导,定义)()()()()()()()()()(x h x g x f b h b g b f a h a g a f x F =, 则在),(b a 内至少存在一点ξ,使得 .0)()()()()()()()()()(='''='ξξξξh g f b h b g b f a h a g a f F 特别地,若令1)(,)(≡=x h x x g ,即得Lagrange 中值定理(若再有)()(b f a f =,便是Rolle 中值定理);若令1)(≡x h ,便得Cauvhy 中值定理的另一形式:)].()()[()]()()[(a g b g g a g b g f -'=-'ξξ若附加Cauchy 中值定理的条件,可得到Cauchy 中值定理一样的形式.8 应用(1)判断可导函数在给定区间内根的存在性和根的个数问题;(2)对于给定的可微函数得到某些中值公式,并证明某些等式或不等式;(3)推倒某些可微函数的整体性质,如单调性,有界性,最值,一致连续性,以及某些导函数的极限等问题;(4)求解某些不定式极限问题(L ’Hospital 法则,等价无穷小替换);(5)研究函数曲线的形态,如曲线的单调性,凹凸性,渐进线,极值等,描绘某些函数的图象;(6)近似计算,方程近似求解等.中值定理的灵活运用是本章重点和难点. 如果要解决的问题中含有未知的“ξ”,首先应分析题目中所给函数的条件,若仅有连续性条件,则只能用闭区间上连续函数的性质,而不能使用微分中值定理;若有可微性条件,往往要用到微分中值定理;若函数二阶可导,往往要两次使用罗尔或拉格朗日中值定理,或直接使用泰勒公式;若存在三阶或三阶以上导数,则泰勒公式是首选. 其次,要对所证明的等式或不等式进行适当的恒等变形,使之符合定理的形式.三 凸函数1 凸函数的几种定义及其等价关系:定义1 设函数)(x f 在区间I 有定义,如果I x x ∈∀21,,)1,0(∈∀λ,有)()1()())1((2121x f x f x x f λλλλ-+≤-+,称函数)(x f 为I 上的凸函数,式中“≤”改为“<”时,称为严格凸函数. 反之,如果总有)()1()())1((2121x f x f x x f λλλλ-+≥-+,则称f 为I 上的凹函数. 式中的不等号改为严格不等号时,称之为严格凹函数.下面仅就凸函数进行讨论.定义2 设函数)(x f 在区间I 有定义,如果I x x ∈∀21,,有2)()()2(2121x f x f x x f +≤+. 称函数)(x f 为I 上的凸函数,式中“≤”改为“<”时,称为严格凸函数.定义3 设函数)(x f 在区间I 有定义,如果I x x n ∈∀,,1 ,有2)()()(211x f x f n x x f n ++≤++ . 称函数)(x f 为I 上的凸函数,式中“≤”改为“<”时,称为严格凸函数.定义4 设函数)(x f 在区间I 有定义,如果I x x n ∈∀,,1 ,1,01=≥∀∑=ni i i λλ,有)()()(21111x f x f x x f n n n λλλλ++≤++ .称函数)(x f 为I 上的凸函数,式中“≤”改为“<”时称为严格凸函数.定义5 设函数)(x f 在区间I 有定义且可导,如果曲线)(x f y =的切线保持在曲线的下方, 称函数)(x f 为I 上的凸函数;若除切点外,切线严格保持在曲线的下方,则称之为严格凸函数.定义 6 设函数)(x f 在区间I 有定义且可导,如果)(x f '单增,称函数)(x f 为I 上的凸函数.注 定义1与定义4等价;定义2与定义3等价;当)(x f 连续时,定义1至定义4均等价;当函数可导时,以上6个定义均等价.由定义6立得定义7 若函数)(x f 在I 存在二阶导数,则)(x f 为凸函数⇔0)(≥''x f .(辽宁师大) 2 凸函数的性质与定理定理1 设函数)(x f 在I 有定义,则下列条件等价:321321,,,x x x I x x x <<∈∀,(1))(x f 为I 上的凸函数;(2)13131212)()()()(x x x f x f x x x f x f --≤--; (3)23231313)()()()(x x x f x f x x x f x f --≤--; (4)23231212)()()()(x x x f x f x x x f x f --≤--; (5)曲线)(x f y =上三点))(,()),(,()),(,(332211x f x C x f x B x f x A 所围成的有向面积0)(1)(1)(121332211≥x f x x f x x f x . 推论1(清华大学)若函数)(x f 为I 上的凸函数,则321321,,,x x x I x x x <<∈∀,13131212)()()()(x x x f x f x x x f x f --≤--2323)()(x x x f x f --≤. 推论2 若函数)(x f 为I 上的凸函数,则I x ∈∀0,过0x 的弦的斜率0)()(x x x f x f k --= 是x 的增函数,且当函数为严格时凸函数时,斜率k 严格单调递增.推论3 若函数)(x f 为I 上的凸函数,则I 上任意四点v u t s <<<,有uv u f v f s t s f t f --≤--)()()()(. 事实上也是充分条件.推论4 若函数)(x f 为I 上的凸函数,则I x ∈∀0,在0x 的左右导数均存在,皆为增函数,且.int ),()(I x x f x f ∈∀'≤'+-.推论5 若函数)(x f 为I 上的凸函数,则)(x f 在I int 内连续.定理2(中国科技大学)设函数)(x f 在区间I 有定义,则)(x f 为凸函数的充要条件是:R I x ∈∃∈∀α,0 ,使得I x ∈∀,有)()()(00x f x x x f +-≥α.证 (1)必要性因为)(x f 为凸函数,由推论4知: I x ∈∀0,)(0x f -'存在,且00)()(x x x f x f --单增趋于)(0x f -'(-→0x x ),由此,任取)(0x f -'≥α,则当0x x <时,有 )()()(00x f x x x f +-≥α.同理,当)(0x f +'≤α时,则当0x x >时,有 )()()(00x f x x x f +-≥α.而)()(00x f x f +-'≤',所以存在α:)()(00x f x f +-'≤≤'α,I x ∈∀,有 )()()(00x f x x x f +-≥α.(2)充分性设321x x x <<是定义域上的任意三点,由已知条件,对2x ,存在α,使得I x ∈∀,有)()()(22x f x x x f +-≥α.分别令31,x x x x ==可得23231212)()()()(x x x f x f x x x f x f --≤≤--α. 由定理1知)(x f 为凸函数.推论1 设函数)(x f 在I 内可导,则)(x f 为凸函数的充要条件是:,0 I x ∈∀有)())(()(000x f x x x f x f +-'≥.推论2 若函数)(x f 为I 凸函数,则,0 I x ∈∀在曲线)(x f y =上,过点))(,(00x f x 可作一直线l ,使曲线位于直线l 之上.若f 为严格凸函数,则除点))(,(00x f x 外,曲线严格地位于直线l 的上方.II 典型例题与方法一 导函数的两大特性1 导函数无第一类间断点例1(南京大学)设函数)(x f 在),(b a 内处处可导. 证明:),(b a 中的点或为)(x f '的连续点,或为)(x f '的第二类间断点.证 只需证明:若)(x f '在点),(0b a x ∈左右极限存在,则)(x f '在该点连续. 由已知条件知函数)(x f 在点),(0b a x ∈可导,由右导数定义及微分中值定理得)(),(lim )()(lim )()(0000000x x f x x x f x f x f x f x x x x <<'=--='='+→+→+ξξ. 由假设)(x f '在点0x 存在右极限,根据上式可得)0()(lim )(000+'='='+→x f f x f x x ξ. 同理可证:若)(x f '在点0x 存在左极限,则必有)0()(lim )(000-'='='-→x f f x f x x ξ. 因此,)(x f '在点),(0b a x ∈连续,从而无第一类间断点.思考题1(西安交大2003)设)(x f 在),(b a 内可导,证明:(1)),(0b a x ∈∀,)(x f '在0x 处不可能发生第一类间断;(2)当)(x f '在),(b a 内单调时,)(x f '必在),(b a 内连续.思考题2(武汉大学)若函数)(x f 在),(b a 可导,)(x f '在),(b a 内单调,则)(x f '在),(b a 内连续.思考题3(北京大学)设)(x f 在],[b a 上连续,在),(b a 内可导,且存在极限l x f a x ='+→)(lim ,则右导数存在,且.)(l a f ='+思考题4(中科院)设⎩⎨⎧=≠=.0,1,0,)(x x x x f 证明:不存在一个函数以)(x f 为其导函数.2 导函数具有介值性例2(G. Darboux 定理)(西安交大,武汉大学,北京师范大学,北航2001)若函数)(x f 在],[b a 上可导,且)()(b f a f '<',则c ∀:)()(b f c a f '<<',),(b a ∈∃ξ,使得c f =')(ξ.提示: 作辅助函数cx x f x g -=)()(,则)(x g 在],[b a 可导,且0)()(,0)()(>-'='<-'='c b f b g c a f a g .只需证明:),(b a ∈∃ξ,使得0)(='ξg .事实上,由于0)()(lim)(<--='+→ax a g x g a g a x ,则当a x >而充分接近a 时,)()(a g x g <. 同理可证:当b x <而充分接近b 时,)()(b g x g <. 这样)(x g 的最小值点ξ必落入),(b a 内,从而为)(x g 的极值点,由Fermat 定理知0)(='ξf .严格证明请读者自己给出.例3(武汉大学)设有界函数)(x f 实数集R 上二次可微. 证明:R x ∈∃0,使得0)(0=''x f .证法一 若)(x f ''在R 上变号,由导函数的介值定理知R x ∈∃0,使得0)(0=''x f . 若)(x f ''在R 上不变号,不妨设0)(>''x f ,此表明)(x f '严增,因此存在0)(,≠'∈c f R c .由泰勒定理得2))((21))(()()(c x f c x c f c f x f -''+-'+=ξ, 其中ξ介于x 与c 之间. 由 0)(>''x f 知0)(>''ξf . 于是,若0)(>'c f ,令+∞→x 得+∞→)(x f ,若0)(<'c f ,令-∞→x 得+∞→)(x f ,这与)(x f 有界矛盾,故)(x f ''在R 上变号,从而结论成立.证法二 若R b a ∈<∃,使得)()(b f a f '=',由Rolle 定理知结论成立. 若,,R b a ∈∀)()(b f a f '≠',则)(x f '在R 上严格单调. 事实上,若不然,则321x x x <<∃,有)()()(321x f x f x f '>'<' 或 )()()(321x f x f x f '<'>',由导函数的介值定理知:),,(),,(3221x x b x x a ∈∈∃有)()(b f a f '=',与假设矛盾,故)(x f '在R 上严格单调. 不妨设严格单增,则存在0)(,≠'∈c f R c . 若0)(>'c f ,则当c x >时,由拉格朗日中值定理得)())(()()(+∞→+∞→-'+=x c x f c f x f ξ.若0)(<'c f ,则当c x <时,由拉格朗日中值定理得)())(()()(-∞→+∞→-'+=x c x f c f x f ξ.由此得)(x f 在R 无界,这与已知条件矛盾,故命题为真.二 导数与可微问题1 显函数求导问题例4(武汉大学2003)设dt t t x F x ⎰-=1ln )(,求).(x F '解 由左右导数定义得xdtt t dt t t x F x F F x x x ⎰⎰--→→+-=-='++1010ln ln lim )0()(lim )0(xdt t t xdtt t xx xx ⎰⎰++→→==0000ln limln lim0ln lim 0==+→x x x ;同理可求:,0)0(='-F 所以.0)0(='F例5(北京大学2002)设x x x x f arcsin 1)(2+-=,求).(x f ' 解 .121111)(22222x x x x x x f -=-+---='例6(人民大学2001)设2111arcsin )1()(xxe x x xf x +-++=-,求).1(f ' 解 记1)1()(-+=x e x x x g ,则212ln 41)1ln(21)(ln +-++=x x x x g ,两边关于x 求导得]2141)1(21)[()(-++='x x x g x g , .0)1(='g222222112)1(211)1(11)11(arcsinx x x x x x x x x ++--+-⋅+--='+-,22)11(arcsin12-=+-=x x x , 所以,.22)1(-='f 例7(北京科技大学1998)设0>x ,⎰=2sin )(x xdu uuxx f ,求).(x f ' 解 0,0>∃>∀αx ,使得)1,(,22+∈ααx x ,在矩形区域]1,[]1,[22+⨯+αααα上,)sin (,sin u uxx u ux ∂∂ 均连续,所以xx x x x du u ux x f x x x 23sin 2sin )sin ()(2-⋅+'='⎰xx x uxdu x x23sin sin 2cos 2-+=⎰xx x x x x x 2323sin sin 2sin sin -+-=.sin 2sin 323xx x -=例8(西北工业大学)设)))((()(,1)(2x f f f x f xxx f n =+=(n 个f ),求).(x f n '解 由数学归纳法易证:.,1)(2+∈+=Z n nx x x f n于是.)1(111)1()(3222222nx x nx nx nx nx nxx x f n +=++-+='+='思考题5 求下列函数的导数: (1))sin(sin x x xy =(复旦大学1999);(2)xx y cos tan =(复旦大学1998); (3)⎩⎨⎧≥+<=,0),1ln(,0,cos 2x x x x y (华东师大1998)(4)1ln arctan 22+-=x xx e e e y (山东大学);(5)x x x y arcsin 12+-=(北京大学2002); (6)⎰++=tudu e y sin 111)1( (北京化工大学);(7))12sin(212x x x y +++-= (广西大学).2 分段函数求导问题例9 设.0)0(=f 证明:)(x f 在点0=x 处可微的充要条件是:存在在点0=x 处连续的函数)(x g ,使得)()(x xg x f =,且).0()0(g f ='证 由导数的定义易证充分性成立,只证必要性. 令⎪⎩⎪⎨⎧='≠=,0),0(,0,)()(x f x x x f x g则由题设及导数定义得)0()0()(lim )(lim)(lim 00f xf x f x x f xg x x x '=-==→→→, 即)(x g 在0=x 处连续,且由)(x g 的定义得)()(x xg x f =.例10(中科院2003,湘潭大学)设m 为自然数,在),(+∞-∞上定义函数f 为⎪⎩⎪⎨⎧=≠=,0,0,0,1sin )(x x x x x f m(1)当m 为何值时,)(x f 在点0=x 处连续; (2)当m 为何值时,)(x f 在点0=x 处可导;(3)当m 为何值时,)(x f '在点0=x 处连续. 解(1)要使0)0(1sin lim )(lim 0===→→f x x x f m x x ,当且仅当.2≥m(2)由导数定义得xx x f x f m x x 1sin lim )0()(lim100-→→=-,要使f 在0=x 处可导,即上式极限存在,当且仅当2≥m ,且.0)0(='f(3)当0≠x 时,,1cos 1sin )(21x x xmx x f m m ---=' (*)要使)(x f '连续,当且仅当极限)0()(lim 0f x f x '='→成立. 由(2)知2≥m ,因此,由(*)式知,当且仅当02>-m ,即.3≥m思考题6(山东大学)试作一函数在),(+∞-∞内二阶可微,使得)(x f ''在0=x 处不连续,其余处处连续.思考题7(华东化工学院) 确定常数b a ,,使函数⎩⎨⎧≤>+=,1,,1,)(2x x x b ax x f 处处连续,且可微.例11(内蒙古大学)讨论函数⎩⎨⎧∈+∈-=,\),1(,),1()(Q R x x x Q x x x x f的连续性和可微性.解 首先证明:)(x f 在0=x 处连续. 事实上0)0(=f ,且)1,0(U x ∈∀时,有x f x f 2)0()(≤-,因此,)1(2,0<=∃>∀δεδε,当),0(δU x ∈时,有ε<-)0()(f x f ,所以,)(x f 在0=x 处连续. 下证)(x f 在任意点00≠=x x 处不连续. 事实上,分别取收敛于0x 的有理点列{}n a 和无理点列{}n b ,有),1()1(lim )(lim 00x x a a a f n n n n n -=-=∞→∞→),1()1(lim )(lim 00x x b b b f n n n n n +=-=∞→∞→显然当00≠x 时,)1()1(0000x x x x +≠-,由海涅定理(归结原则)知极限)(lim 0x f x x →不存在,从而不连续,当然不可微.最后证明:)(x f 在点0=x 处可微. 事实上,当0≠x 时,有x xxx f x f x f =-=--)(1)0()(,从而有1)0()(lim=-→xf x f x ,即.1)0(='f例12(哈尔滨工大)设函数⎪⎩⎪⎨⎧=≠-=,0,,0,cos )()(x a x xxx g x f 其中)(x g 具有二阶连续导数,且.1)0(=g(1)确定a 的值,使)(x f 在点0=x 连续; (2)求)(x f ';(3)讨论)(x f '在点0=x 处的连续性.解(1)由洛必达法则得)0()sin )((lim cos )(lim)(lim 000g x x g xxx g x f x x x '=+'=-=→→→,要使)(x f 在0=x 处连续,必须使).0(g a '=(2)当0≠x 时,2cos )()sin )(()(xxx g x x g x x f +-+='; 当0=x 时,由定义及洛必达法则得x g x xx g x f x f f x x )0(cos )(lim )0()(lim )0(00'--=-='→→ 20)0(cos )(lim xg x x x g x '--=→ x xg x g x 2sin )0()(lim 0+'-'=→.21)0(21+''=g所以,⎪⎪⎩⎪⎪⎨⎧=+''≠+-+'='.0),1)0((21,0,cos )()sin )(()(2x g x xxx g x x g x x f(3)由于2cos )()sin )((lim)(lim xxx g x x g x x f x x +-+'='→→x xx g x x g x x g x x 2sin )(sin )()cos )((lim0-'-+'++''=→2cos )(lim 0xx g x +''=→)1)0((21+''=g所以,)(x f '在0=x 处连续.例13(中科院2002,西安电子科技大学)设)(x f 为二次连续可微函数,且.0)0(=f定义函数⎪⎩⎪⎨⎧='≠=,0),0(,0,)()(x f x x x f x g证明:)(x g 连续可微.证 当0≠x 时,2)()()(x x f x f x x g -'=';当0=x 时,200)0()(lim)0()(lim)0(x f x x f x g x g g x x '-=-='→→ x f x f x 2)0()(lim 0'-'=→).0(21f ''=且有)0()0(212)(lim )()(lim)(lim 0200g f x x f x xx f x f x x g x x x '=''=''=-'='→→→, 即)(x g '在0=x 处连续,当0≠x 时,)(x g '显然连续,所以)(x g '连续可微.思考题8(云南大学,吉林大学)设)(x f 在R 上有二阶连续的导数,且0)0(=f . 令⎪⎩⎪⎨⎧='≠=,0),0(,0,)()(x f x x x f x g证明(1))(x g 在R 上连续;(2))(x g 在R 上可微;(3))(x g '在R 上连续.3 抽象函数的导数与可微问题例14 设在领域),0(δU 内函数g f ,满足)()(x g x f ≤,且 .0)0()0(='=g g 求).0(f '解 由已知条件得0)0()0(=≤g f ,即.0)0(=f 于是),0(0δU x ∈∀,有.)0()()()()0()(0xg x g x x g x x f x f x f -=≤=-≤由0)0(='g 得0)0()(lim=-→x g x g x ,从而由两边夹定理得0)0()(lim=-→xf x f x ,即.0)0(='f例15 设函数)(x ϕ在a x =处连续,分别讨论下列函数在a x =处是否可导: (1))()()(x a x x f ϕ-=; (2))()(x a x x f ϕ-=; (3).)()()(x a x x f ϕ-=解(1)可导. 由)(x ϕ在a x =处连续及导数定义得).()(lim )()(lim)(a x ax a f x f a f a x ax ϕϕ==--='→→ (2)因为)()(lim )()(lim )(a ax x a x a x a f x f a f a x a x ϕϕ=--=--='++→→+;同理可得).()(a a f ϕ-='- 所以当0)(=a ϕ时,)()(a f a f -+'=',可导;否则不可导.(3)类似(1)可得)()(a a f ϕ=',所以可导.例16(人民大学2001)设函数)(x f 连续,)0(f '存在,并且满足:.,,)()(41)()()(R y x y f x f y f x f y x f ∈∀-+=+(1)证明:)(x f 在R 上可微;(2)若,21)0(='f 求).(x f 解(1)令0==y x 得)0(41)0()0(2f f f -=, 解之得.0)0(=f 由)0(f '存在知存在极限).0()(limf hh f h '=→ 从而,R x ∈∀,由假设条件可得hx f h f x f h f x f h x f h x f h h )()()(41)()(lim)()(lim 00--+=-+→→ )()(41)(41)(lim 20h f x f x f h h f h -+⋅=→ )](41)[0(2x f f +'=,所以,)](41)[0()(2x f f x f +'=',即)(x f 在R 上可微.(2)记)(x f y =,则有)41(212y y +=',整理得dx y y d =+2)2(1)2(, 两边积分得c x y +=2arctan ,即).tan(21c x y += 注意到0)0(=y ,由此得0=c ,故所求函数为.tan 21)(x x f y == 例17(中科院2003) 设函数f 在点0=x 连续,且满足.)()2(lim 0A xx f x f x =-→ 求证:)0(f '存在,并且.)0(A f ='证 由极限定义知,0,0>∃>∀δε,当),0(0δU z ∈时,有ε<--A zz f z f )()2(,即.)()2(εε+<-<-A zz f z f A任取),0(0δU x ∈,令n m x z m,,2,1,2 ==-,则有)(2)()2()(2εε+<-<---A xz f z f A m m m m ,.,,2,1n m =将上述n 式相加得).)(21()2()())(21(εε+-<-<-----A xx f x f A n n n令∞→n ,则由f 在0=x 处连续得εε+≤-≤-A xf x f A )0()(,即ε≤--A xf x f )0()(,由导数定义知.)0(A f ='.例18 设函数)(x f 在点a 处连续,且)(x f 在点a 处可导,证明:)(x f 在点a 处也可导.解 若0)(>a f ,由连续函数的保号性知,存在点a 的某领域)(a U ,使得)(a U x ∈时,0)(>x f ,从而有ax a x a x x f ax a f x f a x a f x f =→→'=--=--)()()(lim )()(lim ,即)(x f 在点a 可导.同理可证:当0)(<a f 时,)(x f 在点a 也可导.当0)(=a f 时,由)(x f 在点a 可导,可设其导数为A ,则有a x x f a x a f x f A ax ax -=--=→→)(lim)()(lim,由此知:当+→a x 时,可得0≥A ;当-→a x 时,可得0≤A ,故.0=A 即,0)(lim =-→ax x f a x 则0)(lim =-→a x x f a x ,所以 0)(lim )()(lim =-=--→→ax x f a x a f x f a x a x . 4 隐函数的求导问题例19(浙江大学2001)设可微函数)(x y y =满足方程x x e ye y y x 7sin 2-+-=,求).0(y '解 方程两边关于x 求导得,7cos 2sin 2-+'+-'-='x e x y e ye e y y y y x x将0=x 代入原方程得.0)0(=y 再将0,0==y x 代入上式得72)0()0(-+'-='y y ,故.25)0(-='y5 参数方程求导例20(华东理工大学)设⎰=21ln )(t udu u t x ,⎰=122ln )(tudu u t y ,求.dxdy 解 由参数方程求导公式得.ln 2ln 222225t t t t t dtdx dt dy dx dy -=-== 例21(北京化工大学)已知⎰++=tudu e y sin 111)1(,其中)(x t t =是由⎩⎨⎧==,sin ,2cos v t v x 所确定,求.dxdy解 由所给参数方程可得 2221sin 21t v x -=-=,从而有.4)1(cos 4)1(cos sin 11sin 11t e t t e t dtdx dt dy dx dy t t +++-=-+==6 反函数求导例22(厦门大学)已知k ke x f x,)(='为不等于零的常数,求)(x f 的反函数的二阶导数.解 记)(x f y =,其反函数记为)(y x ϕ=,则)(1)(x f y '='ϕ, 于是.1)]([)())(1())(1()(223x e k x f x f dxdy x f dx d x f dy d y -='''-='='=''ϕ7 高阶导数与高阶微分例23(中国地质大学2002)设)(x f ''存在,且满足方程)(y x f y +=,求.,22dxy d dx dy 解 方程两边关于x 求导得)1)((y y x f y '++'=', (1)解之得.)(1)(y x f y x f y +'-+'=' (2)由(1)式继续关于x 求导得y y x f y y x f y ''⋅+'+'++''='')()1)((2,解之方程,并将得(2)式代入化简可得.))(1()(3y x f y x f y +'-+''='' 注 求二阶导数,往往并不是直接求一阶导数的导数,而是转化为含有一阶导数的方程两边求导问题,这样往往能大大降低计算量.例24(复旦大学1998)已知)()()(2x a x x f ϕ-=,其中)(x ϕ'在a x =的某领域内连续,求).(a f ''解 由于)()()()(2)(2x a x x a x x f ϕϕ'-+-=',所以.0)(='a f 由导数定义及)(x ϕ'的连续性假设得)]()()(2[lim )()(lim )(a a x x ax a f x f a f a x a x ϕϕ'-+=-'-'=''→→).(2a ϕ=例25 已知⎩⎨⎧-=-=),cos 1(),sin (t a y t t a x 求.,22dx y d dx dy 解 由参数方程求导公式得ttt a t a dx dy cos 1sin )cos 1(sin -=-=, )cos 1()cos 1(sin )cos 1(cos )()(2222t a t t t t dt dx dx dydt d dxdy dx d dx y d ----===.)cos 1(12t a --= 注 求参数方程表示的函数的二阶导数,通常情况下并不是直接套用公式,而是求一阶导数(它是参数的函数)关于参变量的导数,再除以自变量关于参变量的导数. 这种方法也适用于更高阶的导数.例26(北京工业大学)设x x x f ωsin )(=,求证:.,2,1),cos 2sin ()1()(122)2( =--=-n x n x x x f n n n n ωωωω解 当1=n 时,x x x x f ωωωcos sin )(+=',x x x x f ωωωωsin cos 2)(2-='',即1=n 时,结论成立. 假设k n =时结论成立,即)cos 2sin ()1()(122)2(x k x x x f k k k k ωωωω---=,则当1+=k n 时,有]sin 2cos sin [)1()(2122)12(x k x x x x f k k k k k ωωωωωω++-=++]cos sin )12([)1(122x x x k k kkωωωω+++-=,]sin cos cos )12([)1()()1(21212)22(x x x x k x f k k k k k ωωωωωω++++-++-=]cos )1(2sin [)1(12)1(21x k x x k k k ωωωω++++--=,由数学归纳法知结论成立.例27(华中科技大学)设x x f arctan )(=,求).0()(n f解法一 当1<x 时,有∑∞=-=+='022)1(11)(n n n x x x f , 从而)(x f 的Maclaurin 展式为∑∞=++-=01212)1()(n n nn x x f , 因此,⎩⎨⎧+=-==.12,)!2()1(,2,0)0()(k n k k n fkn 解法二记)(x f y = ,则211x y +=',即.1)1(2='⋅+y x上式两边关于x 求导得02)1(2='+''⋅+y x y x .利用Leibniz 公式,上式两边求n 阶导数得.0)1()1(2)1()1()2(2=+++++++n n n y n n xy n y x例28(南京大学)求 ).0()ln (2>x x x d n 解 记x x y ln 2=,则x x x y +='ln 2, 3ln 2+=''x y ,,2xy =''',.3,1)!3(2)1(21)(≥--=--n x n y n n n所以,⎪⎩⎪⎨⎧--=+=+=--.)!3(2)1(,2,)3ln 2(,1,)1ln 2()ln (2122n n n n dx x n n dx x n dx x x x x d注 求高阶导数或高阶微分通常有四种方法:数学归纳法,Leibuniz 公式,递推公式法和幂级数方法.思考题9(同济大学)试用数学归纳法证明:.)1()(11)(11x n n n xn e xe x+--= 例29(华东师大2000)设⎪⎩⎪⎨⎧=≠=.0,1,0,sin )(x x x xx f求).0()(n f解 由x sin 的幂级数展开式得:当0≠x 时,++-+++-=)!12()1(!5!31sin 242n x x x x x n n,从而由幂级数的逐项可微性,有0)0()(lim)0(0=-='→xf x f f x ,31)(!32lim )sin (lim )0()(lim )0(000-=+-='='-'=''→→→x x o x x x xx f x f f x x x , 031)(10131lim )0()(lim )0(2200=+++-=''-''='''→→xx o x x f x f f x x , 51)(51lim )0()(lim )0(00)4(=+='''-'''=→→x x o x x f x f f x x ,由数学归纳法易证:.,2,1,2,11)1(,12,0)0()( =⎪⎩⎪⎨⎧=+--==k k n k k n f kn 思考题10(浙江大学2002)设⎪⎩⎪⎨⎧=≠=-.0,0,0,)(21x x e x f x 求).0()(n f8 其它相关问题例30(湖北大学2001)设)(x f 为可导函数. 证明:若1=x 时,有)()(22x f dxd x f dx d =, 则必有0)1(='f ,或 .1)1(=f证 由复合函数求导法则得)(2)(22x f x x f dx d'⋅=, )()(2)(2x f x f x f dxd '=, 由已知条件得)()()(2x f x f x f x '=',将1=x 代入上式得0)]1(1)[1(=-'f f ,从而可得0)1(='f ,或 .1)1(=f例31(四川大学1999)函数xe y -=在0=x 处是否连续,是否可导,是否有极值,为什么?解 函数xey -=在0=x 处连续,不可导,有极大值,极大值为1. 事实上,ue y =连续,x u -=连续,由复合函数连续性定理知xe y -=在0=x 处连续. 又⎪⎩⎪⎨⎧<=>=-,0,,0,1,0,x e x x e y xx (1)由洛必达法则(或等价无穷小替换)得1lim 1lim )0(00-=-=-='-→-→+++x x x x e xe y ;1lim 1lim )0(00==-='--→→-x x x x e xe y ,即)0()0(-+'≠'y y ,所以函数在0=x 处不可导. 由(1)式知,函数在0<x 时单调递增,在0>x 时单调递减,所以在0=x 处取得极大值,极大值为.1)0(=y例32(北京科技大学,东北师大)设)(x f 在点a x =某领域有定义,且在该领域内可导,计算极限.0,0,)()(lim≠≠+-+→βαβαtt a f t a f t解 由导数定义得tt a f t a f t )()(lim0βα+-+→ta f t a f t a f t a f t t βββααα)()(lim )()(lim 00-+--+=→→).()(a f '-=βα注(1)不能使用洛必达法则;(2)只要f 在a x =处可导,结论仍然成立.例33(武汉大学)社函数)(x f 在点0x 的某领域)(0x U 内有定义. 证明:到数)(0x f '存在的充要条件是:存在这样的函数)(x g ,它在)(0x U 内有定义,在点0x 连续,且在)(0x U 内成立等式:).()()()(00x g x x x f x f -+=证 充分性显然,下证必要性.令⎪⎩⎪⎨⎧='≠--=.),(,,)()()(00000x x x f x x x x x f x f x g 则容易验证)(x g 满足题目中的条件,所以命题成立.例34 设函数)(x f 定义在R 上,证明:(1)若)(x f 是奇函数,则奇数阶导数是偶函数,偶数阶导数是奇函数; (2)若)(x f 是偶函数,则奇数阶导数是奇函数,偶数阶导数是偶函数; (3)若)(x f 是奇函数,则0)0(,0)0()2(==n f f (n 是正整数);(4)若)(x f 是偶函数,则.,2,1,0,0)0()12( ==+n fn证(1)若)(x f 是奇函数,则R x ∈∀,有)()(x f x f --=,两边求导得)()(x f x f -'=', )()(x f x f -''-='',一般地,我们有.,2,1,2),(,12),()()2()12()( =⎪⎩⎪⎨⎧=---=-=-n n k x fn k x f x fn n k由奇偶函数的定义知结论成立.(2)若)(x f 为偶函数,则R x ∈∀,有)()(x f x f -=,仿上可得.,2,1,2),(,12),()()2()12()( =⎪⎩⎪⎨⎧=--=--=-n n k x fn k x f x fn n k由奇偶函数的定义知结论成立.(3)由奇函数的定义得)0()0(f f -=,所以.0)0(=f 同时,由已证结论(1)立得.0)0()2(=n f(4)由(2)立得.0)0()12(=+n f例35(人民大学2001)设,cos 1sin 1)(2425x xxx x f +⋅+=求.)(),0(11)6()6(⎰-dx x f f解 容易验证)(x f 为奇函数,由上题结论知)()6(x f 也为奇函数,所以.0)(,0)0(11)6()6(==⎰-dx x f f例36(东北师大)证明:若)(x f 在R 上连续,且对任意R y x ∈,,有)()()(y f x f y x f =+,则)(x f 在R 上可微.证 若0)(≡x f ,或1)(≡x f ,则命题显然成立. 若)(x f 不恒为零,也不恒等于1,则R x ∈∃0,使得0)(0≠x f ,由此得0)()()()(000≠-=+-=x f x x f x x x f x f ,从而.0)(≠x f 由归纳法,对任意正整数m ,有。

D第二章 一元函数微分学精选文档PPT课件

5
二、导数的定义
定义 设函数 y f ( x)在点 x0的某个邻域内 有定义, 当自变量 x在 x0处取得增量x (点 x0 x 仍在该邻域内)时, 相应地函数 y取 得增量y f ( x0 x) f ( x0 ); 如果y与 x之比当x 0时的极限存在, 则称函数 y f ( x)在点 x0处可导, 并称这个极限为函 数 y f ( x)在点 x0处的导数, 记为y x x0 ,
yf(x)
N
T
CM
极限位置即
o
x0
xx
M N 0, NM 0.T设 M (x 0 ,y 0 )N ,(x ,y ).
割线 MN的斜率为 tan y y0 f(x) f(x0),
N 沿 C 曲 M 线 ,x x 0 , x x0
xx0
切线 MT的斜率为 ktan lim f(x)f(x0). x x0 xx0
7
关于导数的说明:
★ 点导数是因变x0量 处在 的点 变化 ,它率 反映因 了变量随自变量 而的 变变 化化 的快 慢程.度 ★ 如果y函 f(x数 )在开I内 区的 间每 处都, 就 可称 导f(函 x)在 数 开I内 区可 间 . 导
8
★ 对于任x 一I,都对应f(着 x)的一个确定的 导数.这 值个函数叫做原 f(x)来 的函 导数 函 . 数
h 0
h
li[n m n 1 x n (n 1 )x n 2 h h n 1 ]nxn1
h 0
2 !
即(xn)nn x 1.
更一般地 (x ) x 1 . ( R )
例如,
(
x )
1
11
x2
2
1. 2x
( x 1 )
(1)x11

一元函数微分学总结

一元函数微分学总结一元函数微分学是微积分学中的一个重要分支,用于研究一元函数的变化率和极值问题。

它是微分学的基础,对于理解和应用微积分具有重要的意义。

一元函数的微分学主要涉及函数的导数、极值和曲线的图像等内容。

其中,函数的导数是函数在某一点的变化率,它可以表示为函数的斜率或者切线的斜率。

函数的导数可以帮助我们研究函数在不同点的变化规律,了解函数的增减性、凹凸性、极值等特征。

在一元函数微分学中,求导是一个重要的操作。

通过求导,我们可以得到函数的导数表达式,从而可以计算函数在任意一点的导数值。

求导的基本规则包括常数导数规则、幂函数导数规则、指数函数导数规则、对数函数导数规则等,这些规则可以帮助我们快速计算导数。

另外,函数的导数还可以用于研究函数的极值。

通过求导,我们可以找到函数的极值点,即导数为零或者不存在的点。

极大值点对应函数的局部最大值,极小值点对应函数的局部最小值。

通过求导,我们可以判断一个函数在某一点的极值类型,并且可以进一步确定函数的增减区间和凹凸区间。

函数的导数还可以用于研究函数的图像。

通过求导,我们可以得到函数在不同点的斜率,进而可以画出函数的切线和曲线的大致形状。

通过分析切线和曲线的关系,我们可以了解函数的增减性和凹凸性,从而更加深入地理解函数的性质。

总而言之,一元函数微分学是微积分学中的重要分支,它研究一元函数的变化率和极值问题。

通过求导和分析导数,我们可以了解函数的增减性、凹凸性和极值等特征,从而更好地理解和应用微积分。

在实际应用中,一元函数微分学广泛应用于物理、经济、工程等领域,为实际问题的建模和求解提供了有力的工具和方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京尚学硕博教育咨询有限公司
Born To Win 一元函数微分学:重视基础,不留盲点
考研数学的确是很多学生的软肋,因而在基础阶段的现在,清晰规划十分重要。

想必,2016考生早已着手开始复习,那么考研之初,对高等数学第二章一元函数微分学的复习需要掌握什么?跨考教育数学教研室牛秀燕为大家再次明确,以便复习更加有计划性和目的性。

1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。

2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。

了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。

3.了解高阶导数的概念,会求简单函数的高阶导数。

4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。

5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理。

6.掌握用洛必达法则求未定式极限的方法。

7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。

8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数。

当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。

9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径。

其中重点需要掌握的有导数的定义、导数的计算和导数的应用。

在基础阶段,我们在了解考试内容后,需要在基础阶段确保牢固地掌握基本概念、基本理论、基本公式,不放过任何一个考点的复习,这是考研数学复习取得成功最基本的条件。

文章来源:跨考教育。

相关文档
最新文档