九年级数学下册 27.3 位似教案1 (新版)新人教版
新人教版九年级数学下 27.3 位似学案1

位似课题:27.3位似(1)序号:学习目标:1、知识和技能:(1)了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质。
(2)掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小。
2、过程和方法:经历利用位似将图形放大或缩小的过程,提高学生的动手操作能力。
3、情感、态度、价值观:在实际操作和探究过程中让学生感受体会到几何图形之美。
学习重点:位似图形的有关概念、性质与作图学习难点:利用位似将一个图形放大或缩小导学方法:自主探索法课时:2课时导学过程一、课前预习预习教材P59-60的有关内容,完成《导学案》中的教材导读和自主测评。
二、课堂导学1.导入在日常生活中,我们经常见到这样一类的图形,如:放映幻灯片时,通过光源把幻灯片上的图形放大到屏幕上,观察它们的形状、大小是否发生了变化?他们是什么图形?它们还有什么特征?2.出示任务,自主学习:(教材P59)图中有多边形相似吗?如果有,这种相似有什么特征?(教材P60)要把一个四边形缩小到原来的一半,该怎样做?3.合作探究探究:位似图形及其有关的概念:探究:利用位似可以将一个图形放大或缩小:与图形各顶点的线段上取一点,形对应的顶点的距离的比等于某一常数,即可得到相应的位似图形。
)在图形外任取一点O与图形各顶点并反向延长,在延长线上取一点,使得)在图形内取一点1.位似图形:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。
2.掌握位似图形概念,需注意:①位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形;②两个位似图形的位似中心只有一个;③两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧;④位似比就是相似比.利用位似图形的定义可判断两个图形是否位似。
位似图形首先是相似图形,所以它具有相似图形的一切性质.位似图形是一种特殊的相似图形,它又具有特殊的性质,位似图形上任意一对对应点到位似中心的距离等于位似比(相似比)。
九年级数学下册 27.3 位似教案 (新版)新人教版

27.3 位 似第1课时 位 似(1)知识与技能1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质. 2.掌握位似图形的画法,能够利用作位似图形的方法将—个图形放大或缩小. 过程与方法经历位似图形的探索过程,进一步发展学生的探究、交流能力. 情感、态度与价值观培养学生动手操作的能力,体验学习的乐趣.重点位似图形的有关概念、性质与作图. 难点利用位似将一个图形放大或缩小.一、问题引入1.生活中我们经常把照片放大或缩小,由于没有改变图形的形状,我们得到的照片是真实的.2.问:如图,多边形ABCDE ,把它放大为原来的2倍,即新图与原图的相似比为2.应该怎样做?你能说出画相似图形的一种方法吗?二、新课教授活动1:观察下图,图中有多边形相似吗?如果有,那么这种相似有什么共同的特征?学生通过观察了解到有一类相似的图形,除具备相似的所有性质外,还有其他特性,学生自己归纳出位似图形的概念:如果两个图形不仅是相似图形,而且每组对应点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比.每对位似对应点与位似中心共线(位似中心可在形上、形外、形内);不经过位似中心的对应线段平行.利用位似可以将一个图形放大或缩小.活动2:把图中的四边形ABCD 缩小到原来的12.师生活动:教师提出问题,要注意引导学生能够用不同的方法画出所要求作的图形,要让学生通过作图理解符合要求的图形不唯一,这和所作的图形与所确定的位似中心的位置有关(如位似中心O 可能选在四边形ABCD 外,可能选在四边形ABCD 内,可能选在四边形ABCD 的一条边上,可能选在四边形ABCD 的一个顶点上),并且同一个位似中心的两侧各有一个符合要求的图形,因此,位似中心的确定是关键.分析:把图形缩小到原来的12,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2.作法一:如图.(1)在四边形ABCD 外任取一点O ;(2)过点O 分别作射线OA ,OB ,OC ,OD ;(3)分别在射线OA ,OB ,OC ,OD 上取点A ′,B ′,C ′,D ′,使得OA ′OA =OB ′OB =OC ′OC=OD ′OD =12; (4)顺次连接A ′B ′,B ′C ′,C ′D ′,D ′A ′,所得四边形A ′B ′C ′D ′就是所要求作的图形.作法二:如图.(1)在四边形ABCD 外任取一点O ;(2)过点O 分别作射线OA ,OB ,OC ,OD ;(3)分别在射线OA ,OB ,OC ,OD 的反向延长线上取点A ′,B ′,C ′,D ′,使得OA ′OA=OB ′OB =OC ′OC =OD ′OD =12; (4)顺次连接A ′B ′,B ′C ′,C ′D ′,D ′A ′,所得四边形A ′B ′C ′D ′就是所要求作的图形.作法三:如图.(1)在四边形ABCD 内任取一点O ;(2)过点O 分别作射线OA ,OB ,OC ,OD ;(3)分别在射线OA ,OB ,OC ,OD 上取点A ′,B ′,C ′,D ′,使得OA ′OA =OB ′OB =OC ′OC=OD ′OD =12; (4)顺次连接A ′B ′,B ′C ′,C ′D ′,D ′A ′,所得四边形A ′B ′C ′D ′就是所要求作的图形.三、例题讲解例1 如图,指出下列各图中的两个图形是否是位似图形,如果是位似图形,请指出其位似中心.解:图(1)、(2)和(4)三个图形中的两个图形都是位似图形,位似中心分别是图(1)中的点A ,图(2)中的点P 和图(4)中的点O.(图(3)中的点O 不是对应点连线的交点,故图(3)不是位似图形,图(5)也不是位似图形)例2 画出所给图形的位似中心.答案四、课堂小结1.位似图形的概念:如果两个图形不仅是相似图形,而且每组对应点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形.2.位似的作用:利用位似可以将一个图形放大或缩小. 3.位似图形的画法.位似是相似的延伸和深化.位似图形在实际生产和生活中有着广泛的应用,如利用位似把图形放大或缩小;放电影时,胶片与屏幕的画面也是位似图形.本章编排的素材不仅丰富了教材的内容,加强了数学与自然、社会及其他学科的联系,同时体现了学生的数学学习内容是现实的、有意义的、富有挑战性的,更突出地反映了数学的价值.第2课时 位似(2)知识与技能1.巩固位似图形及其有关概念.2.会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定比例放大或缩小后,点的坐标变化的规律.3.了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换.过程与方法会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定比例放大或缩小,体会数形结合的思想.情感、态度与价值观渗透数形结合的数学思想,培养学生良好的学习习惯.重点用图形的坐标的变化来表示图形的位似变换. 难点把一个图形按一定比例放大或缩小后,掌握点的坐标变化的规律.一、问题引入1.什么是位似图形?(如果两个图形不仅是相似图形,而且每组对应点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形.)2.如图,以点O 为位似中心,将△ABC 放大为原来的两倍.二、新课教授在前面,我们学习了在平面直角坐标系中,如何用坐标表示某些平移、轴对称、旋转(中心对称)等变换,相似也是一种图形的变换,一些特殊的相似(如位似)也可以用图形坐标的变化来表示.下面我们来研究如何表示.活动1:(1)如图(1),在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O 为位似中心,相似比为13,把线段AB 缩小,观察对应点之间坐标的变化,你有什么发现?(2)如图(2),△ABC 三个顶点的坐标分别为A(2,3),B(2,1),C(6,2),以点O 为位似中心,相似比为2,将△ABC 放大,观察对应顶点坐标的变化,你有什么发现?学生小组讨论,共同交流,回答问题.解:可以看出,图(1)中把AB 缩小后,A ,B 两点的对应点分别为A ′(2,1),B ′(2,0);A ″(-2,-1),B ″(-2,0).图(2)中,作图略.将△ABC 放大后,A ,B ,C 对应的点分别为A ′(4,6),B ′(4,2),C ′(12,4);A ″(-4,-6),B ″(-4,-2),C ″(-12,-4).归纳位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k.活动2:如图,△ABC 三个顶点的坐标分别为A(2,3),B(2,1),C(6,2). ①将△ABC 向左平移三个单位得到△A 1B 1C 1,写出A 1,B 1,C 1三点的坐标; ②写出△ABC 关于x 轴对称的△A 2B 2C 2的三个顶点A 2,B 2,C 2的坐标; ③将△ABC 绕点O 旋转180°得到△A 3B 3C 3,写出A 3,B 3,C 3三点的坐标.①将△ABC 向左平移三个单位得到△A 1B 1C 1,则A 1(-1,3),B 1(-1,1),C 1 (3,2); ②△ABC 关于x 轴对称的△A 2B 2C 2三个顶点坐标分别为A 2(2,-3),B 2 (2,-1),C 2 (6,-2) ;③将△ABC 绕点O 旋转180°得到△A 3B 3C 3,则A 3(-2,-3),B 3(-2,-1),C 3(-6,-2).三、例题讲解例 如图,四边形ABCD 四个顶点的坐标分别为A(-6,6),B(-8,2),C(-4,0),D(-2,4).画出它的—个以原点O 为位似中心、相似比为12的位似图形.解法一:如上图,利用位似变换中对应点的坐标的变化规律,分别取点A ′(-3,3),B ′(-4,1),C ′(-2,0),D ′(-1,2).依次连接点A ′,B ′,C ′,D ′,四边形A ′B ′C ′D ′就是要求作的四边形ABCD 的位似图形.解法二:点A 的对应点A ″的坐标为(-6×(-12),6×(-12)),即A ″(3,-3).类似地,可以确定其他顶点的坐标.(具体解法与作图略)四、巩固练习1.在平面直角坐标系中,已知点A(3,4),B(-4,3),以原点O 为位似中心,相似比为2,将△OAB 放大为△OA ′B ′,则对应点A ′,B ′的坐标分别为________.答案 A ′(6,8),B ′(-8,6)或A ′(-6,-8),B ′(8,-6).2.如图,以某点为位似中心,将△AOB 进行位似变换得到△CDE ,记△AOB 与△CDE 对应边的比为k ,则位似中心的坐标和k 的值分别为( )A .(0,0),2B .(2,2),12C .(2,2),2D .(2,2),3 答案 C五、课堂小结本节课首先巩固位似图形及其有关概念方面的知识,要求学生会用图形坐标的变化来表示图形的位似变换,掌握把一个图形按一定比例放大或缩小后,点的坐标变化的规律;了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换.关于位似图形的概念,教学中应注意解释:几何变换、相似变换、位似变换三者之间的关系.相似变换是特殊的几何变换,位似变换又是特殊的相似变换,位似图形是具有特殊位置关系的相似图形.四种变换中,平移、轴对称、旋转都是保距变换,变换前后图形全等.而相似变换(包括位似变换)前后得到的图形不一定全等,是保角变换.。
人教版九年级数学下册:27.3《位似》教案1

人教版九年级数学下册:27.3《位似》教案1一. 教材分析《人教版九年级数学下册》第27.3节“位似”是学生在学习了相似三角形的基础上,进一步研究位似图形的性质。
本节内容通过具体的实例,让学生理解位似的定义,掌握位似图形的性质,并能够运用位似的概念解决实际问题。
教材通过丰富的图片和实例,激发学生的学习兴趣,培养学生观察、思考、归纳的能力。
二. 学情分析九年级的学生已经学习了相似三角形的性质,对图形的相似性有一定的认识。
但在实际应用中,学生可能对位似的概念理解不够深入,难以运用位似知识解决生活中的问题。
因此,在教学过程中,教师需要关注学生的认知水平,通过实例分析,引导学生深入理解位似的概念,提高学生的实际应用能力。
三. 教学目标1.了解位似的定义,掌握位似图形的性质。
2.能够识别生活中的位似图形,并运用位似知识解决实际问题。
3.培养学生的观察能力、思考能力和归纳能力。
四. 教学重难点1.重点:位似的定义,位似图形的性质。
2.难点:运用位似知识解决实际问题。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生观察、思考,激发学生的学习兴趣。
2.启发式教学法:教师提问,学生回答,引导学生主动探究位似的概念。
3.小组合作学习:学生分组讨论,共同完成实践任务,提高学生的合作能力。
六. 教学准备1.准备相关的图片和实例,用于教学演示。
2.准备练习题,用于巩固所学知识。
3.准备黑板,用于板书关键知识点。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的位似图形,如放大或缩小的图片、相似的建筑等。
引导学生观察这些图形,并提出问题:“你们认为这些图形有什么共同的特点?”让学生思考并回答,从而引出位似的概念。
2.呈现(10分钟)介绍位似的定义,并用具体的实例进行分析。
讲解位似图形的性质,如对应边的比例关系、对应角的相等性等。
让学生通过观察实例,理解并掌握位似的概念。
3.操练(10分钟)学生分组讨论,找出生活中的位似图形,并运用位似知识进行分析。
人教版数学九年级下册27.3《位似》授课教学设计

三、教学重难点和教学设想
(一)教学重点
1.位似图形的定义及其性质。
在每个环节结束后,引导学生进行小结,总结所学知识。同时,鼓励学生反思学习过程中的困惑和收获,提高学生的自我评价能力。
6.课后作业,拓展思维
布置适量的课后作业,包括基础题、提高题和拓展题,以满足不同层次学生的需求。让学生在完成作业的过程中,进一步巩固知识,拓展思维。
7.教学评价,关注成长
采用多元化评价方式,如课堂表现、作业完成情况、小组讨论等,全面评价学生的学习效果。关注学生的成长过程,鼓励学生积极参与,提高学习积极性。
5.课堂练习:设计有针对性的练习题,巩固学生对位似图形性质的理解,提高学生的解题能力。
6.小结与反思:引导学生总结本节课所学内容,分享学习心得,提高学生的自我评价能力。
7.课后作业:布置适量的课后作业,巩固所学知识,拓展学生的思维。
8.教学评价:通过课堂表现、作业完成情况、小组讨论等多种方式,全面评价学生的学习效果。
2.拓展提高题:挑选两道拓展提高题,旨在培养学生的空间想象能力和推理能力。
要求:学生尝试用不同的方法解题,比较各种方法的优缺点,提高解题效率。
3.实践应用题:结合生活中的实例,设计一道位似图形的应用题,让学生运用所学知识解决实际问题。
要求:学生在解题过程中,注意将理论知识与生活实际相结合,提高学以致用的能力。
二、学情分析
九年级下册的学生已经具备了一定的几何基础,掌握了相似三角形的相关知识,为本章节位似图形的学习打下了基础。在此基础上,学生对位似图形的概念、性质和判定方法的理解较为容易,但在实际应用中可能存在一定的困难。此外,学生在空间想象能力、推理能力和合作学习能力方面发展不均衡,需要教师在教学过程中关注个体差异,因材施教。
2023九年级数学下册第二十七章相似27.3位似第1课时位似图形的概念及画法教案(新版)新人教版

课后拓展
1.拓展内容:
-阅读材料:《数学的故事》中关于几何变换的起源和发展,了解位似变换在数学史上的地位。
-视频资源:寻找与位似图形相关的教学视频,如介绍位似变换的基本概念、性质和应用实例。
-学生通过观察生活中的位似图形,将所学知识应用到实际中,提高解决问题的能力。
-鼓励学生针对位似图形的特定性质或应用进行深入研究,撰写研究报告,培养探究精神。
-教师提供必要的指导和帮助,如推荐阅读材料、解答学生在自主学习中遇到的疑问等。
-教师组织学生开展课后讨论活动,让学生分享自己的学习心得和研究成果,促进交流与合作。
三、实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与位似图形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用几何画板绘制位似图形,演示位似的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
四、学生小组讨论(用时10分钟)
2.位似比的概念及其计算方法;
3.位似图形的画法,包括位似中心、位似向量、位似图形的作图方法;
4.应用位似变换解决实际问题。
本节课将结合新人教版教材,以生活实例为导入,让学生在实际操作中体会位似图形的特点,培养他们的观察能力和空间想象能力,从而提高解决几何问题的能力。
核心素养目标
本节课旨在培养学生的以下数学核心素养:
2023九年级数学下册第二十七章相似27.3位似第1课时位似图形的概念及画法教案(新版)新人教版
学校
授课教师
九年级数学下册 27.3 位似(1)精品教案 人教新课标版【教案】

教 知识 技能
学 过程 目 方法
标
情感 态度
九年级
课题
27.3 位似(1)
多媒体
课 型 新授
1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质;
2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.1
通过设置问题情境,建立数学概念,解释、应用与拓展,引导学生观察、验证,推理, 交流,探究位似变换和图形缩放.
使得
;
④顺次连接 A′B′、B′C′、C′D′、D′A′,得到四边形 A′
教师布置任务,学 培养学生的作图
生以小组形式完 能力和语言表达
成.通过画图,证 能力,拓宽学生思
明,师生总结出画 维,让学生总结解
位似图形的一般 决问题的多种方
步骤:
法,触类旁通,获
①首先确定位似 得成功体验,增强
中心,位似中心的 学习信心.
用心
爱心
专心
2
板书设计
27.3 位似(1)
位似概念
图2
图3
图
4
教 学 反思
用心
爱心
专心
3
四、课堂小结
1.位似图形概念:①位似是和位置有关的相似,两个图形是位似 图形,必定是相似图形,相似图形不一定是位似图形;②两个位 似图形的位似中心只有一个;③两个位似图形可能位于位似中心 的两侧,也可能位于位似中心的一侧;④位似比就是相似比.利 用位似图形的定义可判断两个图形是否位似. 2.位似图形具有相似图形的一切性质.位似图形是一种特殊的相 似图形,它又具有特殊的性质,位似图形上任意一对对应点到位 似中心的距离比等于位似比(相似比). 3.两个位似图形的主要特征是:每对位似对应点所在直线经过位 似中心;不经过位似中心的对应线段平行. 4.利用位似,可以将一个图形放大或缩小. 五、作业设计 必做题:教材 64 页习题 27.3 第 1、2 题
人教版数学九年级下册27.3《位似(第一课时)》表格优秀教学案例
1.分组讨论:我将学生分成若干小组,每个小组选择一个具体实例,分析其中的位似关系,并总结位似的性质。
2.小组汇报:每个小组选代表进行汇报,分享自己的发现和总结。其他小组成员和教师进行点评和补充。
(四)总结归纳
1.位似的定义和性质:我引导学生总结位似的定义和性质,使学生能够系统地掌握位似的概念。
三、教学策略
(一)情景创设
1.以生活实例引入:我选择了几个现实生活中常见的位似现象,如相似的建筑、动物的生长变化等,通过展示图片或视频,让学生直观地感受到位似的存在。这样的引入方式能够激发学生的兴趣,使他们更加关注本节课的内容。
2.几何图形展示:在课堂上,我展示了多种几何图形,让学生观察并分析其中的位似关系。通过观察和分析,学生能够发现位似的性质,并逐步理解位似的概念。
2.培养学生运用位似的概念解决实际问题的能力,提高学生的几何思维能力。
3.通过对位似概念的学习,使学生能够灵活运用位似性质,解决一些相关的几何问题。
为了实现这一目标,我在教学中采用了多种教学手段。首先,我通过生活实例引入位似的概念,让学生感受到位似在生活中的存在。然后,我通过几何图形的展示,引导学生发现位似的性质,并通过小组讨论的方式,让学生共同探讨位似的特征。在讲解位似图形的画法时,我以具体例子为例,引导学生动手操作,加深对位似概念的理解。
(四)反思与评价
1.学生自我反思:在课堂结束后,我要求学生进行自我反思,总结自己在课堂上的学习情况和收获。通过自我反思,学生能够更好地了解自己的学习状态,发现自己的不足之处,从而调整学习策略,提高学习效果。
2.教师评价:在课后,我对学生的学习情况进行评价。我注重评价学生的知识掌握程度、思维能力、团队合作能力等多个方面。通过教师的评价,学生能够了解自己的学习成果和不足之处,从而激发学生的学习动力,提高他们的学习效果。
九年级数学下册《27.3 位似图形》教案 新人教版
四、位似的简单应用
20
一、学生计算。培养学生对数学知识应用于实际问 题的兴趣,计算结果的正确性。
二、学生小组讨论,教师点拨.
三、小组展示成果,教师点评。
通过运用位似形的性质,学生解决简单的实际问题, 培养学生的应用意识。再次交出主动权,生生互动、师 生互动,进一步培养学生的抽象思维
备课方式占1/5或2/5(听课时很管用),其他方式可配套使用。
一、创设情景,感知位似。
3
通过图片展示,力求丰富多彩,以调动学生的 注意力,激发起好奇心和求知欲。使学生充分感知位似,欣赏位似之美,增强学生的审美意识 。
教师展示图片、提出问题,学生观察,学生分4—6人小组思考,交流,展示图片的特征。 教师启发、引导。
联系实际,激发学生学习的兴 趣。
使学生懂得画图的关键(1)先取位似中心。(2)再正确确定各对应点(3)最后画出位图形的步骤。
总结本节课知识点,再次总强化。
五、课堂小结
2
位似图形、位似中心及位似图形的性质;相似与位似的关系。画好位似图形 。
通过评价和反思,概括本节课的学习内容,总结平行四边形在边、角等方面的性质。体验探究过程中的感受。
注释或说明:一、教学反思:1、学生在动手操作,与探究位似图形的共同特征环节比较顺利,但归纳性质 用语言表达困难。2、证明位似图形的思路还需在老师的帮助下找到,不能及时内化。3、内外位似图形区别不清楚。二、改进意见。1、通过合作不断 提高学生的语言表达能力和形象思维能力。2、注意通过定理、公式的逆向运用发展学生的逆向思维。3、内外位似图形如是能举例说明并让学生自己来鉴别会掌握得更好。
二、画出简单的位似图形
8
人教版九年级数学下27.3位似(第1课时)优秀教学案例
3.运用多媒体辅助教学,直观展示位似的变换过程,帮助学生建立清晰的空间观念。
4.引导学生运用位似性质解决实际问题,提高他们的问题解决能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,使他们感受到数学的实用性和魅力。
3.教师对学生的学习情况进行总结性评价,关注学生的知识掌握程度、能力培养和情感态度等方面的成长。如:“你们在学习位似过程中,取得了哪些成果?还有哪些需要提高的地方?”、“你们在解决问题时,展现了哪些优秀的品质?”等。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示一些实际问题,如图片的放大、缩小等,引导学生思考这些现象背后的数学原理。
二、教学目标
(一)知识与技能
1.让学生掌握位似的定义,理解位似与相似的区别,能够判断图形是否位似。
2.培养学生运用位似性质解决实际问题的能力,如对图形进行放大或缩小等。
3.通过对位似的深入学习,提高学生对几何图形的认识,培养他们的空间想象能力。
(二)过程与方法
1.采用“实际问题——理论探究——实践应用”的教学模式,引导学生从实际问题中发现位似的存在,激发他们的探究兴趣。
2.通过对位似的探究,培养学生勇于探索、严谨求实的科学精神。
3.注重培养学生的团队协作意识,让他们在合作中共同成长。
4.鼓励学生积极面对学习中的困难,培养他们坚持不懈、迎难而上的品质。
三、教学策略
(一)情景创设
1.以生活实际为例,创设有趣、富有挑战性的问题情境,激发学生的学习兴趣。如:“为什么地图上的城市位置与实际位置有所不同?”、“怎样设计一张邮票,使其在邮局发行的过程中保持美观?”等。
最新人教版初中数学九年级下册 27.3 位似教案1
27.3位似(第一课时)教 学 目 标知识技能 理解位似图形的定义;能够熟练准确找到位似中心,能够熟练准确地利用图形的位似将一个图形放大与缩小.数学思考1. 理解位似图形的定义,选择适当的方式进行图形放大与缩小.2. 从具体操作活动中,培养学生动手操作能力,空间想象能力.解决问题 能够熟练准确地利用图形的位似将一个图形放大与缩小. 情感态度在观察、操作、推理、归纳等探索过程中,获得成功的体验,感受数学的无处不在,锻炼克服困难的意志,建立学好数学的自信心.重点 能根据位似图形的特征,将一个图形放大与缩小. 难点 选择适当的方式进行图形放大与缩小.27.3位似一、位似图形的定义 二、位似的应用教学任务分析板书设计课后反思教学过程设计活动一.创设情景,归纳概念1.复习相似概念、性质,相似应用知识.2.生活中,哪些应用到相似?例如,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上(如图显示了它工作的原理).在照相馆中,摄影师通过照相机,把人物的形象缩小在底片上.3.观察图片,你有何发现?图中两幅图片不仅相似,而且对应顶点的连线相交于一点,像这样的两个图形叫做位似图形.4.位似图形概念:如果两个相似图形每组对应顶点所在的直线都相交于一点,那么这样的两个图形叫做位似图形,这个交点叫做位似中心.5.相似图形与位似图形有什么区别与联系? 学生回答,举生活中实例说明.学生归纳总结位似图形概念.学生答:(1)位似图形是特殊的相似图形;(2)位似图形对应顶点连线都相交于一点.学生选择,并一一分析各选项.从生活中实例来认识理解位似图形与相似图形的区别与联系,从而得出位似图形概念.通过练习巩固对概念的理解.从图形、文字两方面来加深对位似图形的理解.问题与情境师生行为设计意图教学过程设计活动二.巩固新知,应用新知 1.下列说法正确的是( ) A.两个图形如果是位似图形,那么这两个图形一定全等;B.两个图形如果是位似图形,那么这两个图形不一定相似;C.两个图形如果是相似图形,那么这两个图形一定位似; D.两个图形如果是位似图形,那么这两个图形一定相似. 2.要把四边形ABCD 缩小到原来的21.步骤:(1). 在四边形外任选一点O (如图),(2). 分别在线段OA 、OB 、OC 、OD上取点A'、B'、C'、D',使得21''''====OD OD OC OC OB OB OA OA (3). 顺次连接点A'、B'、C'、D',所得四边形A'B'C'D'就是所要求的图形.在老师带领下,学生先完成在学案上,然后找学生展示作图.学生思考并回答:为什么所得四边形A'B'C'D'就是所要求的图形呢?根据是什么? 学生在老师带领下明确作出位似图形步骤后,与同伴交流动手自己摸索画图.学生自己寻找解决问题的方法.问题与情境师生行为设计意图教学过程设计D AB C A'B'C'D' B CA'C'D'D ABC3.探究:对于上面的问题,还有其他方法吗?如果在四边形外任选一个点O ,分别在OA 、OB 、OC 、OD 的反向延长线上取A' ,B' 、C' 、D' ,使得21''''====OD OD OC OC OB OB OA OA 呢?如果点O 取在四边形ABCD 内部呢?分别画出这时得到的图形.3.如图,△OAB 和△OCD 是位似图形,AB 与CD 平行吗?为什么?答:AB ∥CD∵△OAB 与△ODC 是位似图形∴△OAB ∽△OCD∴∠A=∠C∴AB ∥CD活动四.畅所欲言,收获成果1.作位似图形时,先确定位似中心,再根据相似的性质,把对应线段放大或缩小.2.位似中心的位置有下列几种情况:(以三角形为例) (1)三角形的外部; (2)三角形的内部; (3)三角形的顶点上; (4)三角形的边上;3.位似的作用: 将一个图形放大与缩小.4.数学知识源于生活实际学生谈收获体会.加强对概念的理解加强对学习内容的理解,从多角度引导学生学习数学.OABCDD CBACB A活动五.布置作业,书写收获 1.以B 点为位似中心将四边形ABCD 缩小到原来的21.2.将△ABC 扩大到原来的2倍.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
位似
一、教学目标
1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质.2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.
二、重点、难点
1.重点:位似图形的有关概念、性质与作图.
2.难点:利用位似将一个图形放大或缩小.
3.难点的突破方法
(1)位似图形:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比.
(2)掌握位似图形概念,需注意:①位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形;②两个位似图形的位似中心只有一个;③两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧;④位似比就是相似比.利用位似图形的定义可判断两个图形是否位似.
(3)位似图形首先是相似图形,所以它具有相似图形的一切性质.位似图形是一种特殊的相似图形,它又具有特殊的性质,位似图形上任意一对对应点到位似中心的距离等于位似比(相似比).
(4)两个位似图形的主要特征是:每对位似对应点与位似中心共线;不经过位似中心的对应线段平行.
(5)利用位似,可以将一个图形放大或缩小,其步骤见下面例题.作图时要注意:①首先确定位似中心,位似中心的位置可随意选择;②确定原图形的关键点,如四边形有四个关键点,即它的四个顶点;③确定位似比,根据位似比的取值,可以判断是将一个图形放大还是缩小;④符合要求的图形不惟一,因为所作的图形与所确定的位似中心的位置有关(如例2),并且同一个位似中心的两侧各有一个符合要求的图形(如例2中的图2与图3).
三、例题的意图
本节课安排了两个例题,例1是补充的一个例题,通过辨别位似图形,巩固位似图形的概念,让学生理解位似图形必须满足两个条件:(1)两个图形是相似图形;(2)两个相似图形每对对应点所在的直线都经过同一点,二者缺一不可.例2是教材P61例题,通过例2 的教学,使学生掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.讲解例2时,要注意引导学生能够用不同的方法画出所要求作的图形,要让学生通过作图理解符合要求的图形不惟一,这和所作的图形与所确定的位似中心的位置有关(如位似中心O 可能选在四边形ABCD外,可能选在四边形ABCD内,可能选在四边形ABCD的一条边上,可能选在四边形ABCD的一个顶点上).并且同一个位似中心的两侧各有一个符合要求的图形(如例2 中的图2与图3),因此,位似中心的确定是作出图形的关键.要及时强调注意的问题(见难点的突破方法④),及时总结作图的步骤(见例2),并让学生练习找所给图形的位似中心的题目(如课堂练习2),以使学生真正掌握位似图形的概念与作图.
四、课堂引入
1.观察:在日常生活中,我们经常见到下面所给的这样一类相似的图形,它们有什么特征?
2.问:已知:如图,多边形ABCDE,把它放大为原来的2倍,即新图与原图的相似比为2.应该怎样做?你能说出画相似图形的一种方法吗?
五、例题讲解
例1(补充)如图,指出下列各图中的两个图形是否是位似图形,如果是位似图形,请指出
其位似中心.
分析:位似图形是特殊位置上的相似图形,因此判断两个图形是否为位似图形,首先要看这两个图形是否相似,再看对应点的连线是否都经过同一点,这两个方面缺一不可.解:图(1)、(2)和(4)三个图形中的两个图形都是位似图形,位似中心分别是图(1)中的点A ,图(2)中的点P和图(4)中的点O.(图(3)中的点O不是对应点连线的交点,故图(3)不是位似图形,图(5)也不是位似图形)
例2(教材P61例题)把图1中的四边形ABCD缩小到原来的.
分析:把原图形缩小到原来的,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2 .
作法一:(1)在四边形ABCD外任取一点O;
(2)过点O分别作射线OA,OB,OC,OD;
(3)分别在射线OA,OB,OC,OD上取点A′、B′、C′、D′,使得;
(4)顺次连接A′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图2.
问:此题目还可以如何画出图形?
作法二:(1)在四边形ABCD外任取一点O;
(2)过点O分别作射线OA, OB, OC,OD;
(3)分别在射线OA, OB, OC, OD的反向延长线上取点A′、B′、C′、D′,使得;(4)顺次连接A′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图3.
作法三:(1)在四边形ABCD内任取一点O;
(2)过点O分别作射线OA,OB,OC,OD;
(3)分别在射线OA,OB, OC,OD上取点A′、B′、C′、D′,
使得;
(4)顺次连接A′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图4.
(当点O在四边形ABCD的一条边上或在四边形ABCD的一个顶点上时,作法略——可以让学生自己完成)
六、课堂练习
1.教材P61.1、2
2.画出所给图中的位似中心.
3.把右图中的五边形ABCDE扩大到原来的2倍.
七、课后练习
1.已知:如图,△ABC,画△A′B′C′,
使△A′B′C′∽△ABC,且使相似比为1.5,要求
(1)位似中心在△ABC的外部;(2)位似中心在△ABC的内部;(3)位似中心在△ABC 的一条边上;
(4)以点C为位似中心.。