对流传热系数
对流传热系数计算公式_传热系数计算公式

对流传热系数计算公式_传热系数计算公式
一、计算公式如下
1、围护结构热阻的计算
单层结构热阻
R=δ/ λ
式中:
δ—材料层厚度( m)
λ—材料导热系数 [W/m.k]
多层结构热阻
R=R1+R2+---- Rn=δ1/ λ1+δ2/ λ2+ ---- +δn/ λn 式中: R1、 R2、---Rn —各层材料热阻( m2.k/w)
δ1 、δ2 、 ---δn—各层材料厚度( m)
λ1 、λ2 、 ---λn—各层材料导热系数 [W/m.k]
2、围护结构的传热阻
R0=Ri+R+Re
式中: Ri —内表面换热阻( m2.k/w)(一般取 0.11)
Re—外表面换热阻( m2.k/w)(一般取 0.04)
R —围护结构热阻( m2.k/w)
3、围护结构传热系数计算
K=1/ R0
式中: R0 —围护结构传热阻
外墙受周边热桥影响条件下,其平均传热系数的计算
Km=KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 / Fp + Fb1+Fb2+Fb3
式中:
Km—外墙的平均传热系数 [W/(m2.k) ]
Kp—外墙主体部位传热系数 [W/( m2.k)]
Kb1、Kb2、 Kb3—外墙周边热桥部位的传热系数 [W/( m2.k)] Fp—外墙主体部位的面积
Fb1、 Fb2、Fb3—外墙周边热桥部位的面积
感谢您的阅读,祝您生活愉快。
对流换热系数经验公式

对流换热系数经验公式流换热系数是热工学中重要的参数之一,用于描述流体与固体之间传热的能力。
在工程实践中,经验公式被广泛应用于估算流换热系数。
这些公式基于大量实验数据和数学模型的结果,可以在不需要复杂计算和精确数据的情况下,快速估算流换热系数。
常见的流换热系数经验公式可以分为两类:表观流换热系数经验公式和基本流换热系数经验公式。
表观流换热系数经验公式是根据表面上特定的物理现象和实验数据建立的。
这种公式主要用于估算被表面积限制而产生强制对流的情况下的流换热系数。
其中最著名的公式是Dittus-Boelter公式。
这个公式适用于流体为与壁面接触时液体或气体的传热,是工程实践中常用的公式之一、Dittus-Boelter公式的形式如下:Nu=0.023*Re^0.8*Pr^0.3其中Nu是表观流换热系数,Re是雷诺数,Pr是普朗特数。
雷诺数是流体动量与粘性之比的无量纲数,普朗特数是冲击与传导传热之比的无量纲数。
这个公式适用于在平直管内被流体完全充满的情况下。
另一个常见的表观流换热系数经验公式是Sieder-Tate公式,用于粗糙管内的对流传热计算。
Sieder-Tate公式的形式如下:Nu=(f/8)*(Re-1000)*Pr/(1+12.7*(f/8)^0.5*(Pr^(2/3)-1))其中f是摩擦系数,由Darcy方程计算,Re是雷诺数,Pr是普朗特数。
这个公式主要用于对流传热比较复杂的状况。
基本流换热系数经验公式是根据流体与固体之间传热机理的基本原理建立的。
这种公式适用于在不同传热条件下的流换热系数估算。
其中最著名的公式是Nu-Prandtl公式和Churchill-Bernstein公式。
Nu-Prandtl公式适用于流体被不同形状物体包围的情况下。
公式的形式如下:Nu=C*Re^m*Pr^n其中Nu是流换热系数,Re是雷诺数,Pr是普朗特数,C、m和n是经验系数。
这个公式的系数可以根据实验数据和数值方法进行拟合获得。
如何计算对流传热系数

tmlt1nt1t2
653045.3C ln65
t2
30
t 15 → 90 △t 65 30
Q m s 1 c p 1 ( T 1 T 2 ) m s 2 c p 2 ( t2 t 1 ) K tm A
4 m s 1 0 c p 1 7 m s 2 5 c p 2 4 .8 8 4 .3 5 A (1)
2
T
Q' Q ?
1
T1=63℃
t2 mh1=30000kg/h
m’h1=15000kg/h
T1=63℃
mh1=15000kg/h
t3
2 1
T’2 t2
t1 mh2=20000kg/h
单独进行计算
Q'Q1Q2 ?
Q1 KAtm
16
二、管外强制对流
1、流体绕单根圆管的流动情况
(a)流动情况 (b)对流传热系数变化情况 (图中αp表示局部对流传热系数,α表示平均对流传热系数)
②其它参数一定,u一定, α与d的0.2次方成反比,改变管 径对α的影响不大。
③其它参数一定,V一定, α与d的1.8次方成反比,改变管 径,缩小管径将使 α ↑。
u 0.8
d 0.2
12
【补例】列管换热器的列管内径为15mm,长度为2.0m。管 内有冷冻盐水(25%CaCl2)流过,其流速为0.4m/s,温度自 -5℃升至15℃。假定管壁的平均温度为20℃,试计算管壁与 流体间的对流传热系数。
8
§4-17 流体做强制对流时的 对流传热系数
一、流体在圆形直管内强制对流传热
经验关联式为: Nu0.02Re30.8prn
或
0.02d3du0.8cpn
对流换热计算式范文

对流换热计算式范文流体换热是工程领域中经常遇到的问题,涉及到不同温度流体之间的热量传递。
在实际应用中,有几种常见的换热计算式,包括传热功率、传热系数、对流热流密度等。
下面将详细介绍这些计算式。
1.传热功率(Q):传热功率是指单位时间内从源体传递给流体的热量,可以通过以下公式计算:Q=m*Cp*(T2-T1)其中,m为流体的质量流率(kg/s),Cp为流体的比热容(J/(kg·℃)),T2和T1分别为流体的出口温度和入口温度(℃)。
2.对流换热系数(h):对流换热系数表示流体与固体表面之间传热的效率,可以通过以下公式计算:Q=h*A*(T2-T1)其中,Q为传热功率(W),A为热传导面积(m²),T2和T1为流体的出口温度和入口温度(℃)。
3.对流热流密度(q):对流热流密度是指单位面积上的传热功率,可以通过以下公式计算:q=Q/A其中,q为对流热流密度(W/m²),Q为传热功率(W),A为热传导面积(m²)。
在实际应用中,还需要考虑到流体的物理性质和流动状态等因素。
4.流体物性的影响:流体的物理性质,如密度、比热容、导热系数等,会对换热过程产生影响。
例如,传热功率的计算中,流体的比热容是一个重要的参数,其数值会影响到传热功率量值的大小。
5.流体流动状态的影响:流体的流动状态也会对换热过程产生影响。
例如,当流体以层流状态流动时,传热系数较小;而当流体以湍流状态流动时,传热系数较大。
因此,在实际计算中,需要根据具体条件来确定使用相应的计算公式。
在工程实践中,可以通过实验方法或数值模拟方法来确定换热计算式中所需的参数值。
实验方法可以通过测量流体流动的温度和压力变化来获得换热系数等参数。
数值模拟方法则可以通过建立数学模型和求解相应的方程来进行换热计算。
总之,流体换热是一个复杂的工程问题,涉及多个参数和变量。
了解和熟练运用换热计算式对于工程领域中的换热问题有着重要的意义。
表面对流传热系数计算

表面对流传热系数计算
表面对流传热系数是指在单位时间内,通过单位表面积的热量与表面温度梯度之间的比例关系。
计算表面对流传热系数的方法取决于表面的形状、流体的性质以及流动条件。
以下是一些常见的计算表面对流传热系数的方法:
1. 牛顿冷却定律法:牛顿冷却定律是最基本的传热计算方法之一。
它基于实验数据或经验关联式,通过测量表面温度和流体温度来计算传热系数。
这种方法简单易用,但通常适用于简单形状的表面和特定的流动条件。
2. 类比法:类比法是利用相似表面或流动条件下已有的传热系数数据来估算目标表面的传热系数。
这种方法基于经验或相似性原则,适用于相似的几何形状和流动情况。
3. 数值计算方法:随着计算机技术的发展,数值计算方法如有限元法(FEM)和有限差分法(FDM)被广泛应用于复杂表面和非稳态传热问题的求解。
这些方法通过对表面和流体进行离散化,求解能量方程来获得传热系数。
4. 理论分析法:对于一些简单的几何形状和理想流动条件,可以通过理论分析来推导传热系数的表达式。
例如,对于平板表面的强制对
流,可用努塞尔数(Nusselt number)和雷诺数(Reynolds number)之间的关系来计算传热系数。
需要注意的是,以上方法仅提供了一些常见的计算表面对流传热系数的途径,具体的计算方法应根据实际情况选择适当的公式或模型,并结合实验验证来确保准确性。
在实际应用中,还需要考虑表面粗糙度、流体物性、边界条件等因素对传热系数的影响。
对流传热系数经验关联式

(
w
)0.14
适用范围:Re= 2×103~106
特征尺寸:当量直径de
(a)
de
4(t
2
4
d02
)
d0
(b)
de
4(
3 2
t
2
4
d02
)
d0
16
1.3 流体无相变时的对流传热
流速u根据流体流过的最大截面积A计算
A hD(1 d0 ) t
h——相邻挡板间的距离 D——壳体的内径
三、自然对流
Nu cGr Pr n
1.13( g 23
1
)4
Lt
适用范围:Re<2100
特征尺寸:垂直管或板的高度,m
定性温度:
取ts下的值,其余取 tm
1 2 (ts
tw)
19
1.4 流体有相变时的对流传热
Re deu
4A W bA
4W b
4M
M—冷凝负荷,kg/(m·s)
液膜为湍流(Re>2100)
0.0077
2 g3 2
浮升力:(1 2 )g [2 (1 t) 2 ]g 2gt 5. 传热面的形状、布置和大小
3
1.1 影响对流传热系数的主要因素
圆形直管
管内弯管
无相变强制对流管外非换横圆热向形器流管管过间
自然对流
有相变蒸液汽体冷沸凝腾
4
1.2 对流传热系数经验公式的建立
一、无相变强制对流的影响因素
f (l、、、、cp、u)
通过因次分析,得准数关系式:Nu f (Re、Pr )
二、无相变自然对流的影响因素
f (l、、、、cp、gt)
准数关系式:Nu (Gr、Pr )
第五节 对流传热系数chuanre-5

1/3
四. 蒸汽冷凝传热系数
1. 蒸汽冷凝的方式
⑴膜状冷凝:若冷凝液能润湿壁面,在壁面上形成一层
完整的液膜 — 膜状冷凝
特点:冷凝膜是蒸汽冷凝
传热的主要热阻
⑵滴状冷凝:冷凝不能润湿壁面,
则在壁面上形成液膜
滴状冷凝的传热系数较膜状
冷凝要大的多
2. ⑴蒸汽在垂直管外或垂直板侧的冷凝
α
=
1.13(
rg
ρ
由 Q = α iπ di L(tw − tm )
L
=
α iπ
Q di L(tw
−
tm )
=
270 47.3 × 3.14 × 0.02(140
−
20 ×100)
= 1.2
m
2
判 断 L = 1.12 = 60 di 0.02
2. 圆形直管内的强制层流
α
= 1.86 λ
1
Re3
1
Pr 3
( di
1
例:常压空气在内径为20mm管内由20o C被加热到100o C,
空气的流速为10m/s,试求管壁对空气的对流传热系
数
α
,
i
如
果
内
壁
温
度
为140
o
C,
则
求
管
长
。
求:⑴ αi ⑵ L
解:⑴
定性温度
tm
=
20
+ 100 2
=
60o C
查常压空气 ρ = 1.06kg / m3, μ = 2.01×10−2 cP
∴ (ρ1 − ρ2 )g = [ρ2 + ρ2βΔt − ρ2 ]g = ρ2βΔtg
对流传热系数

依靠流体微团的宏观运动而进行的热量传递。
这是热量传递的三种基本方式之一。
化工生产中处理的物料大部分是流体,流体的加热和冷却都包含对流传热。
在化工生产中,对流传热在习惯上专指流体与温度不同于该流体的固体壁面直接接触时相互之间的热量传递。
这实际上是对流传热和热传导两种基本传热方式共同作用的传热过程。
例如间壁式换热器中的流体与间壁侧面之间的热量传递,反应器中固体物料或催化剂与流体之间的热量传递,都是这样的传热过程。
类型按流体在传热过程中有无相态变化,对流传热分两类:①无相变对流传热。
流体在换热过程中不发生蒸发、凝结等相的变化,如水的加热或冷却。
根据引起流体质点相对运动的原因,对流传热又分自然对流和强制对流。
自然对流是由于流体内各部分密度不同而引起的流动(如散热器旁热空气的向上流动);强制对流是流体在外力(如压力)作用下产生的流动。
强制对流时流体流速高,能加快热量传递,因而工程上广泛应用。
②有相变对流传热。
流体在与壁面换热过程中,本身发生了相态的变化。
这一类对流传热包括冷凝传热和沸腾传热。
对流传热机理流体的运动对传热过程有强烈影响。
当边界层中的流动完全处于层流状态时,垂直于流动方向上的热量传递虽然只能通过流体内部的导热,但流体的流动造成了沿流动方向的温度变化,使壁面处的温度梯度增加,因而促进了传热。
当边界层中的流动是湍流时,壁面附近的流动结构包括湍流区、过渡区和层流底层。
湍流区垂直于流动方向上的热量传递除了热传导外,主要依靠不同温度的微团之间剧烈混合,即依靠对流传热。
此传递机理与湍流区中的动量传递机理十分类似。
垂直于流动方向上的热量通量为:式中εh称涡流热扩散系数(与流体的流动状况有关);λ为热导率;cp、ρ分别为流体的等压比热容和密度;dT/dy为垂直于流动方向的温度变化率。
由于εh一般比λ大得多,故湍流区的对流传热热阻很小,所以此区的温度下降也很小。
在层流底层中热量传递只能靠热传导。
由于流体的热导率一般很小,所以即使该层很薄,仍是传热过程的主要热阻,相应的温度下降很大。