环球雅思中小学-山东省德州市2014年中考数学试题(word版,含解析)

合集下载

环球雅思中小学-山东省济南市2014年中考数学试题(WORD解析版)范文

环球雅思中小学-山东省济南市2014年中考数学试题(WORD解析版)范文

济南市2014年初三年级学业水平考试数 学 试 题 解 析本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为45分;第Ⅱ卷共6页,满分为75分.本试卷共8页,满分为120分.考试时间为120分钟.答题前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第Ⅰ卷(选择题 共45分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮檫干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.4的算术平方根是A .2B .-2C .±2D .16 【解析】4算术平方根为非负数,且平方后等于4,故选A .2.如图,点O在直线AB 上,若401=∠,则2∠的度数是A .50 B .60 C .140 D .150 【解析】因为 18021=∠+∠,所以1402=∠,故选C . 3.下列运算中,结果是5a 的是A .23a a ⋅B .210a a ÷ C .32)(a D .5)(a -【解析】由同底的幂的运算性质,可知A 正确.4.我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探测的国家.嫦娥三号探测器的发射总质量约3700千克,3700用科学计数法表示为A .2107.3⨯B .3107.3⨯C .21037⨯D .41037.0⨯ 【解析】3700用科学计数法表示为3107.3⨯,可知B 正确. 5.下列图案既是轴对称图形又是中心对称图形的是ABO2 1第2题图A .B .C .D .【解析】图A 为轴对称图但不是中心对称图形;图B 为中心对称图但不是轴对称图形; 图C 既不是轴对称图也不是中心对称图形; 图D 既是轴对称图形又是中心对称图形.6.如图,一个几何体由5个大小相同、棱长为1的正方体搭成, 下列关于这个几何体的说法正确的是A .主视图的面积为5B .左视图的面积为3C .俯视图的面积为3D .三种视图的面积都是4【解析】主题图、俯视图均为4个正方形,其面积为4,左视图为3个正方形,其面积为3,故选B . 7.化简211mm m m -÷- 的结果是 A .m B .m1C .1-mD .11-m【解析】m m m m m m m m m =-⨯-=-÷-111122,故选 A . 8.下列命题中,真命题是A .两对角线相等的四边形是矩形B .两对角线互相平分的四边形是平行四边形C .两对角线互相垂直的四边形是菱形D .两对角线相等的四边形是等腰梯形【解析】两对角线相等的四边形不一定是矩形,也不一定是等腰梯形,所以A ,D 都不是真命题.又两对角线互相垂直如果不平分,此时的四边形不是菱形,故选B . 9.若一次函数5)3(+-=x m y 的函数值y 随x 的增大而增大,则A .0>mB .0<mC .3>mD .3<m 【解析】由函数值y 随x 的增大而增大,可知一次函数的斜率03>-m ,所以3>m ,故选C . 10.在□ABCD 中,延长AB 到E ,使BE =AB ,连接DE 交BC 于F ,则下列结论不一定成立的是A .CDF E ∠=∠B .DF EF =C .BF AD 2= D .CF BE 2=【解析】由题意可得FBE FCD ∆≅∆,于是A ,B 都一定成立;第6题ABCDEF第10题图环球雅思中小学又由BE =AB ,可知BF AD 2=,所以C 所给结论一定成立,于是不一定成立的应选D . 11.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率为A .32 B .21 C .31 D .41 【解析】用H ,C ,N 分别表示航模、彩绘、泥塑三个社团,用数组(X ,Y )中的X 表示征征选择的社团,Y 表示舟舟选择的社团. 于是可得到(H ,H ),(H ,C ),(H ,N ), (C ,H ),(C ,C C ,N ),(N ,H ),(N ,C ),(N ,N ),共9中不同的选择结果, 而征征和舟舟选到同一社团的只有(,H ),(C ,C ),(N ,N )三种, 所以,所求概率为3193=,故选C . 12.如图,直线233+-=x y 与x 轴,y 轴分别交于B A ,两点, 把AOB ∆沿着直线AB 翻折后得到B O A '∆,则点O '的坐标是A .)3,3(B .)3,3(C )32,2(D .)4,32( 【解析】连接OO ',由直线233+-=x y 可知223OB=,OA=故30BAO ∠=︒,点O '为点O 关于直线AB 的对称点,故60O AO '∠=︒,AOO ∆'是等边三角形,O '点的横坐标是OA 长度的一半3,纵坐标则是AOO ∆'的高3,故选A .13.如图,O ⊙的半径为1,ABC ∆是O ⊙的内接等边三角形, 点D ,E 在圆上,四边形BCDE 为矩形,这个矩形的面积是A .2B .3C .23D .23【解析】1=OA ,知3,1==BC CD ,所以矩形的面积是3.ABOO'xyABCDE.O第13题图14.现定义一种变换:对于一个由有限个数组成的序列0S ,将其中的每个数换成该数在0S 中出现的次数,可得到一个新序列.例如序列0S :(4,2,3,4,2),通过变换可得到新序列1S :(2,2,1,2,2).若0S 可以为任意序列,则下面的序列可以作为1S 的是A .(1,2,1,2,2)B .(2,2,2,3,3)C .(1,1,2,2,3)D .(1,2,1,1,2)【解析】由于序列0S 含5个数,于是新序列中不能有3个2,所以A ,B 中所给序列不能作为1S ; 又如果1S 中有3,则1S 中应有3个3,所以C 中所给序列也不能作为1S ,故选D . 15.二次函数的图象如图,对称轴为1=x . 若关于x 的一元二次方程02=-+t bx x (t 为实数) 在41<<-x 的范围内有解,则t 的取值范围是A .1-≥tB .31<≤-tC .81<≤-tD .83<<t 【解析】由对称轴为1=x ,得2-=b ,再由一元二次方程022=--t x x 在41<<-x 的范围内有解,得)4()1(y t y <≤, 即81<≤-t ,故选C .第Ⅱ卷(非选择题 共75分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上) 16.=--37________.【解析】101037=-=--,应填10. 17.分解因式:=++122x x ________. 【解析】22)1(12+=++x x x ,应填2)1(+x .18.在一个不透明的口袋中,装有若干个出颜色不同其余都相同的球.如果口袋中装有3个红球且摸到红球的概率为51,那么口袋中球的总个数为____________. 【解析】设口袋中球的总个数为N ,则摸到红球的概率为513=N ,所以15=N ,应填15.环球雅思中小学19.若代数式21-x 和123+x 的值相等,则=x . 【解析】解方程12321+=-x x ,的7=x ,应填7.20.如图,将边长为12的正方形ABCD 是沿其对角线AC 剪开,再把ABC ∆沿着AD 方向平移,得到C B A '''∆,当两个三角形重叠的面积为32时,它移动的距离A A '等于________. 【解析】设m A A =',则222121264m (m )+-=-,解之m =4或8,应填4或8.21.如图,OAC ∆和BAD 都是等腰直角三角形,90=∠=∠ADB ACO ,反比例函数xky =在第一象限的图象经过点B ,若1222=-AB OA ,则k 的值为________.【解析】设点B 的坐标为),(00y x B ,则DB OC AD AC y DB OC x -=-=+=00,,于是62121222200=-=-=-⋅+=⋅=AB OA DB OC DB OC DB OC y x k )()(,所以应填6.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤)22.(本小题满分7分)(1)化简:)4()3)(3(a a a a -+-+.【解析】9449)4()3)(3(22-=-+-=-+-+a a a a a a a a(2)解不等式组:⎩⎨⎧+≥-<-24413x x x .【解析】由13<-x 得4<x ;由244+≥-x x 得2≥x . 所以原不等式组的解为42<≤x .A DCB ADA ’B ’CC ’第20题图DCAOxyB第21题图23.(本小题满分7分)(1)如图,在四边形ABCD 是矩形,点E 是AD 的中点,求证:EC EB =.【解析】在ABE ∆和DCE ∆中,EDC EAB DE AE DC AB ∠=∠==,,,于是有 DCE ABE ∆≅∆,所以EC EB =.(2)如图,AB 与O ⊙相切于C ,B A ∠=∠,O ⊙的半径为6,AB =16,求OA 的长.【解析】在OAB ∆中,OB OA B A =∴∠=∠, ,连接OC ,则有8,6,===⊥BC AC OC AB OC , 所以10862222=+=+=AC OC OA .24.(本小题满分8分)2014年世界杯足球赛在巴西举行,小李在网上预订了小组赛和淘汰赛两个阶段的球票共10张,总价为5800元.其中小组赛球票每张550元,淘汰赛球票每张700元,问小李预定了小组赛和淘汰赛的球票各多少张?【解析】设小李预定了小组赛球票x 张,淘汰赛球票y 张,由题意有 ⎩⎨⎧=+=+580070055010y x y x ,解之⎩⎨⎧==28y x .所以,小李预定了小组赛球票8张,淘汰赛球票2张.25.(本小题满分8分)在济南市开展的“美丽泉城,创卫我同行”活动中,某校倡议七年级学生ABCDE第23题(1)图ABO第23题(2)图环球雅思中小学利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成不完整的统计图表,如下图所示:劳动时间(时) 频数 (人数) 频率 0.5 12 0.12 1 300.3 1.5 x 0.4 2 18 y 合计 m1(1)统计表中的=m ,=x ,=y ; (2)被调查同学劳动时间的中位数是 时; (3)请将频数分布直方图补充完整; (4)求所有被调查同学的平均劳动时间.【解析】(1)由于频率为0.12时,频数为12,所以频率为0.4时,频数为40,即40=x ; 频数为18,频率应为0.18时,即18.0=y ;10018403012=+++=m . (2)被调查同学劳动时间的中位数为1.5时; (3)略(4)所有被调查同学的平均劳动时间为32.118.024.05.13.0112.05.0=⨯+⨯+⨯+⨯时.26.(本小题满分9分)如图1,反比例函数)0(>=x xky 的图象经过点A (32,1),射线AB 0人数10 20 30 40 12 30180.512与反比例函数图象交与另一点B (1,a ),射线AC 与y 轴交于点C ,y AD BAC ⊥=∠,75轴,垂足为D . (1)求k 的值;(2)求DAC ∠tan 的值及直线AC 的解析式;(3)如图2,M 是线段AC 上方反比例函数图象上一动点,过M 作直线x l ⊥轴,与AC 相交于N ,连接CM ,求CMN ∆面积的最大值. 【解析】(1)由反比例函数)0(>=x xky 的 图象经过点A (32,1),得32132=⨯=k ;(2)由反比例函数)0(32>=x xy 得 点B 的坐标为(1,32),于是有30,45=∠∴=∠DAC BAD ,33tan =∠DAC , AD =32,则由33tan =∠DAC 可得CD =2,C 点纵坐标是-1,直线AC 的截距是-1,而且过点A (32,1)则直线解析式为133-=x y . (3)设点M 的坐标为)1)(,32(>m m m, 则点N 的坐标为)12,32(-mm ,于是CMN ∆面积为 )12(3221+-⨯⨯=∆mm m S CMN])422(89[3)112(322--=++-⨯=m m m , 所以,当4=m 时,CMN ∆面积取得最大值839.环球雅思中小学27.(本小题满分9分)如图1,有一组平行线4321l l l l ∥∥∥,正方形ABCD 的四个顶点分别在4321,,,l l l l 上,EG 过点D且垂直于1l 于点E,分别交42,l l 于点F,G,2,1===DF DG EF .(1)=AE ,正方形ABCD 的边长= ;(2)如图2,将AEG ∠绕点A 顺时针旋转得到D E A ''∠,旋转角为)900(<<αα,点D '在直线3l 上,以D A '为边在的D E ''左侧作菱形B C D A ''',使点C B '',分别在直线42,l l 上. ①写出D A B ''∠与α的函数关系并给出证明; ②若30=α,求菱形B C D A '''的边长.【解析】(1)在RT RT AED GDC ∆∆,中,AD=DC,又有ADE ∠和DAE ∠互余,ADE ∠和CDG∠互余,故DAE ∠和CDG ∠相等,GDC AED ∆≅∆,知1==GD AE , 又321=+=AD ,所以正方形ABCD 的边长为103122=+.(2)①过点B '作B M '垂直于1l 于点M ,在RT RT ’AE D AB M ∆∆'',中, =’B M AE ',=AD AB '',故RT RT ’AE D AB M ∆∆''≅,所以A ,’D E B AM ''∠∠互余,D A B ''∠与α之和为90︒,故D A B ''∠=90︒-α.②过E 点作ON 垂直于1l 分别交12l ,l 于点O ,N ,若30=α,60E D N ''∠=︒,=1AE ',故1=2E O ', 5=2E N ', 533E D ''=2584133+=.1l 2l3l4l ABCDEF G1l 2lllAE ’D ’B ’28.(本小题满分9分)如图1,抛物线2163x y -=平移后过点A (8,,0)和原点,顶点为B ,对称轴与x 轴相交于点C ,与原抛物线相交于点D .(1)求平移后抛物线的解析式并直接写出阴影部分的面积阴影S ;(2)如图2,直线AB 与y 轴相交于点P ,点M 为线段OA 上一动点,PMN ∠为直角,边MN 与AP 相交于点N ,设t OM =,试探求: ①t 为何值时MAN ∆为等腰三角形;②t 为何值时线段PN 的长度最小,最小长度是多少. 【解析】(1)设平移后抛物线的解析式2316y x bx =-+, 将点A (8,,0)代入,得233162y x x =-+.顶点B (4,3), 阴影S =OC ×CB =12.(2)直线AB 的解析式为364y x =-+,作NQ 垂直于x 轴于点Q ,①当MN =AN 时, N 点的横坐标为82t+,纵坐标为2438t-, 由三角形NQM 和三角形MOP 相似可知NQ MQOM OP=,得2438826t tt --=,解得982t ,=(舍去). 当AM =AN 时,AN =8t -,由三角形ANQ 和三角形APO 相似可知()385NQ t =-()485AQ t =-, MQ =85t -,由三角形NQM 和三角形MOP 相似可知NQ MQOM OP =得:()388556t t t --=,解得: t =12(舍去).当MN =MA 时,45MNA MAN ∠=∠<︒故AMN ∠是钝角,显然不成立.故92t =.②方法一:作PN 的中点C ,连接CM ,则CM =PC =21P N,第28题图1第28题图2环球雅思中小学当CM 垂直于x 轴且M 为OQ 中点时PN 最小,此时t =3,证明如下:假设t =3时M 记为0M ,C 记为0C若M 不在0M 处,即M 在0M 左侧或右侧,若C 在0C 左侧或者C 在0C 处,则CM 一定大于00C M ,而PC 却小于0PC ,这与CM =PC 矛盾, 故C 在0C 右侧,则PC 大于0PC ,相应PN 也会增大,故若M 不在0M 处时 PN 大于0M 处的PN 的值,故当t =3时,MQ =3, 3=2NQ ,根据勾股定理可求出PM =35与MN =352,15=2PN . 故当t =3时,PN 取最小值为152. 方法二:由MN 所在直线方程为662t x t y -=,与直线AB 的解析式364y x =-+联立, 得点N 的横坐标为t t x N 292722++=,即029362=-+-N N x t x t , 由判别式0)236(4≥--=∆N N x x ,得≥N x 或N ,又N , 所以N x 的最小值为6,此时t =3,当t =3时,N 的坐标为(6,23),此时PN 152.。

山东省德州市2014年九年级数学学业水平模拟检测试题

山东省德州市2014年九年级数学学业水平模拟检测试题

A .B . D .C .主视方向2014年九年级学业水平模拟检测数 学 试 题本试题分选择题,36分;非选择题,84分;全卷满分120分,考试时间为120分钟.考试结束后,将本试卷和答题卡一并收回.一、选择题:(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是正确的)1、下列运算正确的是( )A 、93=B 、2(2)4-=-C 、2(3)9-=- D 、40=2、下列所给图形中,既是中心对称图形又是轴对称图形的是( )3、环境监测中PM 是指大气中直径小于或等于微米的颗粒物,也称为可入肺颗粒物.如果1微米=0.000001米,那么数据0.0000025用科学记数法可以表示为( )A 、6105.2⨯B 、5105.2-⨯C 、6105.2-⨯D 、7105.2-⨯4、如图,直线l ∥m ,将含有45°角的三角板ABC 的直角顶点C 放在直线m 上,若∠1=25°,则∠2的度数为( )A 、20°B 、25°C 、30°D 、35° 5、左下图为主视方向的几何体,它的俯视图是( )6.某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离A .B .C .D .家的距离y 与时间x 的关系的大致图象是( )。

A .B .C .D .【九年级数学试题 共12页】 第1页7、下列命题中错误..的是( ) A 、等腰三角形的两个底角相等 B 、对角线互相垂直的四边形是菱形 C 、矩形的对角线相等D 、圆的切线垂直于过切点的直径8、如图,过x 轴正半轴上的任意一点P ,作y 轴的平行线,分别与反比例函数6y x =-和4y x=的图象交于A 、B 两点.若点C 是y 轴上任意一点,连接AC 、BC ,则△ABC 的面积为( )A 、3B 、4C 、5D 、109、从一个袋中摸出一个球(袋中每一个球被摸到的可能性相等),恰为红球的概率为41,若袋中原有红球4个,则袋中球的总数大约是() A 、12 B 、16C 、32 D 、2410、已知甲车行驶35千米与乙车行驶45千米所用时间相同,且乙车每小时比甲车多行驶15千米,设甲车的速度为x 千米/小时,依据题意列方程正确的是( )A 、154535-=x x B 、x x 451535=+C 、x x 451535=-D 、154535+=x x 11、已知关于x 的不等式组()4x 123x,6x ax 1,7⎧-+⎪⎨+-⎪⎩><有且只有三个整数解,则a的取值X 围是( )16题≤≤a <-1 C.-2<a ≤-1 D.-2<a <-112、如图,在等腰直角ABC ∆中,90ACB O∠=,O 是斜边AB 的中点,点D 、E 分别在直角边AC 、BC 上,且90DOE O∠=,DE 交OC 于点P .则下列结论: (1)图形中全等的三角形只有两对;(2)ABC ∆的面积等于四边形CDOE 面积的2倍; (3)CD CE +=;(4)222AD BE OP OC +=⋅.其中正确的结论有( ) A .1个 B .2个 C .3个 D .4个【九年级数学试题 共12页】 第2页二、填空题:(本大题共5个小题,每小题4分,共20分)13、某种型号的电脑,原售价6000元/台,经连续两次降价后,现售价为4860元/台,设平均每次降价的百分率为x ,则根据题意可列出方程:.14、已知点P (3,-1)关于y 轴的对称点Q 的坐标是(a+b ,1-b ),则ab 的值为_________. 15、如图,两建筑物的水平距离BC 为18 m ,从A 点测得D 点的俯角α为30°,测得C 点 的俯角β为60°.则建筑物CD 的高度为________ m (结果不作近似计算).(15题)16、如图,在矩形ABCD 中,AB=3,BC=9,把矩形ABCD 沿对角线BD 折叠,使点C 与点F 重合,BF 交AD 于点M ,过点C 作CE ⊥BF 于点E ,交AD 于点G ,则MG 的长=17、1766年德国人提丢斯发现,太阳系中的行星到太阳的距离遵循一定的规律,如下表所第12题图示:颗 次 1 2 3 4 56… 行星名称水星金星 地球 火星 小行星 木星 … 距离(天文单位)1 ………那么第7颗行星到太阳的距离是天文单位.三、计算或证明题:本大题共7个小题,共64分;写出必要的计算步骤或证明过程。

德州数学中考答案

德州数学中考答案

德州数学中考答案【篇一:2014山东省德州市中考数学解析试卷】s=txt>(满分120分,考试时间120分钟)一、选择题(本大题共12小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.(2014山东省德州市,1,3分)下列计算正确的是a.—(-3)2=9【答案】【试题解析】【难度】难、中、易【知识点标签】1级:2级:3级:【答案】b【考点解剖】本题考查了有理数的乘方、绝对值、立方根、零指数幂,解题的关键是熟悉运算的性质.【解题思路】1.任何数的偶次幂均为正数;2.非零数的零次幂为1;3.负数的绝对值等于它的相反数.【解答过程】解:a.—(-3)2=—9 ;b.27?3 ;c.-(-2)0=-1;d.?3?3,故选择b .【关键词】有理数的乘方;绝对值;立方根与开立方;零指数幂 2. (2014山东省德州市,2,3分)下列银行标志中,既不是中心对称图形也不是轴对称图形的是 b.27?3 c.-(-2)0=1d.?3??3a【答案】【试题解析】b cd【难度】难、中、易【知识点标签】1级:2级:3级:【答案】d【解题思路】利用轴对称图形及中心对称图形的概念,做出判断.【解答过程】解:a.是轴对称图形;b.是轴对称图形;c.是轴对称图形;d.既不是中心对称图形也不是轴对称图形,故选择d .【关键词】轴对称图形;中心对称图形3. (2014山东省德州市,3,3分)图甲是某零件的直观图,则它的主视图为【答案】【试题解析】【难度】难、中、易【知识点标签】1级:2级:3级:【答案】a【考点解剖】本题考查了三视图,解题的关键是:主视图是在正面内得到的由前向后观察物体的视图,做出正确判断.【解题思路】根据主视图的定义,做出正确判断.【解答过程】解:由箭头方向可知主视图为a,故选择a .【关键词】简单几何体的三视图4. (2014山东省德州市,4,3分)第六次全国人口普查数据显示,德州市常住人口约为556.82万人,此数用科学记数法表示正确的是【答案】【试题解析】【难度】难、中、易【知识点标签】1级:2级:3级:【答案】c【关键词】科学记数法--表示较大的数则∠c为第5题图【答案】【试题解析】【难度】难、中、易【知识点标签】1级:2级:3级:【答案】a【考点解剖】本题考查了平行线的性质及角平分线的性质的应用,解题的关键是平行线的性质:两直线平行同位角、两直线平行内错角相等.【解题思路】应用平行线的性质两直线平行同位角、内错角相等及角平分线的性质得出∠b与∠c相等,即可求出∠c的度数.【关键词】平行线的性质;角的平分线?1?x?1>0,6(2014山东省德州市,6,3分)不等式组?3的解集在数轴上可表示为?2?x?0?abc【答案】【试题解析】【难度】难、中、易【知识点标签】1级:2级:3级: d【答案】d【考点解剖】本题考查了一元一次不等式组的解法及不等式(组)的解集的表示方法,解题的关键是“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则.【解题思路】先分别求出两个不等式的解集,然后在数轴上表示出来,即可.?1?x?1>0①【解答过程】解: ?3 由①得x>—3,由②得x ≤2 ,把x>—3,x ≤2 在??2?x?0②数轴上表示,故选择d .【关键词】一元一次不等式组的解法;不等式(组)的解集的表示方法7. (2014山东省德州市,7,3分)如图是拦水坝的横断面,斜坡ab的水平宽度为12米,斜面坡度为1∶2,则斜坡ab的长为a.43米b.6米c.12米d.24米第7题图【答案】【试题解析】【难度】难、中、易【知识点标签】1级:2级:3级:【答案】b【考点解剖】本题考查了解直角三角形;坡度、坡角问题,解题的关键是坡度是斜坡的铅直高度与水平宽度的比值.【解题思路】先根据坡度的定义求出bc的长,然后利用勾股定理得出ab的长.【解答过程】解:∵斜面坡度为1∶2,∴在rt△abc中,bc∶ac=1∶2,∴bc=由勾股定理得ab=1ac=6,2ac2?bc2=6(米),故选择 b.【关键词】解直角三角形的应用--坡角【篇二:2013山东省德州市中考数学试题及答案(word解析版)】ss=txt>一、选择题(共12小题,每小题3分,满分36分)2.(3分)(2013? 德州)民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴3.(3分)(2013?德州)森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.28.3亿吨用科学5.(3分)(2013? 德州)图中三视图所对应的直观图是()6.(3分)(2013? 德州)甲、乙两人在一次百米赛跑中,路程s (米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是()9.(3分)(2013? 德州)一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n 次,若n次抛掷所出现的点数之和大于n,则算过关;否则不算过关,则能过第211.(3分)(2013? 德州)函数y=x+bx+c与y=x的图象如图所示,有以下结论: 22①b﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x+(b﹣1)x+c<0.其中正确的个数为()212.(3分)(2013? 德州)如图,动点p从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点p第2013次碰到矩形的边时,点p的坐标为()【篇三:2012年山东省德州市中考数学试题及答案解析】txt>一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.下列运算正确的是()2?3(d)2?0 ?8?2 (b)??3?=?9 (c)22.不一定在三角形内部的线段是()(a)三角形的角平分线(b)三角形的中线(c)三角形的高(d)三角形的中位线 3.如果两圆的半径分别为6和4,圆心距为10,那么这两圆的位置关系是()(a)内含(b)内切(c)相交(d)外切4.由图中左侧三角形仅经过一次平移、旋转或轴对称变换,不能得到的图形是()第4题图(a)(b)(c)(d)5.已知??a?2b?4,则a?b等于()?3a?2b?8.8(a)3(b)(c)2 (d)1(a)3 (b)4 (c)9(d)5 2二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分. 9.-1,0, 0.2,1, 3 中正数一共有个. 710.化简:6a6?3a3. 111.(填“?”、“?”或“=”) 212.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成. 已知正三角形的边长为1,则凸轮的周长等于_________.13.在四边形abcd中,ab=cd,要使四边形abcd是中心对称图形,只需添加一个条件,这个条件可以是.(只要填写一种情况)14.在某公益活动中,小明对本班同学的捐款情况进行了统计,绘制成如下不完整的统计图.其中捐100元的人数占全班总人数的25%,则本次捐款的中位数是_______元.15.若关于x的方程ax?2(a?2)x?a?0有实数解,那么实数a的取值范围是_____________.16.如图,在一单位为1的方格纸上,△a1a2a3,△a3a4a5,2105△a5a6a7,……,都是斜边在x轴上、斜边长分别为2,4,6,……的等腰直角三角形.若△a1a2a3的顶点坐标分别为a1 (2,0),a2 (1,-1),a3 (0,0),则依图中所示规律,a2012的坐标为.三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤. 17. (本题满分6分)x2?2xy?y2已知:x?1,y?1,求的值.x2?y218. (本题满分8分)解方程:19.(本题满分8分)有公路l1同侧、l2异侧的两个城镇a,b,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇a,b的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔c应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点c的位置.(保留作图痕迹,不要求写出画法)20. (本题满分10分)若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数.(1)请画出树状图并写出所有可能得到的三位数;(2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试说明理由.21??1. x2?1x?1121. (本题满分10分)如图,点a,e是半圆周上的三等分点,直径bc=2,ad?bc,垂足为d,连接be交ad于f,过a作ag∥be交bc于g.(1)判断直线ag与⊙o的位置关系,并说明理由.(2)求线段af的长.22. (本题满分10分)现从a,b向甲、乙两地运送蔬菜,a,b两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从a到甲地运费50元/吨,到乙地30元/吨;从b地到甲运费60元/吨,到乙地45元/吨.(1)设a地到甲地运送蔬菜x吨,请完成下表:a d oc(2)设总运费为w元,请写出w与x的函数关系式.(3)怎样调运蔬菜才能使运费最少?23. (本题满分12分)如图所示,现有一张边长为4的正方形纸片abcd,点p为正方形ad边上的一点(不与点a、点d重合)将正方形纸片折叠,使点b落在p处,点c落在g处,pg交dc于h,折痕为ef,连接bp、bh.(1)求证:∠apb=∠bph;(2)当点p在边ad上移动时,△pdh的周长是否发生变化?并证明你的结论;(3)设ap为x,四边形efgp的面积为s,求出s与x的函数关系式,试问s是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.dg b cpdgb(备用图)c When you are old and grey and full of sleep,And nodding by the fire, take down this book,And slowly read, and dream of the soft lookYour eyes had once, and of their shadows deep;How many loved your moments of glad grace,And loved your beauty with love false or true,But one man loved the pilgrim soul in you,And loved the sorrows of your changing face;And bending down beside the glowing bars,Murmur, a little sadly, how love fledAnd paced upon the mountains overheadAnd hid his face amid a crowd of stars.The furthest distance in the worldIs not between life and deathBut when I stand in front of youYet you don't know thatI love you.The furthest distance in the worldIs not when I stand in front of youYet you can't see my loveBut when undoubtedly knowing the love from both Yet cannot be together.The furthest distance in the worldIs not being apart while being in loveBut when I plainly cannot resist the yearningYet pretending you have never been in my heart. The furthest distance in the worldIs not struggling against the tidesBut using one's indifferent heart To dig an uncrossable riverFor the one who loves you.。

2014年德州市中考数学试题分析

2014年德州市中考数学试题分析

2014年德州市初中学业考试数学试题分析数学命题组2014年德州市初中毕业数学学业考试试题,坚持了以课程标准为依据,以考试说明为指导,以科学合理的评价学生为基础,体现了基础性、普及性和发展性。

从内容结构上看,延续了2013年的风格,整卷所考察的题目均以选择题、填空题、解答题等形式呈现,其中选择题、填空题主要考察基础知识,解答题以考察基本技能、基本数学方法和基本思想为主。

从难易度来看,按照容易题、中档题、较难题的权重5:3:2进行,但总体难度较2013年有所降低。

从试题的编排上看,均是由基础知识开始,由易到难,逐步提升,这符合学生感知规律。

从知识点的考察来看,重视对数感、符号意识、运算能力、数学思想、空间观念、推理能力、数据分析观念、应用意识、创新意识的考察。

试题既注重基础,又突出能力的考察,具有考察教师的“教”和学生的“学”的功能,也体现了选拔考试的特征。

一、坚持标准,适度拓展,关注教学导向性本届学生使用的教材虽是按照《义务教育数学课程标准(实验版)》的要求编写,但根据2014年考试说明的要求,试题要体现《义务教育数学课程标准(2011版)》的精神与理念。

因此,整卷对基础知识的考察,不是知识的机械重复,而是注重基础知识的理解,关注的是知识的生长点和延伸点。

试题蕴含着对数学基本思想,以及观察、实验、猜测、计算、推理验证等活动过程的考查。

如第8题主要考查数形结合思想,第16题不是单一的对判别式和根与系数的考察,更体现了分析问题的逻辑性和严密性,。

试题蕴含着对数学概念理解,数学方法的把握、思维能力水平的考查。

如第10题,包含对多个重要的数学概念及有关性质的理解,若有一点掌握不好,就会导致失分。

再如第18题,虽然学生易于落笔,但如果对先化简后代入求值的方法未掌握,就会落入数的直接计算,即使做对,也会耗去较多时间。

又如第12题,既要考虑折叠前后图形之间的本质属性,又要把握图形在动态变化中暂时静止的某一瞬间,并能根据题意画出图形,充分考虑对应点的特殊位置,进而运用勾股定理、三角形全等,列方程等知识正确求解。

2014年山东省德州市中考数学试题(含答案)

2014年山东省德州市中考数学试题(含答案)

山东省德州市2014年中考数学试卷一、选择题(本大题共12小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记零分)C=3[来源:]、C D3.(3分)(2014•德州)图甲是某零件的直观图,则它的主视图为()C D解:从正面看,主视图为4.(3分)(2014•德州)第六次全国人口普查数据显示,德州市常驻人口约为556.82万人,C为()5.(3分)(2014•德州)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠6.(3分)(2014•德州)不等式组的解集在数轴上可表示为().B.C.D.解不等式组得:解得,7.(3分)(2014•德州)如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为()62中,∵=i==68.(3分)(2014•德州)图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()(千米)÷=9.(3分)(2014•德州)雷霆队的杜兰特当选为2013﹣2014赛季NBA常规赛MVP,下表中位数为:=29y=的图象上,若S=4S的图象上,若S=911.(3分)(2014•德州)分式方程﹣1=的解是()12.(3分)(2014•德州)如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G 处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2.以上结论中,你认为正确的有()个.=二、填空题(共5小题,每小题4分,满分20分,只要求填写最后结果,每小题填对得4分)13.(4分)(2014•德州)﹣的相反数是.解:﹣的相反数是﹣(﹣).14.(4分)(2014•德州)若y=﹣2,则(x+y)y=.=故答案为:.15.(4分)(2014•德州)如图,正三角形ABC的边长为2,D、E、F分别为BC、CA、AB的中点,以A、B、C三点为圆心,半径为1作圆,则圆中阴影部分的面积是﹣..××=.故答案为:﹣.角形的面积等于边长的平方的.16.(4分)(2014•德州)方程x2+2kx+k2﹣2k+1=0的两个实数根x1,x2满足x12+x22=4,则k的值为1.,17.(4分)(2014•德州)如图,抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1,A2,A3…A n,….将抛物线y=x2沿直线L:y=x向上平移,得一系列抛物线,且满足下列条件:①抛物线的顶点M1,M2,M3,…M n,…都在直线L:y=x上;②抛物线依次经过点A1,A2,A3…A n,….则顶点M2014的坐标为(4027,4027).(((三、解答题(本大题共7小题,共61分,解答要写出必要的文字说明、证明过程或演算步骤)18.(6分)(2014•德州)先化简,再求值:÷﹣1.其中a=2sin60°﹣tan45°,b=1.÷•﹣,×﹣﹣=.19.(8分)(2014•德州)2011年5月,我市某中学举行了“中国梦•校园好少年”演讲比赛活动,根据学生的成绩划分为A,B,C,D四个等级,丙绘制了不完整的两种统计图.根据图中提供的信息,回答下列问题:(1)参加演讲比赛的学生共有40人,并把条形图补充完整;(2)扇形统计图中,m=10,n=40;C等级对应扇形的圆心角为144度;(3)学校欲从或A等级的学生中随机选取2人,参加市举办的演讲比赛,请利用列表法或树形图法,求或A等级的小明参加市比赛的概率.°所占的比例是:×所占的百分比:×=.20.(8分)(2014•德州)目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?120021.(10分)(2014•德州)如图,双曲线y=(x>0)经过△OAB的顶点A和OB的中点C,AB∥x轴,点A的坐标为(2,3).(1)确定k的值;(2)若点D(3,m)在双曲线上,求直线AD的解析式;(3)计算△OAB的面积.y=,得:m=)代入得:∥CN=,∴(y=,得到22.(10分)(2014•德州)如图,⊙O的直径AB为10cm,弦BC为5cm,D、E分别是∠ACB 的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.=AB=cm23.(10分)(2014•德州)问题背景:如图1:在四边形ABC中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD 上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.∠解∠交于点∠24.(12分)(2014•德州)如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.(1)求抛物线的解析式;(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作y轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.)据垂线段最短,可得当B(﹣,解得:为直角顶点时,过AC=,()或(21。

德州中考数学试卷及答案

德州中考数学试卷及答案

德州中考数学试卷及答案The document was finally revised on 2021德州市二○一五年初中学业水平考试数 学 试 题第Ⅰ卷(选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.12的结果是 A .12 B .12C .-2D .2 2.某几何体的三视图如图所示,则此几何体是 A .圆锥 B .圆柱 C .长方体 D .四棱柱3. 2014年德州市农村中小学校舍标准化工程开工学校项目356个,开工面积万平方米,开工面积量创历年最高.万平方米用科学记数法表示正确的是 A .45.6210⨯m 2 B .456.210⨯ m 2 C .55.6210⨯ m 2 D .30.56210⨯ m 2 4.下列运算正确的是 A.35 B . 326b b b C .495a aD .3236ab a b5.一组数1,1,2,x ,5,y ,…,满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y 表示的数为 A .8 B .9 C .13 D .15第2题图6.如图,在△ABC 中,∠CAB =65°.将△ABC 在平面内绕点A 旋转到△AB C ''的位置,使得CC '∥AB ,则旋转角的度数为 A .35° B .40° C .50° D .65°7.若一元二次方程220x x a ++=有实数解,则a 的取值范围是 A .a <1 B .a ≤4 C . a ≤1 D . a ≥ 18.下列命题中,真命题的个数是①若112x -<<- ,则121x -<<-;②若12x -≤≤,则214x ≤≤;③凸多边形的外角和为360°;④三角形中,若∠A +∠B =90°,则sin A =cos B . A .4 B .3 C .2 D .19.如图,要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4∶5.那么所需扇形铁皮的圆心角应为 A .288° B .144°C .216°D .120°10.经过某十字路口的汽车,可能直行,也可能左转或者右转.如果这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆左转,一辆右转的概率是A .74B .94C .92D .1911.如图,AD 是△ABC 的角平分线,DE ,DF 分别是△ABD 和△ACD 的高.得到下面四个结论:①OA =OD ;②AD ⊥EF ; ③当∠A =90°时,四边形AEDF 是正方形;A BCD EF O第9题图ABC B′C′第6题图④2222AE DF AF DE +=+.上述结论中正确的是 A .②③ B .②④ C .①②③ D .②③④12.如图,平面直角坐标系中,A 点坐标为(2,2),点P (m ,n )在直线2y x =-+上运动,设△APO 的面积为S ,则下面能够反映S 与m 的函数关系的图象是第Ⅱ卷(非选择题 共84分)二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.计算22-+03)=_______. 14.方程211x x x-=- 的解为x =_______. 15.在射击比赛中,某运动员的6次射击成绩(单位:环)为:7,8,10,8,9,6﹒计算这组数据的方差为_________.16.如图,某建筑物BC 上有一旗杆AB ,从与BC 相距38m 的D 处观测旗杆顶部A 的仰角为50o ,观测旗杆底部B 的仰角为45o ,则旗杆的高度约为________m .(结果精确到.参考数据:sin50o ≈,cos50o ≈,tan50o ≈17. 如图1,四边形ABCD 中,AB ∥CD ,AD DC CB a ,60A .取AB 的中点1A ,连接1A C ,再分别取1A C 、BC 的中点1D ,1C ,连接11D C ,得到四边形111A BC D ,如图2;同样方法操作得到四边形222A BC D ,如图3;…,如此进行下去,则四边形A BC D 的面积为2 xAy O P(第12题 1 mSO mSO Am1 SO mSO 1 DA BD C第16题图三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤. 18. (本题满分6分)先化简,再求值:2222()a b ab b a a a--÷- ,其中2a =,2b =19. (本题满分8分)2014年1月,国家发改委出台指导意见,要求2015年底前,所有城市原则上全面实行居民阶梯水价制度.小明为了解市政府调整水价方案的社会反响,随机访问了自己居住小区的部分居民,就“每月每户的用水量”和“调价对用水行为改变”两个问题进行调查,并把调查结果整理成下面的图1、图2.…图1图2图3第17题图C 2D 2 A 2 DC BAA 1 D 1C 1C 1D 1A 1ABC DD C BA小明发现每月每户的用水量在5m 3—35 m 3之间,有8户居民对用水价格调价涨幅抱无所谓,不会考虑用水方式的改变.根据小明绘制的图表和发现的信息,完成下列问题:(1)n =_______,小明调查了_______户居民,并补全图1; (2)每月每户用水量的中位数和众数分别落在什么范围?(3)如果小明所在小区有1800户居民,请你估计“视调价涨幅采取相应的用水方式改变”的居民户数有多少 20.(本题满分8分)如图,在平面直角坐标系中,矩形OABC 的对角线OB ,AC 相交于点D ,BE ∥AC ,AE ∥OB .(1)求证:四边形AEBD 是菱形;(2)如果OA =3,OC =2,求出经过点E 的反比例函数解析式.第20题图xy O A CBED21. (本题满分10分)如图,⊙O 的半径为1,A ,P ,B ,C 是⊙O 上的四个点,∠APC=∠CPB =60°. (1)判断 ABC 的形状:______________;(2)试探究线段PA ,PB ,PC 之间的数量关系,并证明你的结论; (3)当点P 位于AB 的什么位置时,四边形APBC 的面积最大?求出最大面积.22. (本题满分10分)某商店以40元/千克的单价新进一批茶叶,经调查发现,在一段时间内,销售量y (千克)与销售单价x (元/千克)之间的函数关系如图所示. (1)根据图象求y 与x 的函数关系式;(2)商店想在销售成本不超过3000元的情况下,使销售利润达到2400元,销售单价应定为多少?第21题图第21题备用图第22题图/千克)23. (本题满分10分)(1)问题如图1,在四边形ABCD 中,点P 为AB 上一点, 90DPC A B ∠=∠=∠=︒. 求证:AD ·BC =AP ·BP . (2)探究如图2,在四边形ABCD 中,点P 为AB 上一点,当DPC A B θ∠=∠=∠=时,上述结论是否依然成立?说明理由.(3)应用请利用(1)(2)获得的经验解决问题:如图3,在△ABD 中,AB =6,AD =BD =5, 点P 以每秒1个单位长度的速度,由点A 出发,沿边AB 向点B 运动,且满足∠CPD =∠A .设点P 的运动时间为t (秒),当以D 为圆心,DC 为半径的圆与AB 相切时,求t 的值.图1图2 AC BD 图3 P DC B24. (本题满分12分)已知抛物线 y=-mx2+4x+2m与x轴交于点A(α,0)、B(β,0),且11+=-.2αβ(1)求抛物线的解析式.(2)抛物线的对称轴为l,与y轴的交点为C,顶点为D,点C关于l对称点为E.是否存在 x轴上的点M、y轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由.(3)若点P在抛物线上,点Q在x轴上,当以点D、E、P、Q为顶点的四边形为平行四边形时,求点P的坐标.德州市二○一五年初中学业水平考试数学试题参考解答及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种解法,对考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一、选择题:(本大题共12小题,每小题3分,共36分)二、填空题:(本大题共5小题,每小题4分,共20分) 13.54;14.2; 15.53 ; 16.;172 .三、解答题:(本大题共7小题, 共64分) 18. (本题满分6分)解:原式=22222()a b a ab b a a--+÷ =2()()()a b a b aa ab +-⋅- …………………………………………2分 =a ba b+-. …………………………………………4分∵2a =+,2b =∴4a b +=,a b -= …………………………………………5分 原式. …………………………………………6分 19.(本题满分8分)解:(1)210 96 …………………………………………2分 补全图1为:4分(2)中位数落在15—20之间,众数落在10—15之间;………………………6分 (3)视调价涨幅采取相应的用水方式改变的户数为:1800×210360=1050(户). ……………………………………………8分 每月每户用水量(m 3)520 .(本题满分8分)(1) 证明:∵ BE ∥AC ,AE ∥OB ,∴四边形AEBD 是平行四边形. …………………………………………2分 又∵四边形OABC 是矩形, ∴OB =AC ,且互相平分, ∴DA =DB .∴四边形AEBD 是菱形. …………………………………………4分 (2)连接DE ,交AB 于点F . 由(1)四边形AEBD 是菱形,∴AB 与DE 互相垂直平分.………………………5分 又∵OA =3,OC =2,∴EF =DF =12OA =32 ,AF =12AB =1 .∴E 点坐标为(92,1).…………………………………………7分设反比例函数解析式为ky x= ,把点E (92 ,1)代入得92k =.∴所求的反比例函数解析式为92y x =.…………………………………………8分21.(本题满分10分)解:(1)等边三角形.…………………………………………2分 (2)PA +PB =PC . …………………………………………3分证明:如图1,在PC 上截取PD =PA ,连接AD .……………………………4分 ∵∠APC =60°,∴△PAD 是等边三角形.图1∴PA=AD,∠PAD=60°.又∵∠BAC=60°,∴∠PAB=∠DAC.∵AB=AC,∴△PAB≌△DAC.…………………………………………6分∴PB=DC.∵PD+DC=PC,∴PA+PB=PC.…………………………………………7分(3)当点P为AB的中点时,四边形APBC面积最大.…………………8分理由如下:如图2,过点P作PE⊥AB,垂足为E,过点C作CF⊥AB,垂足为F,∵12PABS AB PE∆=⋅,12ABCS AB CF∆=⋅.∴S四边形APBC=1()2AB PE CF+.∵当点P为弧AB的中点时,PE+CF =PC,PC为⊙O直径,∴四边形APBC面积最大.又∵⊙O的半径为1,∴其内接正三角形的边长AB.………………………………………………9分∴S四边形APBC=122⨯.………………………………………………10分22.(本题满分10分)解:(1)设y与x函数关系式为y=kx+b,把点(40,160),(120, 0)代入得,图2/千克)40160,1200.k b k b +=⎧⎨+=⎩ ………………………3分 解得 2,240.k b =-⎧⎨=⎩∴y 与x 函数关系式为y =-2x +240(40120x ≤≤ ).………………………5分(2) 由题意,销售成本不超过3000元,得40(-2x +240)≤ 3000.解不等式得,82.5x ≥.∴82.5120x ≤≤.………………………7分根据题意列方程得(x -40)(-2x +240)=2400.………………………8分 即:216060000x x -+=.解得 160x = , 2100x =.………………………9分 ∵60<,故舍去.∴销售单价应该定为100元.………………………10分 23. (本题满分10分) (1)证明:如图1 ∵∠DPC =∠A =∠B =90°, ∴∠ADP +∠A PD =90°. ∠BPC +∠APD =90°. ∴∠ADP =∠BPC ,∴△ADP ∽△ BPC .………………………………………………………1分 ∴AD APBP BC=. ∴AD ⋅BC =AP ⋅BP .………………………………………………………2分 (2)结论AD ⋅BC =AP ⋅BP 仍成立.图2ACB D理由:如图2,∵∠BPD =∠DPC +∠BPC ,又∵∠BPD =∠A +∠ADP , ∴∠A +∠ADP =∠DPC +∠BPC . ∵∠DPC =∠A =θ ,∴∠BPC =∠ADP .………………………………………3分 又∵∠A =∠B =θ,∴△ADP ∽△ BPC .………………………………………4分 ∴AD APBP BC=. ∴AD ⋅BC =AP ⋅BP .………………………………………5分 (3)如图3,过点D 作DE ⊥AB 于点E . ∵AD =BD =5,∴AE =BE =3,由勾股定理得DE =4. ………………………………………6分 ∵以D 为圆心,DC 为半径的圆与AB 相切, ∴DC =DE =4,∴BC =5-4=1. 又∵AD =BD , ∴∠A =∠B .由已知,∠CPD =∠A , ∴∠DPC =∠A =∠B .由(1)、(2)的经验可知AD ⋅BC =AP ⋅BP . ………………………7分 又AP =t ,BP =6-t ,∴t (6-t )=5×1.…………………………………………………8分图3DA C BE P 1解得t 1=1,t 2=5.∴t 的值为1秒或5秒.…………………………………………………10分 24.(本题满分12分)(1)由题意可知,α,β 是方程2420mx x m -++= 的两根,由根与系数的关系可得,α+β=4m ,αβ=-2.………………………1分∵112αβ+=- ,∴2αβαβ+=- .即:422m =--. ∴m =1.………………………2分∴抛物线解析式为242y x x =-++. ………………………3分(2) 存在x 轴,y 轴上的点M ,N ,使得四边形DNME 的周长最小.∵2242(2)6y x x x =-++=--+,∴抛物线的对称轴l 为2x = ,顶点D 的坐标为(2,6).………………………4分 又抛物线与y 轴交点C 的坐标为(0,2),点E 与点C 关于l 对称, ∴E 点坐标为(4,2).作点D 关于y 轴的对称点D ′,作点E 关于x 轴的对称点E ′,…………………………5分则D ′坐标为(-2,6),E ′坐标为(4,-2).连接D ′E ′,交x 轴于M ,交y 轴与N .此时,四边形DNME 的周长最小为D ′E ′+DE .(如图1所示) 延长E ′E , D ′D 交于一点F ,在Rt △D ′E ′F 中,D ′F =6,E ′F =8. ∴D ′E 10= .…………………………6分设对称轴l 与CE 交于点G ,在Rt △DG E 中,DG =4,EG =2.∴DE= ∴四边形DNME 的周长的最小值为10+.…………………………8分(3)如图2, P 为抛物线上的点,过P 作PH ⊥x 轴,垂足为H .若以点D 、E 、P 、Q为顶点的四边形为平行四边形,则△PHQ ≌△DGE . ∴PH =DG =4. …………………………9分 即y =4.∴当y =4时,242x x -++ =4,解得2x =.…………………………10分 当y =-4时,242x x -++ =-4,解得2x =∴点P的坐标为(2-,4),(2+4),(2-,-4),(2-4).……………………………12分xx 图2。

德州2013及2014年中考数学填空题分析

德州2013及2014年中考数学填空题分析

2014年的填空题难度有点偏大,难度系数为0.43 而2013年的填空题难度系数为0.6,难度适中。
14年 13年 第17题 第15题
13年 第16题
14年 第16题 14年 第17题
13年
第14题
图形与 几何
14年 第13题 13年
方程与
函数 统计与 概率
13年 第15题
数与式
第13题
填 空 题
陵城区实验中学
李娜
一、 德州2013、2014年
中考数学填空题分析

总体来看:知识分布合理,难易程度适中。既考查到了 初中学生的基本知识与基本技能的掌握程度,又有对所
学知识的综合运用考查.

得分情况:2013年,学生填空题平均分为12.02分, 2014年学生填空题平均分为:8.67分,比13年平均分 要低些。

(13年德州中考) 1

16.函数 y x 与y=x﹣2图象交点的横 1 1 坐标分别为a,b,则 a b 的值为____. 考点:反比例函数和一次函数的交点坐标问题、一元二
次方程的解法和根与系数的关系。

专题:常规计算题 点评:不会利用整体思想和转化化简,而是直接去求a、 b的值,导致计算量增大而计算出错。解题关键:灵活运 用根与系数的关系和熟练掌握化简。


题不清的问题。
数与式

(14年德州中考) 14.若y
x4 4 x 2 ,则 2
( x y) y =——

考点:二次根式有意义的条件、实数乘方运算。 专题:计算题 点评:有的学生没有理解式子的意义,没能求出x及y的 值,从而造成失分;有的学生直接得 简结果。 ,没有给出最

(完整word版)2014年山东省德州市中考数学试卷含答案

(完整word版)2014年山东省德州市中考数学试卷含答案

山东省德州市2018年中考数学试卷一、选择题<本大题共12小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记零分)1.<3分)<2018•德州)下列计算正确的是< )A .﹣<﹣3)2=9B.=3C.﹣<﹣2)0=1D.|﹣3|=﹣3考点:立方根;绝对值;有理数的乘方;零指数幂.分析:A.平方是正数,相反数应为负数,B,开立方符号不变.C.0指数的幂为1,1的相反数是﹣1.D.任何数的绝对值都≥0解答:解:A、﹣<﹣3)2=9此选项错,B 、=3,此项正确,C、﹣<﹣2)0=1,此项正确,D、|﹣3|=﹣3,此项错.故选:B.点评:本题主要考查立方根,绝对值,零指数的幂,解本题的关键是确定符号.2.<3分)<2018•德州)下列银行标志中,既不是中心对称图形也不是轴对称图形的是< )A .B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,也是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、是轴对称图形,也是中心对称图形.故此选项不合题意;D、不是轴对称图形,也不是中心对称图形,故此选项符合题意;故选D.点评:此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.<3分)<2018•德州)图甲是某零件的直观图,则它的主视图为< )A .B.C.D.考点:简单组合体的三视图.分析:根据主视图是从正面看得到的视图判定则可.解答:解:从正面看,主视图为.故选A.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.<3分)<2018•德州)第六次全国人口普查数据显示,德州市常驻人口约为556.82万人,此数用科学记数法表示正确的是< )b5E2RGbCAPA .556.82×104B.5.5682×102C.5.5682×106D.5.5682×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将556.82万人用科学记数法表示为5.5682×106元.故答案为:2.466 19×1013.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.<3分)<2018•德州)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为< )p1EanqFDPwA .30°B.60°C.80°D.120°考点:平行线的性质.分析:根据两直线平行,同位角相等可得∠EAD=∠B,再根据角平分线的定义求出∠EAC,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°,∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=2×30°=60°,∴∠C=∠EAC﹣∠B=60°﹣30°=30°.故选A.点评:本题考查了平行线的性质,角平分线的定义,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.6.<3分)<2018•德州)不等式组的解集在数轴上可表示为< )A .B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.解不等式组得:,再分别表示在数轴上即可得解.解答:解:解得,故选:D.点评:本题考查了在数周表示不等式的解集,把每个不等式的解集在数轴上表示出来<>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.<3分)<2018•德州)如图是拦水坝的横断面,斜坡AB的水平宽度为12M,斜面坡度为1:2,则斜坡AB的长为< )DXDiTa9E3dA .4M B.6M C.12M D.24M考点:解直角三角形的应用-坡度坡角问题.分析:先根据坡度的定义得出BC的长,进而利用勾股定理得出AB的长.解答:解:在Rt△ABC中,∵=i=,AC=12M,∴BC=6M,根据勾股定理得:AB==6M,故选B.点评:此题考查了解直角三角形的应用﹣坡度坡角问题,勾股定理,难度适中.根据坡度的定义求出BC的长是解题的关键.8.<3分)<2018•德州)图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是< )RTCrpUDGiTA.体育场离张强家2.5千MB.张强在体育场锻炼了15分钟C.体育场离早餐店4千MD.张强从早餐店回家的平均速度是3千M/小时考点:函数的图象分析:结合图象得出张强从家直接到体育场,故第一段函数图象所对应的y轴的最高点即为体育场离张强家的距离;进而得出锻炼时间以及整个过程所用时间.由图中可以看出,体育场离张强家2.5千M,体育场离早餐店2.5﹣1.5千M;平均速度=总路程÷总时间.解答:解:A、由函数图象可知,体育场离张强家2.5千M,故此选项正确;B由图象可得出张强在体育场锻炼45﹣15=30<分钟),故此选项正确;C、体育场离张强家2.5千M,体育场离早餐店2.5﹣1.5=1<千M),故此选项错误;D、∵张强从早餐店回家所用时间为100﹣65=35分钟,距离为1.5km,∴张强从早餐店回家的平均速度1.5÷=<千M/时),故此选项正确.故选:C.点评:此题主要考查了函数图象与实际问题,根据已知图象得出正确信息是解题关键.9.<3分)<2018•德州)雷霆队的杜兰特当选为2018﹣2018赛季NBA常规赛MVP,下表是他8场比赛的得分,则这8场比赛得分的众数与中位数分别为< )5PCzVD7HxA场次12345678得分3028283823263942A .29 28B.28 29C.28 28D.28 27考点:众数;中位数分析:根据众数和中位数的概念求解.解答:解:这组数据按照从小到大的顺序排列为:23,26,28,28,30,38,39,42,则众数为:28,中位数为:=29.故选B.点评:本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大<或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.10.<3分)<2018•德州)下列命题中,真命题是< )A.若a>b,则c﹣a<c﹣bB.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖C .点M<x1,y1),点N<x2,y2)都在反比例函数y=的图象上,若x1<x2,则y1>y2D .甲、乙两射击运动员分别射击10次,他们射击成绩的方差分别为S=4,S=9,这过程中乙发挥比甲更稳定考命题与定理点:专题:常规题型.分析:根据不等式的性质对A进行判断;根据概率的意义对B进行判断;根据反比例函数的性质对C进行判断;根据方差的意义对D进行判断.解答:解:A、当a>b,则﹣a<﹣b,所以c﹣a<c﹣b,所以A选项正确;B、某种彩票中奖的概率是1%,买100张该种彩票不一定会中奖,所以B选项错误;C、点M<x1,y1),点N<x2,y2)都在反比例函数y=的图象上,若0<x1<x2,则y1>y2,所以C选项错误;D、甲、乙两射击运动员分别射击10次,他们射击成绩的方差分别为S=4,S=9,这过程中甲发挥比乙更稳定,所以D选项错误.故选A.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.11.<3分)<2018•德州)分式方程﹣1=的解是< )A .x=1B.x=﹣1+C.x=2D.无解考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x<x+2)﹣<x﹣1)<x+2)=3,去括号得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,分式方程无解.故选D.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.12.<3分)<2018•德州)如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:jLBHrnAILg①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2.以上结论中,你认为正确的有< )个.A .1B.2C.3D.4考点:翻折变换<折叠问题)分析:先判断出四边形CFHE是平行四边形,再根据翻折的性质可得CF=FH,然后根据邻边相等的平行四边形是菱形证明,判断出①正确;根据菱形的对角线平分一组对角线可得∠BCH=∠ECH,然后求出只有∠DCE=30°时EC平分∠DCH,判断出②错误;点H与点A重合时,设BF=x,表示出AF=FC=8﹣x,利用勾股定理列出方程求解得到BF的最小值,点G与点D重合时,CF=CD,求出BF=4,然后写出BF的取值范围,判断出③正确;过点F作FM⊥AD于M,求出ME,再利用勾股定理列式求解得到EF,判断出④正确.解答:解:∵FH与CG,EH与CF都是矩形ABCD的对边AD、BC的一部分,∴FH∥CG,EH∥CF,∴四边形CFHE是平行四边形,由翻折的性质得,CF=FH,∴四边形CFHE是菱形,故①正确;∴∠BCH=∠ECH,∴只有∠DCE=30°时EC平分∠DCH,故②错误;点H与点A重合时,设BF=x,则AF=FC=8﹣x,在Rt△ABF中,AB2+BF2=AF2,即42+x2=<8﹣x)2,解得x=3,点G与点D重合时,CF=CD=4,∴BF=4,∴线段BF的取值范围为3≤BF≤4,故③正确;过点F作FM⊥AD于M,则ME=<8﹣3)﹣3=2,由勾股定理得,EF===2,故④正确;综上所述,结论正确的有①③④共3个.故选C.点评:本题考查了翻折变换的性质,菱形的判定与性质,勾股定理的应用,难点在于③判断出BF最小和最大时的两种情况.二、填空题<共5小题,每小题4分,满分20分,只要求填写最后结果,每小题填对得4分)13.<4分)<2018•德州)﹣的相反数是.考点:相反数.分析:求一个数的相反数就是在这个数前面添上“﹣”号.解解:﹣的相反数是﹣<﹣)=.答:点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易把相反数的意义与倒数的意义混淆.14.<4分)<2018•德州)若y=﹣2,则<x+y)y=.考点:二次根式有意义的条件.分析:根据被开方数大于等于0列式求出x,再求出y,然后代入代数式进行计算即可得解.解答:解:由题意得,x﹣4≥0且4﹣x≥0,解得x≥4且x≤4,所以,x=4,y=﹣2,所以,<x+y)y=<4﹣2)﹣2=.故答案为:.点评:本题考查的知识点为:二次根式的被开方数是非负数.15.<4分)<2018•德州)如图,正三角形ABC的边长为2,D、E、F 分别为BC、CA、AB的中点,以A、B、C三点为圆心,半径为1作圆,则圆中阴影部分的面积是﹣.xHAQX74J0X考点:扇形面积的计算;等边三角形的性质;相切两圆的性质.分析:观察发现,阴影部分的面积等于正三角形ABC的面积减去三个圆心角是60°,半径是2的扇形的面积.解答:解:连接AD.∵△ABC是正三角形,BD=CD=2,∴∠BAC=∠B=∠C=60°,AD⊥BC.∴AD=.∴阴影部分的面积=×2×﹣3×=﹣.故答案为:﹣.点评:此题主要考查了扇形面积的计算,能够正确计算正三角形的面积和扇形的面积.正三角形的面积等于边长的平方的倍,扇形的面积=.16.<4分)<2018•德州)方程x2+2kx+k2﹣2k+1=0的两个实数根x1,x2满足x12+x22=4,则k的值为 1 .LDAYtRyKfE考点:根与系数的关系分析:由x12+x22=x12+2x1•x2+x22﹣2x1•x2=<x1+x2)2﹣2x1•x2=4,然后根据根与系数的关系即可得到一个关于k的方程,从而求得k的值.解答:解;x12+x22=4,即x12+x22=x12+2x1•x2+x22﹣2x1•x2=<x1+x2)2﹣2x1•x2=4,又∵x1+x2=﹣2k,x1•x2=k2﹣2k+1,代入上式有4k2﹣4<k2﹣2k+1)=4,解得k=1.故答案为:1.点评:本题考查了一元二次方程ax2+bx+c=0<a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.17.<4分)<2018•德州)如图,抛物线y=x2在第一象限内经过的整数点<横坐标、纵坐标都为整数的点)依次为A1,A2,A3…An,….将抛物线y=x2沿直线L:y=x向上平移,得一系列抛物线,且满足下列条件:Zzz6ZB2Ltk①抛物线的顶点M1,M2,M3,…Mn,…都在直线L:y=x上;②抛物线依次经过点A1,A2,A3…An,….则顶点M2018的坐标为< 4027 ,4027 ).考点:二次函数图象与几何变换.专题:规律型.分析:根据抛物线y=x2与抛物线yn=<x﹣an)2+an相交于An,可发现规律,根据规律,可得答案.解答:解:M1<a1,a1)是抛物线y1=<x﹣a1)2+a1的顶点,抛物线y=x2与抛物线y1=<x﹣a1)2+a1相交于A1,得x2=<x﹣a1)2+a1,即2a1x=a12+a1,x=<a1+1).∵x为整数点∴a1=1,M1<1,1);M2<a2,a2)是抛物线y2=<x﹣a2)2+a2=x2﹣2a2x+a22+a2顶点,抛物线y=x2与y2相交于A2,x2=x2﹣2a2x+a22+a2,∴2a2x=a22+a2,x=<a2+1).∵x为整数点,∴a2=3,M2<3,3),M3<a3,a3)是抛物线y2=<x﹣a3)2+a3=x2﹣2a3x+a32+a3顶点,抛物线y=x2与y3相交于A3,x2=x2﹣2a3x+a32+a3,∴2a3x=a32+a3,x=<a3+1).∵x为整数点∴a3=5,M3<5,5),所以M2018,2018×2﹣1=4027<4027,4027),故答案为:<4027,4027)点评:本题考查了二次函数图象与几何变换,定点沿直线y=x平移是解题关键.三、解答题<本大题共7小题,共61分,解答要写出必要的文字说明、证明过程或演算步骤)18.<6分)<2018•德州)先化简,再求值:÷﹣1.其中a=2sin60°﹣tan45°,b=1.dvzfvkwMI1考点:分式的化简求值;特殊角的三角函数值分析:先根据分式混合运算的法则把原式进行化简,再求出a的值,把a、b的值代入进行计算即可.解答:解:原式=÷﹣1=•﹣1=﹣1=,当a=2sin60°﹣tan45°=2×﹣1=﹣1,b=1时,原式===.点本题考查了分式的化简求值和特殊角的三角函数值,要熟记特评:殊角的三角函数值.19.<8分)<2018•德州)2018年5月,我市某中学举行了“中国梦•校园好少年”演讲比赛活动,根据学生的成绩划分为A,B,C,D 四个等级,丙绘制了不完整的两种统计图.rqyn14ZNXI根据图中提供的信息,回答下列问题:<1)参加演讲比赛的学生共有40 人,并把条形图补充完整;<2)扇形统计图中,m= 10 ,n= 40 ;C等级对应扇形的圆心角为144 度;<3)学校欲从或A等级的学生中随机选取2人,参加市举办的演讲比赛,请利用列表法或树形图法,求或A等级的小明参加市比赛的概率.EmxvxOtOco考点:条形统计图;扇形统计图;列表法与树状图法.分析:<1)根据D等级的有12人,占总数的30%,即可求得总人数,利用总人数减去其它等级的人数求得B等级的人数,从而作出直方图;<2)根据百分比的定义求得m、n的值,利用360°乘以C等级所占的百分比即可求得对应的圆心角;<3)利用列举法即可求解.解答:解:<1)参加演讲比赛的学生共有:12÷30%=40<人),则B等级的人数是:40﹣4﹣16﹣12=8<人).<2)A所占的比例是:×100%=10%,C所占的百分比:×100%=40%.C等级对应扇形的圆心角是:360×40%=144°;<3)设A等级的小明用a表示,其他的几个学生用b、c、d表示.共有12种情况,其中小明参加的情况有6种,则P<小明参加比赛)==.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个工程的数据;扇形统计图直接反映部分占总体的百分比大小.20.<8分)<2018•德州)目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:SixE2yXPq5进价<元/只)售价<元/只)甲型2530乙型4560<1)如何进货,进货款恰好为46000元?<2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?考点:一次函数的应用;一元一次方程的应用分析:<1)设商场购进甲型节能灯x只,则购进乙型节能灯<1200﹣x)只,根据两种节能灯的总价为46000元建立方程求出其解即可;<2)设商场购进甲型节能灯a只,则购进乙型节能灯<1200﹣a)只,商场的获利为y元,由销售问题的数量关系建立y与a 的解读式就可以求出结论.解答:解:<1)设商场购进甲型节能灯x只,则购进乙型节能灯<1200﹣x)只,由题意,得25x+45<1200﹣x)=46000,解得:x=400.∴购进乙型节能灯1200﹣400=800只.答:购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元;<2)设商场购进甲型节能灯a只,则购进乙型节能灯<1200﹣a)只,商场的获利为y元,由题意,得y=<30﹣25)a+<60﹣45)<1200﹣a),y=﹣10a+18000.∵商场销售完节能灯时获利最多且不超过进货价的30%,∴﹣10a+18000≤[25a+45<1200﹣a)]×30%,∴a≥450.∵y=﹣10a+18000,∴k=﹣10<0,∴y随a的增大而减小,∴a=450时,y最大=13500元.∴商场购进甲型节能灯450只,购进乙型节能灯750只时的最大利润为13500元.点评:本题考查了单价×数量=总价的运用,列了一元一次方程解实际问题的运用,一次函数的解读式的运用,解答时求出求出一次函数的解读式是关键.21.<10分)<2018•德州)如图,双曲线y=<x>0)经过△OAB的顶点A和OB的中点C,AB∥x轴,点A的坐标为<2,3).6ewMyirQFL<1)确定k的值;<2)若点D<3,m)在双曲线上,求直线AD的解读式;<3)计算△OAB的面积.考点:反比例函数综合题.专题:综合题.分析:<1)将A坐标代入反比例解读式求出k的值即可;<2)将D坐标代入反比例解读式求出m的值,确定出D坐标,设直线AD解读式为y=kx+b,将A与D坐标代入求出k与b的值,即可确定出直线AD解读式;<3)过点C作CN⊥y轴,垂足为N,延长BA,交y轴于点M,得到CN与BM平行,进而确定出三角形OCN与三角形OBM相似,根据C为OB的中点,得到相似比为1:2,确定出三角形OCN与三角形OBM面积比为1:4,利用反比例函数k的意义确定出三角形OCN与三角形AOM面积,根据相似三角形面积之比为1:4,求出三角形AOB面积即可.解答:解:<1)将点A<2,3)代入解读式y=,得:k=6;<2)将D<3,m)代入反比例解读式y=,得:m==2,∴点D坐标为<3,2),设直线AD解读式为y=kx+b,将A<2,3)与D<3,2)代入得:,解得:k=﹣1,b=5,则直线AD解读式为y=﹣x+5;<3)过点C作CN⊥y轴,垂足为N,延长BA,交y轴于点M,∵AB∥x轴,∴BM⊥y轴,∴MB∥CN,∴△OCN∽△OBM,∵C为OB的中点,即=,∴=<)2,∵A,C都在双曲线y=上,∴S△OCN=S△AOM=3,由=,得到S△AOB=9,则△AOB面积为9.点评:此题属于反比例函数综合题,涉及的知识有:待定系数法确定函数解读式,坐标与图形性质,相似三角形的判定与性质,以及反比例函数k的意义,熟练掌握待定系数法是解本题的关键.22.<10分)<2018•德州)如图,⊙O的直径AB为10cm,弦BC为5cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.kavU42VRUs<1)求AC、AD的长;<2)试判断直线PC与⊙O的位置关系,并说明理由.考点:切线的判定;勾股定理;圆周角定理.分析:<1)①连接BD,先求出AC,在RT△ABC中,运用勾股定理求AC,②由CD平分∠ACB,得出AD=BD,所以RT△ABD是直角等腰三角形,求出AD,②连接OC,<2)由角的关系求出∠PCB=∠ACO,可得到∠OCP=90°,所以直线PC与⊙O相切.解答:解:<1)①如图,连接BD,∵AB是直径,∴∠ACB=∠ADB=90°,在RT△ABC中,AC===8,②∵CD平分∠ACB,∴AD=BD,∴Rt△ABD是直角等腰三角形,∴AD=AB=×10=5cm;<2)直线PC与⊙O相切,理由:连接OC,∵OC=OA,∴∠CAO=∠OCA,∵PC=PE,∴∠PCE=∠PEC,∵∠PEC=∠CAE+∠ACE,∵CD平分∠ACB,∴∠ACE=∠ECB,∴∠PCB=∠ACO,∵∠ACB=90°,∴∠OCP=∠OCB+∠PCB=∠ACO+∠OCB=∠ACB=90°,OC⊥PC,∴直线PC与⊙O相切.点评:本题主要考查了切线的判定,勾股定理和圆周角,解题的关键是运圆周角和角平分线及等腰三角形正确找出相等的角.23.<10分)<2018•德州)问题背景:如图1:在四边形ABC中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.y6v3ALoS89小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF ;M2ub6vSTnP探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;0YujCfmUCw实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心<O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F 处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.eUts8ZQVRd考点:全等三角形的判定与性质.分析:问题背景:根据全等三角形对应边相等解答;探索延伸:延长FD到G,使DG=BE,连接AG,根据同角的补角相等求出∠B=∠ADG,然后利用“边角边”证明△ABE和△ADG 全等,根据全等三角形对应边相等可得AE=AG,∠BAE=∠DAG,再求出∠EAF=∠GAF,然后利用“边角边”证明△AEF和△GAF 全等,根据全等三角形对应边相等可得EF=GF,然后求解即可;实际应用:连接EF,延长AE、BF相交于点C,然后求出∠EAF=∠AOB,判断出符合探索延伸的条件,再根据探索延伸的结论解答即可.解答:解:问题背景:EF=BE+DF;探索延伸:EF=BE+DF仍然成立.证明如下:如图,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG<SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF<SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;实际应用:如图,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+<90°﹣70°)=140°,∠EOF=70°,∴∠EAF=∠AOB,又∵OA=OB,∠OAC+∠OBC=<90°﹣30°)+<70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=1.5×<60+80)=210海里.答:此时两舰艇之间的距离是210海里.点评:本题考查了全等三角形的判定与性质,读懂问题背景的求解思路,作辅助线构造出全等三角形并两次证明三角形全等是解题的关键,也是本题的难点.24.<12分)<2018•德州)如图,在平面直角坐标系中,已知点A 的坐标是<4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.sQsAEJkW5T<1)求抛物线的解读式;<2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;GMsIasNXkA<3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作y轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.TIrRGchYzg考点:二次函数综合题.分析:<1)根据A的坐标,即可求得OA的长,则B、C的坐标即可求得,然后利用待定系数法即可求得函数的解读式;<2)分点A为直角顶点时,和C的直角顶点两种情况讨论,根据OA=OC,即可列方程求解;<3)据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短,根据等腰三角形的性质,D是AC的中点,则DF=OC,即可求得P的纵坐标,代入二次函数的解读式,即可求得横坐标,得到P 的坐标.解答:解:<1)由A<4,0),可知OA=4,∵OA=OC=4OB,∴OA=OC=4,OB=1,∴C<0,4),B<﹣1,0).设抛物线的解读式是y=ax2+bx+x,则,解得:,则抛物线的解读式是:y=﹣x2+3x+4;<2)存在.第一种情况,当以C为直角顶点时,过点C作CP1⊥AC,交抛物线于点P1.过点P1作y轴的垂线,垂足是M.∵∠ACP1=90°,∴∠MCP1+∠ACO=90°.∵∠ACO+∠OAC=90°,∴∠MCP1=∠OAC.∵OA=OC,∴∠MCP1=∠OAC=45°,∴∠MCP1=∠MP1C,∴MC=MP1,设P<m,﹣m2+3m+4),则m=﹣m2+3m+4﹣4,解得:m1=0<舍去),m2=2.∴﹣m2+3m+4=6,即P<2,6).第二种情况,当点A为直角顶点时,过A作AP2,AC交抛物线于点P2,过点P2作y轴的垂线,垂足是N,AP交y轴于点F.∴P2N∥x轴,由∠CAO=45°,∴∠OAP=45°,∴∠FP2N=45°,AO=OF.∴P2N=NF,设P2<n,﹣n2+3n+4),则n=<﹣n2+3n+4)﹣1,解得:n1=﹣2,n2=4<舍去),∴﹣n2+3n+4=﹣6,则P2的坐标是<﹣2,﹣6).综上所述,P的坐标是<2,6)或<﹣2,﹣6);<3)连接OD,由题意可知,四边形OFDE是矩形,则OD=EF.根据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短.由<1)可知,在直角△AOC中,OC=OA=4,则AC==4,根据等腰三角形的性质,D是AC的中点.又∵DF∥OC,∴DF=OC=2,∴点P的纵坐标是2.则﹣x2+3x+1=2,解得:x=,∴当EF最短时,点P的坐标是:<,0)或<,0).点评:本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求抛物线的解读式,以及等腰三角形的性质.在求有关动点问题时要注意分析题意分情况讨论结果.申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省德州市2014年中考数学试卷一、选择题(本大题共12小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记零分)1.(3分)(2014•德州)下列计算正确的是()A .﹣(﹣3)2=9 B.=3 C.﹣(﹣2)0=1 D.|﹣3|=﹣3考点:立方根;绝对值;有理数的乘方;零指数幂.分析:A.平方是正数,相反数应为负数,B,开立方符号不变.C.0指数的幂为1,1的相反数是﹣1.D.任何数的绝对值都≥0解答:解:A、﹣(﹣3)2=9此选项错,B、=3,此项正确,C、﹣(﹣2)0=1,此项正确,D、|﹣3|=﹣3,此项错.故选:B.点评:本题主要考查立方根,绝对值,零指数的幂,解本题的关键是确定符号.2.(3分)(2014•德州)下列银行标志中,既不是中心对称图形也不是轴对称图形的是()A .B.C.D.考中心对称图形;轴对称图形.点:分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A 、是轴对称图形,也是中心对称图形,故此选项不合题意; B 、是轴对称图形,不是中心对称图形,故此选项不合题意; C 、是轴对称图形,也是中心对称图形.故此选项不合题意; D 、不是轴对称图形,也不是中心对称图形,故此选项符合题意; 故选D . 点评: 此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.(3分)(2014•德州)图甲是某零件的直观图,则它的主视图为( )A .B.C.D.考点:简单组合体的三视图.分析:根据主视图是从正面看得到的视图判定则可. 解答:解:从正面看,主视图为.故选A . 点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.(3分)(2014•德州)第六次全国人口普查数据显示,德州市常驻人口约为556.82万人,此数用科学记数法表示正确的是()A.556.82×104B.5.5682×102C.5.5682×106D.5.5682×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将556.82万人用科学记数法表示为5.5682×106元.故答案为:2.466 19×1013.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(2014•德州)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°考点:平行线的性质.分析:根据两直线平行,同位角相等可得∠EAD=∠B,再根据角平分线的定义求出∠EAC,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°,∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=2×30°=60°,∴∠C=∠EAC﹣∠B=60°﹣30°=30°.故选A.点评:本题考查了平行线的性质,角平分线的定义,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.6.(3分)(2014•德州)不等式组的解集在数轴上可表示为()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.解不等式组得:,再分别表示在数轴上即可得解.解答:解:解得,故选:D.点评:本题考查了在数周表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.(3分)(2014•德州)如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为()A.4米B.6米C.12米D.24米考点:解直角三角形的应用-坡度坡角问题.分析:先根据坡度的定义得出BC的长,进而利用勾股定理得出AB的长.解答:解:在Rt△ABC中,∵=i=,AC=12米,∴BC=6米,根据勾股定理得:AB==6米,故选B.点评:此题考查了解直角三角形的应用﹣坡度坡角问题,勾股定理,难度适中.根据坡度的定义求出BC的长是解题的关键.8.(3分)(2014•德州)图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时考点:函数的图象分析:结合图象得出张强从家直接到体育场,故第一段函数图象所对应的y轴的最高点即为体育场离张强家的距离;进而得出锻炼时间以及整个过程所用时间.由图中可以看出,体育场离张强家2.5千米,体育场离早餐店2.5﹣1.5千米;平均速度=总路程÷总时间.解答:解:A、由函数图象可知,体育场离张强家2.5千米,故此选项正确;B由图象可得出张强在体育场锻炼45﹣15=30(分钟),故此选项正确;C、体育场离张强家2.5千米,体育场离早餐店2.5﹣1.5=1(千米),故此选项错误;D、∵张强从早餐店回家所用时间为100﹣65=35分钟,距离为1.5km,∴张强从早餐店回家的平均速度1.5÷=(千米/时),故此选项正确.故选:C.点评:此题主要考查了函数图象与实际问题,根据已知图象得出正确信息是解题关键.9.(3分)(2014•德州)雷霆队的杜兰特当选为2013﹣2014赛季NBA常规赛MVP,下表是他8场比赛的得分,则这8场比赛得分的众数与中位数分别为()场次 1 2 3 4 5 6 7 8得分30 28 28 38 23 26 39 42A.29 28 B.28 29 C.28 28 D.28 27考点:众数;中位数分析:根据众数和中位数的概念求解.解答:解:这组数据按照从小到大的顺序排列为:23,26,28,28,30,38,39,42,则众数为:28,中位数为:=29.故选B.点评:本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.10.(3分)(2014•德州)下列命题中,真命题是()A.若a>b,则c﹣a<c﹣bB.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖C.点M(x,y1),点N(x2,y2)都在反比例函数y=的图象上,若x1<x2,则y1>y21D.甲、乙两射击运动员分别射击10次,他们射击成绩的方差分别为S=4,S=9,这过程中乙发挥比甲更稳定考点:命题与定理专题:常规题型.分析:根据不等式的性质对A进行判断;根据概率的意义对B进行判断;根据反比例函数的性质对C进行判断;根据方差的意义对D进行判断.解答:解:A、当a>b,则﹣a<﹣b,所以c﹣a<c﹣b,所以A选项正确;B、某种彩票中奖的概率是1%,买100张该种彩票不一定会中奖,所以B选项错误;C、点M(x1,y1),点N(x2,y2)都在反比例函数y=的图象上,若0<x1<x2,则y1>y2,所以C选项错误;D、甲、乙两射击运动员分别射击10次,他们射击成绩的方差分别为S=4,S=9,这过程中甲发挥比乙更稳定,所以D选项错误.故选A.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.11.(3分)(2014•德州)分式方程﹣1=的解是()A.x=1 B.x=﹣1+C.x=2 D.无解考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x(x+2)﹣(x﹣1)(x+2)=3,去括号得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,分式方程无解.故选D.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.12.(3分)(2014•德州)如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC 上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2.以上结论中,你认为正确的有()个.A.1B.2C.3D.4考点:翻折变换(折叠问题)分析:先判断出四边形CFHE是平行四边形,再根据翻折的性质可得CF=FH,然后根据邻边相等的平行四边形是菱形证明,判断出①正确;根据菱形的对角线平分一组对角线可得∠BCH=∠ECH,然后求出只有∠DCE=30°时EC平分∠DCH,判断出②错误;点H与点A重合时,设BF=x,表示出AF=FC=8﹣x,利用勾股定理列出方程求解得到BF的最小值,点G与点D重合时,CF=CD,求出BF=4,然后写出BF的取值范围,判断出③正确;过点F作FM⊥AD于M,求出ME,再利用勾股定理列式求解得到EF,判断出④正确.解答:解:∵FH与CG,EH与CF都是矩形ABCD的对边AD、BC的一部分,∴FH∥CG,EH∥CF,∴四边形CFHE是平行四边形,由翻折的性质得,CF=FH,∴四边形CFHE是菱形,故①正确;∴∠BCH=∠ECH,∴只有∠DCE=30°时EC平分∠DCH,故②错误;点H与点A重合时,设BF=x,则AF=FC=8﹣x,在Rt△ABF中,AB2+BF2=AF2,即42+x2=(8﹣x)2,解得x=3,点G与点D重合时,CF=CD=4,∴BF=4,∴线段BF的取值范围为3≤BF≤4,故③正确;过点F作FM⊥AD于M,则ME=(8﹣3)﹣3=2,由勾股定理得,EF===2,故④正确;综上所述,结论正确的有①③④共3个.故选C.点评:本题考查了翻折变换的性质,菱形的判定与性质,勾股定理的应用,难点在于③判断出BF 最小和最大时的两种情况.二、填空题(共5小题,每小题4分,满分20分,只要求填写最后结果,每小题填对得4分)13.(4分)(2014•德州)﹣的相反数是.考点:相反数.分析:求一个数的相反数就是在这个数前面添上“﹣”号.解答:解:﹣的相反数是﹣(﹣)=.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易把相反数的意义与倒数的意义混淆.14.(4分)(2014•德州)若y=﹣2,则(x+y)y=.考点:二次根式有意义的条件.分析:根据被开方数大于等于0列式求出x,再求出y,然后代入代数式进行计算即可得解.解答:解:由题意得,x﹣4≥0且4﹣x≥0,解得x≥4且x≤4,所以,x=4,y=﹣2,所以,(x+y)y=(4﹣2)﹣2=.故答案为:.点评:本题考查的知识点为:二次根式的被开方数是非负数.15.(4分)(2014•德州)如图,正三角形ABC的边长为2,D、E、F分别为BC、CA、AB的中点,以A、B、C三点为圆心,半径为1作圆,则圆中阴影部分的面积是﹣.考点:扇形面积的计算;等边三角形的性质;相切两圆的性质.分析:观察发现,阴影部分的面积等于正三角形ABC的面积减去三个圆心角是60°,半径是2的扇形的面积.解答:解:连接AD.∵△ABC是正三角形,BD=CD=2,∴∠BAC=∠B=∠C=60°,AD⊥BC.∴AD=.∴阴影部分的面积=×2×﹣3×=﹣.故答案为:﹣.点评:此题主要考查了扇形面积的计算,能够正确计算正三角形的面积和扇形的面积.正三角形的面积等于边长的平方的倍,扇形的面积=.16.(4分)(2014•德州)方程x2+2kx+k2﹣2k+1=0的两个实数根x1,x2满足x12+x22=4,则k的值为1.考点:根与系数的关系分析:由x12+x22=x12+2x1•x2+x22﹣2x1•x2=(x1+x2)2﹣2x1•x2=4,然后根据根与系数的关系即可得到一个关于k的方程,从而求得k的值.解答:解;x12+x22=4,即x12+x22=x12+2x1•x2+x22﹣2x1•x2=(x1+x2)2﹣2x1•x2=4,又∵x1+x2=﹣2k,x1•x2=k2﹣2k+1,代入上式有4k2﹣4(k2﹣2k+1)=4,解得k=1.故答案为:1.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.17.(4分)(2014•德州)如图,抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1,A2,A3…A n,….将抛物线y=x2沿直线L:y=x向上平移,得一系列抛物线,且满足下列条件:①抛物线的顶点M1,M2,M3,…M n,…都在直线L:y=x上;②抛物线依次经过点A1,A2,A3…A n,….则顶点M2014的坐标为(4027,4027).考点:二次函数图象与几何变换.专题:规律型.分析:根据抛物线y=x2与抛物线y n=(x﹣a n)2+a n相交于A n,可发现规律,根据规律,可得答案.解答:解:M1(a1,a1)是抛物线y1=(x﹣a1)2+a1的顶点,抛物线y=x2与抛物线y1=(x﹣a1)2+a1相交于A1,得x2=(x﹣a1)2+a1,即2a1x=a12+a1,x=(a1+1).∵x为整数点∴a1=1,M1(1,1);M2(a2,a2)是抛物线y2=(x﹣a2)2+a2=x2﹣2a2x+a22+a2顶点,抛物线y=x2与y2相交于A2,x2=x2﹣2a2x+a22+a2,∴2a2x=a22+a2,x=(a2+1).∵x为整数点,∴a2=3,M2(3,3),M3(a3,a3)是抛物线y2=(x﹣a3)2+a3=x2﹣2a3x+a32+a3顶点,抛物线y=x2与y3相交于A3,x2=x2﹣2a3x+a32+a3,∴2a3x=a32+a3,x=(a3+1).∵x为整数点∴a3=5,M3(5,5),所以M2014,2014×2﹣1=4027(4027,4027),故答案为:(4027,4027)点评:本题考查了二次函数图象与几何变换,定点沿直线y=x平移是解题关键.三、解答题(本大题共7小题,共61分,解答要写出必要的文字说明、证明过程或演算步骤)18.(6分)(2014•德州)先化简,再求值:÷﹣1.其中a=2sin60°﹣tan45°,b=1.考点:分式的化简求值;特殊角的三角函数值分析:先根据分式混合运算的法则把原式进行化简,再求出a的值,把a、b的值代入进行计算即可.解答:解:原式=÷﹣1=•﹣1=﹣1=,当a=2sin60°﹣tan45°=2×﹣1=﹣1,b=1时,原式===.点评:本题考查了分式的化简求值和特殊角的三角函数值,要熟记特殊角的三角函数值.19.(8分)(2014•德州)2011年5月,我市某中学举行了“中国梦•校园好少年”演讲比赛活动,根据学生的成绩划分为A,B,C,D四个等级,丙绘制了不完整的两种统计图.根据图中提供的信息,回答下列问题:(1)参加演讲比赛的学生共有40人,并把条形图补充完整;(2)扇形统计图中,m=10,n=40;C等级对应扇形的圆心角为144度;(3)学校欲从或A等级的学生中随机选取2人,参加市举办的演讲比赛,请利用列表法或树形图法,求或A等级的小明参加市比赛的概率.考点:条形统计图;扇形统计图;列表法与树状图法.分析:(1)根据D等级的有12人,占总数的30%,即可求得总人数,利用总人数减去其它等级的人数求得B等级的人数,从而作出直方图;(2)根据百分比的定义求得m、n的值,利用360°乘以C等级所占的百分比即可求得对应的圆心角;(3)利用列举法即可求解.解答:解:(1)参加演讲比赛的学生共有:12÷30%=40(人),则B等级的人数是:40﹣4﹣16﹣12=8(人).(2)A所占的比例是:×100%=10%,C所占的百分比:×100%=40%.C等级对应扇形的圆心角是:360×40%=144°;(3)设A等级的小明用a表示,其他的几个学生用b、c、d表示.共有12种情况,其中小明参加的情况有6种,则P(小明参加比赛)==.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(8分)(2014•德州)目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型25 30乙型45 60(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?考点:一次函数的应用;一元一次方程的应用分析:(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200﹣x)只,根据两种节能灯的总价为46000元建立方程求出其解即可;(2)设商场购进甲型节能灯a只,则购进乙型节能灯(1200﹣a)只,商场的获利为y元,由销售问题的数量关系建立y与a的解析式就可以求出结论.解答:解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200﹣x)只,由题意,得25x+45(1200﹣x)=46000,解得:x=400.∴购进乙型节能灯1200﹣400=800只.答:购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元;(2)设商场购进甲型节能灯a只,则购进乙型节能灯(1200﹣a)只,商场的获利为y元,由题意,得y=(30﹣25)a+(60﹣45)(1200﹣a),y=﹣10a+18000.∵商场销售完节能灯时获利最多且不超过进货价的30%,∴﹣10a+18000≤[25a+45(1200﹣a)]×30%,∴a≥450.∵y=﹣10a+18000,∴k=﹣10<0,∴y随a的增大而减小,∴a=450时,y最大=13500元.∴商场购进甲型节能灯450只,购进乙型节能灯750只时的最大利润为13500元.点评:本题考查了单价×数量=总价的运用,列了一元一次方程解实际问题的运用,一次函数的解析式的运用,解答时求出求出一次函数的解析式是关键.21.(10分)(2014•德州)如图,双曲线y=(x>0)经过△OAB的顶点A和OB的中点C,AB∥x 轴,点A的坐标为(2,3).(1)确定k的值;(2)若点D(3,m)在双曲线上,求直线AD的解析式;(3)计算△OAB的面积.考点:反比例函数综合题.专题:综合题.分析:(1)将A坐标代入反比例解析式求出k的值即可;(2)将D坐标代入反比例解析式求出m的值,确定出D坐标,设直线AD解析式为y=kx+b,将A与D坐标代入求出k与b的值,即可确定出直线AD解析式;(3)过点C作CN⊥y轴,垂足为N,延长BA,交y轴于点M,得到CN与BM平行,进而确定出三角形OCN与三角形OBM相似,根据C为OB的中点,得到相似比为1:2,确定出三角形OCN与三角形OBM面积比为1:4,利用反比例函数k的意义确定出三角形OCN与三角形AOM面积,根据相似三角形面积之比为1:4,求出三角形AOB面积即可.解答:解:(1)将点A(2,3)代入解析式y=,得:k=6;(2)将D(3,m)代入反比例解析式y=,得:m==2,∴点D坐标为(3,2),设直线AD解析式为y=kx+b,将A(2,3)与D(3,2)代入得:,解得:k=﹣1,b=5,则直线AD解析式为y=﹣x+5;(3)过点C作CN⊥y轴,垂足为N,延长BA,交y轴于点M,∵AB∥x轴,∴BM⊥y轴,∴MB∥CN,∴△OCN∽△OBM,∵C为OB的中点,即=,∴=()2,∵A,C都在双曲线y=上,∴S△OCN=S△AOM=3,由=,得到S△AOB=9,则△AOB面积为9.点评:此题属于反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,坐标与图形性质,相似三角形的判定与性质,以及反比例函数k的意义,熟练掌握待定系数法是解本题的关键.22.(10分)(2014•德州)如图,⊙O的直径AB为10cm,弦BC为5cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.考点:切线的判定;勾股定理;圆周角定理.分析:(1)①连接BD,先求出AC,在RT△ABC中,运用勾股定理求AC,②由CD平分∠ACB,得出AD=BD,所以RT△ABD是直角等腰三角形,求出AD,②连接OC,(2)由角的关系求出∠PCB=∠ACO,可得到∠OCP=90°,所以直线PC与⊙O相切.解答:解:(1)①如图,连接BD,∵AB是直径,∴∠ACB=∠ADB=90°,在RT△ABC中,AC===8,②∵CD平分∠ACB,∴AD=BD,∴Rt△ABD是直角等腰三角形,∴AD=AB=×10=5cm;(2)直线PC与⊙O相切,理由:连接OC,∵OC=OA,∴∠CAO=∠OCA,∵PC=PE,∴∠PCE=∠PEC,∵∠PEC=∠CAE+∠ACE,∵CD平分∠ACB,∴∠ACE=∠ECB,∴∠PCB=∠ACO,∵∠ACB=90°,∴∠OCP=∠OCB+∠PCB=∠ACO+∠OCB=∠ACB=90°,OC⊥PC,∴直线PC与⊙O相切.点评:本题主要考查了切线的判定,勾股定理和圆周角,解题的关键是运圆周角和角平分线及等腰三角形正确找出相等的角.23.(10分)(2014•德州)问题背景:如图1:在四边形ABC中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.考点:全等三角形的判定与性质.分析:问题背景:根据全等三角形对应边相等解答;探索延伸:延长FD到G,使DG=BE,连接AG,根据同角的补角相等求出∠B=∠ADG,然后利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等可得AE=AG,∠BAE=∠DAG,再求出∠EAF=∠GAF,然后利用“边角边”证明△AEF和△GAF全等,根据全等三角形对应边相等可得EF=GF,然后求解即可;实际应用:连接EF,延长AE、BF相交于点C,然后求出∠EAF=∠AOB,判断出符合探索延伸的条件,再根据探索延伸的结论解答即可.解答:解:问题背景:EF=BE+DF;探索延伸:EF=BE+DF仍然成立.证明如下:如图,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;实际应用:如图,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EAF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=1.5×(60+80)=210海里.答:此时两舰艇之间的距离是210海里.点评:本题考查了全等三角形的判定与性质,读懂问题背景的求解思路,作辅助线构造出全等三角形并两次证明三角形全等是解题的关键,也是本题的难点.24.(12分)(2014•德州)如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.(1)求抛物线的解析式;(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作y轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.考点:二次函数综合题.分析:(1)根据A的坐标,即可求得OA的长,则B、C的坐标即可求得,然后利用待定系数法即可求得函数的解析式;(2)分点A为直角顶点时,和C的直角顶点两种情况讨论,根据OA=OC,即可列方程求解;(3)据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短,根据等腰三角形的性质,D是AC的中点,则DF=OC,即可求得P的纵坐标,代入二次函数的解析式,即可求得横坐标,得到P的坐标.解答:解:(1)由A(4,0),可知OA=4,∵OA=OC=4OB,∴OA=OC=4,OB=1,∴C(0,4),B(﹣1,0).设抛物线的解析式是y=ax2+bx+x,则,解得:,则抛物线的解析式是:y=﹣x2+3x+4;(2)存在.第一种情况,当以C为直角顶点时,过点C作CP1⊥AC,交抛物线于点P1.过点P1作y轴的垂线,垂足是M.∵∠ACP1=90°,∴∠MCP1+∠ACO=90°.∵∠ACO+∠OAC=90°,∴∠MCP1=∠OAC.∵OA=OC,∴∠MCP1=∠OAC=45°,∴∠MCP1=∠MP1C,∴MC=MP1,设P(m,﹣m2+3m+4),则m=﹣m2+3m+4﹣4,解得:m1=0(舍去),m2=2.∴﹣m2+3m+4=6,即P(2,6).第二种情况,当点A为直角顶点时,过A作AP2,AC交抛物线于点P2,过点P2作y轴的垂线,垂足是N,AP交y轴于点F.∴P2N∥x轴,由∠CAO=45°,∴∠OAP=45°,∴∠FP2N=45°,AO=OF.∴P2N=NF,设P2(n,﹣n2+3n+4),则n=(﹣n2+3n+4)﹣1,解得:n1=﹣2,n2=4(舍去),∴﹣n2+3n+4=﹣6,则P2的坐标是(﹣2,﹣6).综上所述,P的坐标是(2,6)或(﹣2,﹣6);(3)连接OD,由题意可知,四边形OFDE是矩形,则OD=EF.根据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短.由(1)可知,在直角△AOC中,OC=OA=4,则AC==4,根据等腰三角形的性质,D是AC的中点.又∵DF∥OC,∴DF=OC=2,∴点P的纵坐标是2.则﹣x2+3x+1=2,解得:x=,∴当EF最短时,点P的坐标是:(,0)或(,0).点评:本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求抛物线的解析式,以及等腰三角形的性质.在求有关动点问题时要注意分析题意分情况讨论结果.。

相关文档
最新文档