八下数学第二章不等式讲解
北师大版八年级下册第二章不等式的解集课件

(2)不等式2x>- 4 的解集X>-2, 可用数轴上表示-2的点的右边部分来表
示。(表示-2的点画空心圆圈○)
-3 -2 -1 0 1 2 3 4 x
•在数轴上表示不等式的解集:
① x>a 或 x<a
则用数轴上表示a的点的右边的部分 (或左边部分)来表示。
能使不等式成立的未知数的值,叫做不等式的解.
例如,6是不等式x>5的一个解,7,8,9,……也是不等式 x>5的解.
一个含有未知数的不等式的所有解,组成这个不等 式的解集(solution set)例如,不等式x-5≤-1的
解集为x≤4;不等式x2>0的解集是所有非零实数.
(3) 不等式的解与不等式的解集的区分与联系
(表示a的点画空心圆圈○)
② x≥a 或 x≤a
则用数轴上表示a的点和它右边的部分 (或左边的部分)来表示。
(表示a的点画实心圆点 )
在数轴上表示不等式的解集
用自己的方式将x>5的解集表示在数轴上吗?
不等式x>5的解集可以用数轴上表示5 的点的右边部分来表示。在数轴上表示 5的点的位置上画空心圆圈,表示5不在 这个解集内。
例如:(1)不等式 x-5≤-1的解集为 x ≤4
(2)不等式2x>- 4的解集为 X> -2
(3)不等式x-6≥-5的解集为 x≥1
(4)不等式 x 2>0 的解集为 x是所有非零实数
不等式的解集可以在数轴上直观表示出来。
(1)不等式 x-5≤-1的解集x≤4,
可用数轴上表示4的点和它左边部分来 表示。(表示4的点画实心圆点 )
实数和数轴上的点是一一对应的。
将不等式 5x<4x-6 化成
一元一次不等式(第2课时)(课件)八年级数学下册(北师大版)

随堂练习
解:(1)设该种商品每次降价的百分率为x%, 依题意得:400×(1-x%)2=324, 解得:x=10,或x=190(舍去). 答:该种商品每次降价的百分率为10%.
随堂练习
(2)设第一次降价后售出该种商品m件,则第二次降价后售出该 种商品(100-m)件, 第一次降价后的单件利润为:400×(1-10%)-300=60(元/件); 第二次降价后的单件利润为:324-300=24(元/件). 依题意得:
探究新知
例3:青年志愿者爱心小分队赴山村送温暖,准备为困 难村民购买一些米面.已知购买1袋大米、4袋面粉,共 需240元;购买2袋大米、1袋面粉,共需165元. (1)求每袋大米和面粉各多少元? (2)如果爱心小分队计划购买这些米面共40袋,总费用 不超过2 140元,那么至少购买多少袋面粉?
探究新知
(比如有的时候只能取整数)
谢谢~
随堂练习
6.2021年5月14日至15日,“一带一路”国际合作高峰论坛在北京 举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某 厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家 和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件 甲种商品比2件乙种商品的销售收入多1500元.
10
≥ 5%
探究新知
例1:某种商品进价为200元,标价为300元出售,商场规定可以打折销售, 但其利润率不能少于5%. 请你计算一下,这种商品最多可以按几折销售?
不等关系:(出售价-进价)÷进价≥利润率 解:设该商品可以打 x 折销售.
则 (300×0.1x-200)÷200≥5%. 解得 x ≥ 7. 答:这种商品最多可以按七折销售.
解:(1)设每袋大米x元,每袋面粉y元,根据题意,得:
不等式的性质八年级数学下学期重要考点精讲精练

2.2不等式的性质不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a >b ,那么a±c >b±c不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a >b ,c >0,那么ac >bc(或). 不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变. 用式子表示:如果a >b ,c <0,那么ac <bc(或). 注意:对不等式的基本性质的理解应注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会.(2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变.题型1:利用不等式的性质判定正误1.如果a >b ,那么下列结论一定正确的是( )A .a ﹣3<b ﹣3B .>C .a +3<b +3D .﹣3a >﹣3b【变式1-1】已知a <b ,则( )A .a +1<b +2B .a ﹣1>b ﹣2C .ac <bcD .>(c ≠0)【变式1-2】以下是两位同学在复习不等式过程中的对话:小明说:不等式a >2a 永远都不会成立,因为如果在这个不等式两边同时除以a ,就会出现1>2这样的错误结论!a b c c>a b c c <题型2:利用不等式确定字母的取值范围2.已知x>1,x+a=1,则a的取值范围是()A.a<0B.a≤0C.a>0D.a≥0【变式2-1】若x<y,且(6﹣a)x>(6﹣a)y,则a的取值范围是.题型3:利用不等式的性质将不等式变形3.根据不等式的性质,把下列不等式化成x>a或x<a的形式.(1)x+7>9;(2)6x<5x﹣3;(3);(4)﹣.【变式3-1】根据要求,回答下列问题:(1)由2x>x﹣,得2x﹣x>﹣,其依据是;(2)由x>x﹣,得2x>6x﹣3,其依据是;(3)不等式x>(x﹣1)的解集为.【变式3-2】根据不等式的基本性质,把下列不等式化成x<a或x>a的形式:(1)x﹣2<3;(2)4x>3x﹣5;(3)x<;(4)﹣8x<10.题型4:利用不等式的性质比较大小4.若﹣2a>﹣2b,则a与b的大小关系为.题型5:利用不等式的性质化简不等式5.已知关于x的不等式(m﹣1)x>6,两边同除以m﹣1,得x<,试化简:|m﹣1|﹣|2﹣m|.【变式5-1】已知关于x的不等式(1﹣a)x>2,两边都除以(1﹣a),得x<,试化简:|a﹣1|+|a+2|.【变式5-2】已知x满足不等式组,化简|x+3|+|x﹣2|.题型6:利用不等式的性质求最值6.代数式|x﹣1|﹣|x+4|﹣5的最大值为()A.0B.﹣10C.﹣5D.3【变式6-1】已知0≤m﹣n≤2,2≤m+n≤4,则当m﹣2n达到最小值时,3m+4n=.题型7:数轴与不等式7.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.a﹣c>b﹣c B.a+c<b+c C.ac>bc D.<【变式7-1】已知有理数a、b、c在数轴上对应的位置如图所示,则下列式子中正确的是()A.ab2>ac2B.ab<ac C.ab>ac D.c+b>a+b【变式7-2】已知实数a、b、c在数轴上对应的点如图所示,请判断下列不等式的正确性.(1)bc>ab(2)ac>ab(3)c﹣b<a﹣b(4)c+b>a+b(5)a﹣c>b﹣c(6)a+c<b+c.题型8:不等式的简单应用8.江南三大名楼指的是:滕王阁、黄鹤楼、岳阳楼.其中岳阳楼位于湖南省岳阳市的西门城头、紧靠洞庭湖畔,始建于三国东吴时期.自古有“庭天下水,岳阳天下楼”之誉,因北宋范仲淹脍炙人口的《岳阳楼记》而著称于世.某兴趣小组参观过江南三大名楼的人数,同时满足以下三个条件:(1)参观过滕王阁的人数多于参观过岳阳楼的人数;(2)参观过岳阳楼的人数多于参观过黄鹤楼的人数;(3)参观过黄鹤楼的人数的2倍多于参观过滕王阁的人数.若参观过黄鹤楼的人数为4,则参观过岳阳楼的人数的最大值为()A.4B.5C.6D.7【变式8-1】如图,一个倾斜的天平两边分别放有2个小立方体和3个砝码,每个砝码的质量都是5克,每个小立方体的质量都是m克,则m的取值范围是()A.m<15B.m>15C.m>D.m<【变式8-2】有一个两位数,个位上的数字为a,十位上的数字为b,如果把这个两位数的个位与十位上。
2021年北师大版八年级数学下册第二章《2.3 不等式的解集》优质公开课课件.ppt

。2020年12月14日星期一2020/12/142020/12/142020/12/14
• 15、会当凌绝顶,一览众山小。2020年12月2020/12/142020/12/142020/12/1412/14/2020
• 16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2020/12/142020/12/14December 14, 2020
不等式-2<x<3是什么意思?它有哪 些整数解?
请你在数轴上表示出不等式-3<x≤3的 解集,并找出其中的整数解.
• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2020/12/142020/12/14Monday, December 14, 2020
空无实有,左小右大.
例1、比较两个不等式x≥2和 x≤2的解集,它们有什么不同? 在数轴上表示它们的不同.
例2、你能看出下图在数轴上所 表示的不等式的解集是什么吗?
例3、用不等式表示下列数量关系, 再用数轴表示出来: (1)x小于-1; (2)x不小于-1; (3)a是如果不到最高峰,他就没有片刻的安宁,他也就不会感到生命的恬静和光荣。2020/12/142020/12/142020/12/142020/12/14
谢谢观看
分别成立吗?
能使不等式成立的未知数的值叫做不等式 的解.
例如,x=3.5、5都是不等式x-3>0的解; x=-1、0、12 、2、3、3.5都是不等式 x-4<0的解.
(1)不等式不等式x-3>0和x-4<0 的解各有多少个?
(2)不等式的解与方程的解有什 么不同?
北师大版八年级数学下册《一元一次不等式和一元一次不等式组——不等式的解集》教学PPT课件(4篇)

创设情境
为确保安全,引火线的长度应满足什么条件?
引火线长度
4cm
6cm
燃放者撤离到安全 区域外的时间
引火线燃烧完所用 时间
结论
大于 10÷4=2.5(s)
0.04÷0.02=2(s)
0.06÷0.02=3(s)
不安全
安全
学习目标
1.经历探索发现不等关系的过程,进一步体会模型思想. 2.探索并掌握不等式的基本性质,体会类比的思想方法. 3.会解一元一次不等式(组)并直观表示其解集,发展几何直观. 4.能够用一元一次不等式解决一些简单的实际问题. 5.体会不等式、函数、方程之间的联系.
A.X>2
B. X>4
C.X>-2
D. X>-4
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
4.如图所示的不等式的解集是___x_<__3_______.
5.在数轴上表示下列不等式的解集.
(1)X<-2.5;
(2) X>2.5;
(3) X≥3
-3 -2.5 -2 -1
0
0
1
2 2.5 3
A.
B.
C.
D.
4.关于x的不等式的解集在数轴上表示如图所示,则该不等式的解集 x≤2 .
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
不等式
数学知识
思想方法
不等式的 解
不等式 的解集
用数轴表示不 等式的解集
类比思 想
数形结合 思想
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
不等式的解集 解不等式
八年级下册数学第二章

八年级下册数学第二章一、不等式的概念。
1. 定义。
- 用符号“<”(或“≤”)、“>”(或“≥”)连接的式子叫做不等式。
例如:2x + 3>5,3y - 1≤2y + 4等。
2. 不等式的解。
- 使不等式成立的未知数的值叫做不等式的解。
例如,对于不等式x + 1>0,x = 1就是它的一个解,因为当x = 1时,1+1 = 2>0。
3. 不等式的解集。
- 一个含有未知数的不等式的所有解,组成这个不等式的解集。
例如,不等式x - 3>0的解集是x>3,表示所有大于3的数都是这个不等式的解。
二、不等式的基本性质。
1. 性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变。
- 例如:若a>b,则a±c>b±c。
如果3>2,那么3 + 1>2+1(即4>3),3 - 1>2 - 1(即2>1)。
2. 性质2:不等式两边乘(或除以)同一个正数,不等号的方向不变。
- 即若a>b,c>0,则ac>bc(或(a)/(c)>(b)/(c))。
例如,若2>1,3>0,则2×3>1×3(即6 > 3),(2)/(3)>(1)/(3)。
3. 性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变。
- 若a>b,c<0,则ac(或(a)/(c)<(b)/(c))。
例如,若2>1,-1<0,则2×(-1)<1×(-1)(即-2<-1),(2)/( - 1)<(1)/( - 1)(即-2<-1)。
三、一元一次不等式的概念与解法。
1. 概念。
- 含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。
例如3x - 5>0,(1)/(2)y+1≤0等。
2. 解法。
- 步骤:- 去分母(根据不等式的基本性质2或3,当不等式两边同时乘以或除以一个数时,如果这个数是负数要改变不等号方向)。
2021年北师大版数学八年级下册第二章《3 不等式的解集》公开课课件2

If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
。2021年2月5日星期五2021/2/52021/2/52021/2/5
• 15、会当凌绝顶,一览众山小。2021年2月2021/2/52021/2/52021/2/52/5/2021
自主学习
4、求不等式x+3<6的正整数解.
练习: 在数轴上表示出下列不等式的解集: (1)x>4; (2) x≤-1; (3) x ≥–2; (4) x<6 .
(1)数轴上实心与空心的区别在 于:空心点表示解集不包括这一点, 实心点表示解集包括这一点. (2)数轴上表示不等式的解集遵 循“大于向右走,小于向左走”这 一原则.
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights.
一个含有未知数的不等式所有解, 叫 Nhomakorabea不等式的解集.你能举出例子吗?
求不等式的解集的过程叫做 解不等式.
快速反应
1、x= -1是不等式(D)的解.
A.x+2<0 B.3x-4>0 C.x2+1<0 D.-5x+2>0
快速反应
2、你能举出不等式2x+4>0的三个解吗? 这个不等式的解有多少个? 它的解集是什么? 有多少个解集? 它的最大整数解是什么?
北师大数学八年级下册第二章-含参数一元一次不等式(组)经典讲义

第03讲_含参数一元一次不等式(组)知识图谱含参数一元一次不等式(组)知识精讲含字母的一元一次不等式(组)未知数的系数含有字母或常数项含有字母的一元一次不等式(组) 未知数的系数含有字母若0a >,axb >的解为b x a >; 若0a <,ax b >的解为bx a<;若0a =,则当0b ≥时,ax b >无解, 当0b <时,ax b >的解为任何实数已知23a ≠,解关于x 的不等式()()14321a x a x ++<-- 原不等式化为:()()13214a x a x +--<--()325a x -<-(1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a >-参数取值范围首先把不等式的解集用含有字母的代数式表示出来,然后把它与已知解集联系起来求解,在求解过程中可以利用数轴进行分析.五.易错点1.注意参数取值范围导致的变号问题.2.分清参数和未知数,不要混淆.3.解连续不等式时要注意拆分为不等式组.三点剖析一.考点:含参的一元一次方程(组).二.重难点:参数与解集之间的关系,整数解问题,不等式与方程综合. 三.易错点:注意参数取值范围导致的变号问题.解含参一元一次不等式(组)例题1、 解关于x 的不等式:ax ﹣x ﹣2>0. 【答案】 当a ﹣1=0,则ax ﹣x ﹣2>0为空集,当a ﹣1>0,则x >21a -,当a ﹣1<0,则x <21a -【解析】 ax ﹣x ﹣2>0. (a ﹣1)x >2,当a ﹣1=0,则ax ﹣x ﹣2>0为空集,当a ﹣1>0,则x >21a -,当a ﹣1<0,则x <21a -.例题2、 已知a 、b 为常数,解关于x 的不等式22ax x b ->+ 【答案】 2a >时,()212b x a +>- 2a <时,()212b x a +<-2a =时,①如果10b +≥,不等式无解;②如果10b +<,则不等式的解为任何实数 【解析】 原不等式可化为()()221a x b ->+,(1)当20a ->,即2a >时,不等式的解为()212b x a +>-; (2)当20a -<,即2a <时,不等式的解为()212b x a +<-;(3)当20a -=,即2a =时,有 ①:如果10b +≥,不等式无解;②如果10b +<,则不等式的解为任何实数.例题3、 已知a 、b 为常数,若0ax b +>的解集为23x >,则0bx a -<的解集是( ) A.32x >B.32x <C.32x >-D.32x <-【答案】 C 【解析】 该题考查的是解不等式.0ax b +>的解集为23x >,化简得2=3b a - 且a>00bx a -<的解集为a x b >,32x >-.所以该题的答案是C .例题4、 已知23a ≠,解关于x 的不等式()()14321a x a x ++<--【答案】 当23a >时,不等式的解为523x a <-;当23a <时,不等式的解为523x a >-【解析】 原不等式化为:()()13214a x a x +--<-- ()325a x -<-,因为23a ≠,所以320a -≠,即32a -为正数或负数.(1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a>-例题5、 已知关于x 的不等式22m mx ->12x ﹣1.(1)当m=1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.【答案】 (1)x <2(2)当m≠﹣1时,不等式有解,当m >﹣1时,不等式解集为x <2;当x <﹣1时,不等式的解集为x >2【解析】 (1)当m=1时,不等式为22x ->2x﹣1,去分母得:2﹣x >x ﹣2, 解得:x <2;(2)不等式去分母得:2m ﹣mx >x ﹣2, 移项合并得:(m+1)x <2(m+1), 当m≠﹣1时,不等式有解,当m >﹣1时,不等式解集为x <2; 当m <﹣1时,不等式的解集为x >2.随练1、 解关于x 的不等式22241x x a a a-≥+.【答案】当2a >-且0a ≠时,有2x a ≤-;当2a =-时,x 为任意数不等式都成立; 当2a <-时,有2x a ≥-【解析】 因为0a ≠,所以20a >,将原不等式去分母,整理得()224a x a +≤-.当2a >-且0a ≠时,有2x a ≤-;当2a =-时,x 为任意数不等式都成立;当2a <-时,有2x a ≥-.随练2、 已知23a ≠,解关于x 的不等式()()14321a x a x ++<--.【答案】 当23a >时,不等式的解为523x a <-;当23a <时,不等式的解为523x a >-【解析】 原不等式化为:()325a x -<-,因为23a ≠,所以320a -≠,即32a -为正数或负数. (1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a >-随练3、 解下列关于x 的不等式组:()23262111x a x x x +⎧->⎪⎨⎪+>-⎩;【答案】 13a >时,32x a >+;13a ≤时,3x >【解析】 原不等式组可化为323x a x >+⎧⎨>⎩.当323a +>,即13a >时,不等式组的解集为32x a >+.当323a +≤,即13a ≤时,不等式组的解集为3x >随练4、 已知a ,b 为实数,若不等式ax +b <0的解集为12x >,则不等式b (x -1)-a <0的解集为( )A.x >-1B.x <-1C.a b x b +>D.a b x b+< 【答案】 B【解析】 暂无解析随练5、已知关于x 的不等式()2340a b x a b -+->的解集是1x >.则关于x 的不等式()4230a b x a b -+->的解集是____________.【答案】 13x <-【解析】 ()2340a b x a b -+->, 移项得:()232a b x a b ->-,由已知解集为1x >,得到20a b ->,变形得:322a bx a b ->-,可得:3212a ba b-=-,整理得:a b =, ()4230a a x a a ∴-+->,即0a >,∴不等式()4230a b x a b -+->可化为()4230a a x a a -+->. 两边同时除以a 得:31x ->,解得:13x <-.随练6、 已知实数a 是不等于3的常数,解不等式组2x 3311x 2a x 022-+-⎧⎪⎨-+⎪⎩≥()< ,并依据a 的取值情况写出其解集. 【答案】 当a >3时,不等式组的解集为x ≤3,当a <3时,不等式组的解集为x <a【解析】 2x 3311x 2a x 022-+-⎧⎪⎨-+⎪⎩≥(①②)<, 解①得:x ≤3,解①得:x <a ,∵实数a 是不等于3的常数,∴当a >3时,不等式组的解集为x ≤3, 当a <3时,不等式组的解集为x <a .随练7、 关于x 的不等式组2131x a x +>⎧⎨->⎩.(1)若不等式组的解集是1<x <2,求a 的值;(2)若不等式组无解,求a 的取值范围. 【答案】 (1)a=3;(2)a≤2【解析】 (1)解不等式2x+1>3得:x >1, 解不等式a ﹣x >1得:x <a ﹣1, ∵不等式组的解集是1<x <2,∴a ﹣1=2, 解得:a=3;(2)∵不等式组无解, ∴a ﹣1≤1, 解得:a≤2.参数与解集之间的关系例题1、 若关于x 的一元一次不等式组011x a x x ->⎧⎨->-⎩无解,则a 的取值范围是 .【答案】 a≥2.【解析】 由x ﹣a >0得,x >a ;由1﹣x >x ﹣1得,x <1, ∵此不等式组的解集是空集, ∴a≥1.例题2、 已知关于x 的不等式组301(2)342x a x x -≥⎧⎪⎨->+⎪⎩有解,求实数a 的取值范围,并写出该不等式组的解集.【答案】 a <﹣6,3a≤x <﹣2.【解析】 解不等式3x ﹣a≥0,得:x≥3a,解不等式12(x ﹣2)>3x+4,得:x <﹣2,由题意得:3a<﹣2,解得:a <﹣6,∴不等式组的解集为3a≤x <﹣2.例题3、 如果关于x 的不等式(a+1)x >a+1的解集为x <1,那么a 的取值范围是( ) A.a <﹣1 B.a <0 C.a >﹣1 D.a >0或a <﹣1 【答案】 A【解析】 (a+1)x >a+1, 当a+1>0时,x >1, 当a+1<0时,x <1, ∵解集为x <1, ∴a+1<0, a <﹣1. 故选:A .例题4、 当1≤x≤4时,mx ﹣4<0,则m 的取值范围是( ) A.m >1 B.m <1 C.m >4 D.m <4 【答案】 B【解析】 设y=mx ﹣4,由题意得,当x=1时,y <0,即m ﹣4<0, 解得m <4,当x=4时,y <0,即4m ﹣4<0, 解得,m <1,则m 的取值范围是m <1,例题5、 若不等式(a ﹣3)x >1的解集为x <13a -,则a 的取值范围是 .【答案】 a <3.【解析】 ∵(a ﹣3)x >1的解集为x <13a -, ∴不等式两边同时除以(a ﹣3)时不等号的方向改变, ∴a ﹣3<0, ∴a <3.故答案为:a <3.例题6、 如果关于x 的不等式()122a x a +>+的解集是2x <,则a 的取值范围是( ) A.0a < B.1a <-C.1a >D.1a >-【答案】 B【解析】 将原不等式与其解集进行比较,在不等式的变形过程中利用了不等式的性质三,因此有10a +<,故1a <-例题7、 若不等式组()322110b x x a -<--⎧⎨->⎩的解集为﹣2<x <4,求出a 、b 的值.【答案】 a=﹣10,b=3.【解析】 解不等式10﹣x <﹣(a ﹣2),得:x >a+8,解不等式3b ﹣2x >1,得:x <312b -,∵解集为﹣2<x <4, ∴314282a b ⎧⎪⎨-=+=-⎪⎩,解得:a=﹣10,b=3.随练1、 已知关于x 的不等式(m -2)x >2m -4的解集为x <2,则m 的取值范围是________. 【答案】 m <2【解析】 不等式(m -2)x >2m -4的解集为x <2, ∴m -2<0,m <2.随练2、 关于x 的不等式组()3141x x x m ⎧->-⎪⎨<⎪⎩的解集为x <3,那么m 的取值范围是 .【答案】 m≥3【解析】 ()3141x x x m ->-⋅⋅⋅⎧⎪⎨<⋅⋅⋅⎪⎩①②,解①得x <3,∵不等式组的解集是x <3, ∴m≥3.故答案是:m≥3.随练3、 若关于x 的一元一次不等式组202x m x m -<⎧⎨+>⎩有解,则m 的取值范围为( )A.23m >-B.23m ≤C.23m >D.23m ≤-【答案】 C【解析】 202x m x m -<⎧⎨+>⎩①②,解不等式①得,x <2m , 解不等式②得,x >2-m , ∵不等式组有解, ∴2m >2-m ,∴23m >.随练4、 若不等式组0422x a x x +⎧⎨->-⎩≥有解,则实数a 的取值范围是( )A.a≥-2B.a <-2C.a≤-2D.a >-2【答案】 D【解析】 0422x a x x +⎧⎨->-⎩≥,解不等式x +a≥0得,x≥-a ,由不等式4-2x >x -2得,x <2,∵不等式组:不等式组0422x a x x +⎧⎨->-⎩≥有解,∴a >-2,随练5、 已知不等式31(x ﹣m )>2﹣m . (1)若上面不等式的解集为x >3,求m 的值.(2)若满足x >3的每一个数都能使上面的不等式成立,求m 的取值范围. 【答案】 (1)23(2)m≥23 【解析】 (1)解不等式可得x >6﹣2m ,∵不等式的解集为x >3, ∴6﹣2m=3,解得m=23;(2)∵原不等式可化为x >6﹣2m ,满足x >3的每一个数都能使不等式成立, ∴6﹣2m≤3,解得m≥23.整数解问题例题1、 关于x 的不等式-1<x≤a 有3个正整数解,则a 的取值范围是________. 【答案】 3≤a <4【解析】 ∵不等式-1<x≤a 有3个正整数解, ∴这3个整数解为1、2、3, 则3≤a <4.例题2、 关于x 的不等式0x b ->恰有两个负整数解,则b 的取值范围是( ) A.32?b -<<- B.32?b -<≤- C.32b -≤≤- D.32b -≤<- 【答案】 D【解析】 本题主要考查一元一次不等式及其解法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八下数学第二章不等式讲解
本篇文章将为大家讲解八年级数学第二章不等式的相关知识。
不等式是数学中非常重要的一个概念,它可以用来描述大小关系。
在本章中,我们将学习不等式的基本概念、符号、性质,以及如何解不等式等知识。
首先,我们来了解一下不等式的概念。
不等式是数学中描述数值大小关系的一种数学式子,其中使用的符号包括大于号、小于号、大于等于号、小于等于号等。
例如,2>1、3≥3、5<7等都是不等式。
接下来,我们了解一下不等式的符号。
大于号>表示左边的数大
于右边的数,小于号<表示左边的数小于右边的数,大于等于号≥表
示左边的数大于等于右边的数,小于等于号≤表示左边的数小于等于右边的数。
然后,我们学习不等式的性质。
不等式有以下性质:1、对于不
等式两边同时加(或减)一个相同的数,不等式的大小关系不变;2、
对于不等式两边同时乘(或除)一个正数,不等式的大小关系不变;3、对于不等式两边同时乘(或除)一个负数,不等式的大小关系变化;4、对于不等式两边交换,不等式的大小关系改变。
最后,我们学习如何解不等式。
求解不等式的目标是找到所有符合条件的变量取值。
解不等式的方法包括:1、化简、移项;2、图像法;3、区间法等。
通过本章的学习,我们对不等式的基本概念、符号、性质,以及如何解不等式等知识有了更加深入的理解。
相信大家在今后的学习中,
能够更好地应用不等式这一数学概念,解决实际问题。