莽草酸代谢
莽草酸途径 苯丙烷 特异木质素合成途径

一、莽草酸途径莽草酸途径,又称为莽草酸代谢途径,是一种生物合成途径,涉及到植物细胞壁的合成与代谢。
在这条途径中,莽草酸被转化为苯丙烷类化合物,进而参与植物细胞壁的合成。
莽草酸途径是植物细胞壁生物合成途径的重要组成部分,对于植物的生长发育具有重要意义。
1. 莽草酸的来源莽草酸是一种重要的中间代谢产物,由植物体内的糖代谢途径合成。
在植物细胞中,葡萄糖通过糖醇磷酸途径(PPP)转化为磷酸葡糖酸,接着经过一系列酶催化反应转化为莽草酸。
2. 莽草酸的转化莽草酸在细胞质中被转化为对羟基苯丙酸,接着通过酶催化反应,对羟基苯丙酸被还原为苯丙烷,参与到植物细胞壁的合成过程中。
3. 莽草酸途径在植物生长发育中的作用莽草酸途径是植物细胞壁合成途径的关键步骤,对于植物的生长发育具有重要意义。
植物细胞壁决定了植物的结构与形态,同时也与植物的适应环境能力息息相关。
莽草酸途径在植物生长发育过程中发挥着重要作用。
二、苯丙烷苯丙烷是一种重要的有机化合物,广泛存在于植物细胞壁中,并参与植物的生长发育过程。
在植物中,苯丙烷通过莽草酸途径合成,是植物细胞壁合成途径的重要产物。
1. 苯丙烷的结构与性质苯丙烷是一种具有芳香环的有机化合物,含有一个苯环和一个丙烷基团。
其结构稳定,化学性质活泼,是一种重要的合成原料。
2. 苯丙烷在植物细胞壁中的作用苯丙烷是植物细胞壁合成途径的重要中间产物,参与到植物细胞壁的合成过程中。
植物细胞壁决定了植物的形态与结构,同时也对植物的生长发育起着重要作用。
3. 苯丙烷的应用苯丙烷作为一种重要的有机合成原料,广泛应用于香料、染料、医药、农药等领域。
其稳定的化学结构和丰富的化学性质,使其成为了许多合成化合物的重要前体。
三、特异木质素合成途径特异木质素合成途径是植物细胞壁生物合成途径的重要组成部分,涉及到植物木质素合成的重要中间产物。
在这条途径中,各种酶催化反应将苯丙烷类化合物转化为木质素,参与植物细胞壁的合成。
1. 特异木质素合成途径的主要步骤在特异木质素合成途径中,苯丙烷类化合物首先经过酶催化反应转化为对前苯醇,随后再经过一系列酶催化反应转化为丙烯基酚。
莽草酸

莽草酸可用于出口鸡场【产品简介】莽草酸存在于大量高等植物或微生物中。
众所周知的抗流感新宠“达菲”就是通过莽草酸进一步衍生化得到的。
因其口服吸收好,生物利用度高,抗病毒效果可靠,使其在流感流行期间,全球掀起了抢购的热潮。
【分子结构】化学式:3,4,5-三羟基-1-环己烯-1-羧酸分子式:C7H10O5分子量:174.15【性状】类白色精细粉末,易溶于水,在水中的溶解度为18g/100mL,难溶于氯仿、苯和石油醚,气味辛酸。
【药理作用】莽草酸可以直接通过影响花生四烯酸代谢,抑制血小板聚集,抑制动、静脉血栓及脑血栓形成发挥作用,莽草酸还具有抗炎、镇痛作用。
莽草酸可以作为抗病毒和抗癌药物中间体,在体内莽草酸还可转化为多种对病毒、细菌和癌细胞有抑杀作用的物质。
抗菌抗肿瘤作用,1987年有报道中提到日本学者发现莽草酸的一种化合物对海拉细胞株(HeLacells)和埃希利腹水癌(Ehrlichascitescarcinoma)有明显的抑制作用,并能延长接种白血病细胞L1210的小鼠的存活时间,而且毒性相对较低,其抑制作用主要与硫氢化物反应有关。
流感病毒在宿主细胞内复制表达和组装之后,会以出芽的形式突出宿主细胞,但与宿主细胞以凝血酶-唾液酸相连接,神经氨酸酶以唾液酸为作用底物,可催化唾液酸水解,解除成熟病毒颗粒与宿主细胞之间的联系,使之可以自由移动侵袭其他健康的宿主细胞。
如果抑制神经氨酸酶的活性可以阻止病毒颗粒的释放,切断病毒的扩散链,从而抑制病毒的复制。
在发病后24小时内使用,病程会减短20%-30%,病情会减轻25%,作为预防用药,对流感病毒暴露者的保护率在60%-80%之间。
另外还可以通过阻断病毒的糖蛋白合成及抑制病毒成熟后从细胞的释放达到抗病毒效果。
口服迅速被吸收,进入血液循环,2~3小时后达血药峰浓度,其在体内可以定向分布至肺部、支气管、鼻窦等部位。
【特点】药效更持久:本品在体内发挥药效的同时,其体内衍生化产物同样具有抗病毒作用,因而药效稳定时间更长。
莽草酸途径生物碱的生物合成

莽草酸途径生物碱的生物合成莽草酸(Scopolamine)是一种具有神经抑制活性的天然生物碱,广泛存在于茄科植物的树龙眼(Hyoscyamus niger)和曼陀罗(Datura stramonium)中。
被用作药物,主要用于镇静、止呕等药物配方中。
莽草酸的生物合成途径非常复杂,涉及多个酶和中间代谢物的参与。
本文将从植物开始,详细介绍莽草酸生物合成的途径。
莽草酸是一种羧酸类生物碱,首先我们可以从植物的羧酸代谢途径开始。
在植物细胞中,葡萄糖通过糖酷酶(Hexokinase)和磷酸果糖同工酶(Phosphofructokinase)的催化下,生成果糖-6-磷酸(F6P)。
F6P可以进一步被磷酸果糖异构酶(Phosphopentose isomerase)转化为果糖-6-磷酸(G6P)。
G6P进入戊糖磷酸途径,在戊糖-6-磷酸糖化酶(G6PDH)的催化下,转化为戊糖-6-磷酸(Glu6P)。
Glu6P通过磷酸葡萄糖异构酶(Phosphoglucoisomerase)和酮糖转移酶(Transketolase)的参与下,生成吡喃糖化合物庚糖醛酸(Sedoheptulose-7-phosphate,S7P)。
接下来,庚糖醛酸会参与到幂坏脱羧酶(Polyol dehydrogenase)催化的反应中,转化为丙酮醛(Dihydroxyacetone phosphate,DHAP)和乙酰辅酶A(acetyl-CoA)。
丙酮醛进一步参与到半乳糖磷酸途径中,在磷酸醛糖庚糖醛酸脱氢酶(Phosphogluconate dehydrogenase)的催化下,转化为戊酮糖酸(Ketogluconate)。
戊酮糖酸通过环化酶(Cyclase)的参与,生成γ-酮戊糖酸(γ-Ketoglutarate)。
γ-酮戊糖酸是一个中间代谢物,在α-酮戊二酸脱羧酶(Alpha-ketoglutarate decarboxylase)的作用下,转化为D-(-)-鸟脑酮酸(D-(–)-Dihydrozeatin)。
莽草酸途径 ppt课件

这两者化合后经几步反应生成莽草酸, 莽 草酸经磷酸化形成5-磷酸莽草酸后,再与 PEP反应,以后生成分支酸;分支酸可以合
成色氨酸,也可以转变为预苯酸,由预苯酸 可生成苯丙氨酸和酪氨酸。
ppt课件
4
Байду номын сангаас E4P PEP
莽草酸
分支酸 预苯酸
色氨酸 苯丙氨酸 酪氨酸
分支酸 是莽草酸途径的重要枢纽物质,将代谢分为
ppt课件
10
苯丙烷化合物代谢的说明:
①出发单位是苯丙氨酸;
②经PAL(苯丙氨酸脱氨酶)脱去氨后生成肉 桂酸;
③两分子苯丙烷类通过β-位聚合可生成木质 素类化合物;
④苯丙烷类与丙二酸单酰辅酶A结合,可生成 黄酮类物质;
ppt课件
11
产物:
苯丙烷类化合物(C6-C3):是一类分子
中以苯丙基为基本骨架单位构成的化合物。 其中香豆素和木质素为其典型化合物。
ppt课件
8
ppt课件
9
由苯丙氨酸经肉桂酸形成木质素单体的 一系列过程是苯丙烷类化合物代谢的中心途 径。
黄酮类化合物的生物合成都是通过苯丙 烷类生物合成途径,是苯丙烷代谢途径的支 路。由1分子香豆酰-CoA和3分子丙二酸单酰 -CoA在查尔酮合成酶(CHS)催化下聚合生成 查尔酮开始,是苯丙烷代谢反应中黄酮类产 物合成支路中的初始反应。
黄酮类化合物(C6-C3-C6):泛指具有两
个苯环通过中间三碳链相互联结而成的一类 化学成分。多具有酚羟基,显酸性。
ppt课件
12
ppt课件
13
酶及调控
之一:苯丙氨酸解氨酶(PAL)
PAL是中心酶,它催化苯丙氨酸途径中的 第一步反应,不需要任何辅助因子参与,通过 一个非氧化脱氨基作用把苯丙氨酸转变成肉桂 酸和氨,而当过量的氨存在时,它催化逆反应 的进行。
葡萄果实中莽草酸途径与多酚积累的关系

葡萄果实中莽草酸途径与多酚积累的关系摘要概述了莽草酸途径及其在植物次生代谢中的重要作用、葡萄果实类黄酮代谢与调控的研究现状,并对莽草酸代谢与葡萄多酚积累的关系进行探讨和展望。
关键词莽草酸途径;类黄酮代谢;多酚积累葡萄果实RelationshipbetweenShikimateAcidPathwayandPolyphenolAccumulationinGrap eBerriesLI Chun-lan(College of Biolgical Science and Technology,Beijing Forestry University,Beijing 100083)AbstractIn this paper,shikimate acid pathway and its role in plant secondary metabolism were summarized,as well as the research status offlavonoid metabolism and regulation in grape berries. Finally,the relationship between shikimate acid metabolism and polyphenol accumulation wasdiscussed.Key wordsshikimate acid pathway;flavonoid metabolism;polyphenol accumulation grape berry1莽草酸途径的简介莽草酸途径是存在于植物、真菌和微生物中重要的代谢途径,是连接糖代谢和次生代谢的主要桥梁。
糖酵解途径(EMP)产生的磷酸烯醇式丙酮酸(PEP)和戊糖磷酸途径(PPP)产生的赤藓糖-4-磷酸(E4P)进入莽草酸途径(Shikimate pathway),经过7个步骤的反应形成分支酸(Chorismate)。
莽草酸介绍

莽草酸
【中文名称】:莽草酸
【英文名称】:Shikimic Acid
【C A S号】:138-59-0
【植物来源】:莽草酸存在于木兰科常绿灌木莽草Illicium lanceolatum A.C. Smith的干燥果实。
【别名】:3,4,5-三羟基-1-环己烯-1-甲酸
【分子式】:C7H10O5
【分子量】:174.15
【熔点及溶解度】:183-184℃,易溶于水(18g/100ml),基本不溶于氯仿、苯和石油醚。
【结构式】:
【产品简介】:白色针状结晶
【产品规格】:98% HPLC
【药理作用】:莽草酸通过影响花生四烯酸代谢,抑制血小板聚集,抑制动、静脉血栓及脑血栓形成,莽草酸具有有抗炎、镇痛作用,莽草酸还可作为抗病毒和抗癌药物中间体。
【应用剂型】:栓剂、洗剂、注射液、片剂、胶囊等。
【产品保存】:置于阴凉干燥、避光,避高温处。
【保质期】:两年
【生产厂家】:陕西永健制药有限公司。
SA代谢路径及路线图

水杨酸(SA)的合成来自于不同的前体和路径:一个是在细胞质中以苯丙氨酸为合成前体的莽草酸途径/苯丙氨酸解氨酶途径(phenylalanine ammonia lyase pathway);另一个则是在叶绿体中进行的异分支酸途径(isochorismate synthases pathway)[1]。
但在多数植物中发现莽草酸途径是SA合成的主要路径。
莽草酸的转化产物苯丙氨酸,经过苯丙氨酸解氨酶(PAL)合成反式肉桂酸,后再转化为香豆酸或苯甲醛。
香豆酸可直接转化为SA,苯甲醛需先转化为苯甲酸(BA),在苯甲酸羟化酶(BA2H)的作用下才能转化为SA[2]。
Serino等人发现细菌SA生物合成通过异分支酸合酶(sochorismate synthase,ICS)使分支酸异构化为异分支酸,再经过异分支酸裂解酶(isochorismate pyruvate lyase,IPL)合成SA。
在拟南芥中发现有两种ICS基因即ICS1(sid2)和ICS2,通过ICSI(sid2)突变体感染病原体后,叶片中总SA含量只有野生型的5%~10%,这说明其SA可能是通过ICS2或其他途径合成的[3]。
虽然在植物中发现了ICS基因并加以研究,但至今尚未发现存在于植物体的IPL基因,在拟南芥中也未发现编码类似于于细菌IPL蛋白的DNA序列[4]。
莽草酸途径

补骨脂素类
38
16
4.2 桂皮酸(Cinnamic Acid):C6H3
17
桂皮酸: PAL
苯丙氨酸解氨酶(phenylalanin ammonialyase, PAL),是催化直接脱掉L-苯丙氨酸上的氨而生成 反式肉桂酸的酶,于1961年由J.Koukol,E.Conn 在大麦中发现。存在于高等植物、酵母、菌类的可 溶性部分。推测分子量为30万。这是一个可把苯丙 氨酸用于酚类化合物合成的酶。在很多情况下,其 反应成为酚类化合物合成的有步骤的速率阶段。在 组织中的活性可随外界因素而发生显著变化,用光 照,病伤害,植物激素处理等会使活性显著增加。 另外有时还受光敏色素所支配。
几乎没有细胞毒性
23
4.4 苯丙烯
桂皮醛:桂皮油的主要成分,香料和调味品 丁子香酚:肉桂叶含大量,丁香油成分,牙齿麻醉剂 肉豆蔻醚:调味品,曾作为轻度致幻剂
24
苯丙烯的形成
25
主要含芳香化合物的挥发油
26
27
4.5 来自C6C3化合物的安息香酸
苯甲酸又称安息香酸,是苯环上的一个氢被羧基取 代形成的化合物。一般常作为药物或防腐剂使用, 有抑制真菌、细菌、霉菌生长的作用,药用时通常 涂在皮肤上,用以治疗癣类的皮肤疾病。用于合成 纤维、树脂、涂料、橡胶、烟草工业。 最初苯甲酸是由安息香胶干馏或碱水水解制得,也 可由马尿酸水解制得。工业上苯甲酸是在钴、锰等 催化剂存在下用空气氧化甲苯制得;或由邻苯二甲 酸酐水解脱羧制得。
分支酸经其异构体异分支酸衍生 2,3-二羟基苯甲酸是肠菌素(Fe3+载体) 的组成单元,
10
叶酸(folic acid,Vitamin B9)
PABA是叶酸(二氢喋呤磷酸酯衍生)的构成单元
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
莽草酸(shikimic acid)是一种化学物质,广泛存在于植物中,尤其是杜鹃花科、爵床科、豆科、苦苣苔科、马鞭草科、唇形科、大戟科等植物中。
莽草酸是一种重要的化工原料和药物中间体,可用于合成多种药物,如抗流感药物达菲(Tamiflu)、抗病毒药物金刚烷胺(Amantadine)等。
此外,莽草酸还具有抗菌、抗氧化、抗炎等多种生物学活性。
莽草酸的代谢途径主要包括以下几个步骤:
1. 莽草酸在细胞质中被酶催化水解,生成莽草酸-7-磷酸(shikimic acid-7-phosphate)。
2. 莽草酸-7-磷酸在细胞质中被磷酸酶催化脱去磷酸基,生成莽草酸-7-羟基酸(shikimic acid-7-hydroxy acid)。
3. 莽草酸-7-羟基酸在细胞质中被还原酶催化还原,生成莽草酸-7-醛(shikimic acid-7-aldehyde)。
4. 莽草酸-7-醛在细胞质中被氧化酶催化氧化,生成莽草酸-7-酮(shikimic acid-7-one)。
5. 莽草酸-7-酮在细胞质中被还原酶催化还原,生成莽草酸-7-羟基酸。
6. 莽草酸-7-羟基酸在细胞质中被转酮酶催化脱羧,生成莽草酸-3-羧酸(shikimic acid-3-carboxylic acid)。
7. 莽草酸-3-羧酸在细胞质中被转氨酶催化脱氨,生成莽草酸-3-酮(shikimic acid-3-one)。
8. 莽草酸-3-酮在细胞质中被氧化酶催化氧化,生成莽草酸。
莽草酸的代谢途径涉及多个酶的参与,其中莽草酸-7-磷酸合成酶、莽草酸-7-羟基酸还原酶、莽草酸-7-醛氧化酶、莽草酸-7-酮还原酶等是关键的酶。
莽草酸的代谢途径是植物代谢的一个重要组成部
分,对于植物的生长发育、防御反应等具有重要的作用。
同时,莽草酸的代谢途径也为合成药物提供了重要的原料和途径。