不定积分与变限积分的关系

合集下载

变上限定积分及微积分基本定理

变上限定积分及微积分基本定理

dx 1
d
x
xf (t)dt
d
x
tf (t)dt
dx 1
dx 1
d
x
x
f (t)dt
d
x
tf (t)dt
dx 1
dx 1
x
x
f (t)dt xf ( x) xf ( x) f (t)dt
1
1
第6页/共15页
推广1: 若 f ( x)连续,( x)可导
则 d
(x)
f (t)dt
f [ ( x )] ( x )
dx a
推导:设( x)
(x)
f (t)dt
( x)u
u
f (t)dt
d
a
d du f (u)( x)
a
f [ ( x)] ( x)
dx du dx
推广2:
d ( x) f (t )dt f [ ( x )] ( x) f [ ( x )] ( x)
1 e t 2 dt
lim
x0Biblioteka cos xx2(0) 0
lim x0
ecos2 x ( sin x)
2x
1 2e
(
lim x
x et2dt)2
0
x e2t2dt
0
()
lim x
2
x et2dt
0
e x2
()
e2x2
lim x
2e x2 2x ex2
0
第8页/共15页
定理1(p119)(微积分基本定理)

x x
( x x) a f (t)dt
( x x) ( x)
( x)

不定积分含变上限积分和微分解题方法

不定积分含变上限积分和微分解题方法

解:对.xf (x)dx 二arcsinx ■ c两边求导得xf (x)口■d-x2,即f(x)二1X i 1 - X2fXr x-壮“冷-xQ-x2) 1 2 -丁一x)2 c不定积分和微分-J -J一、公式一f (x)dx = f (x)和f (x)dx = — f (x)dx = f(x) c 的应用dx dx注意:f(x)的不定积分为F(x)・c= F(x)是f (x)的原函数二f (x)是F(x)的导数,即f(x)dx 二F(x) c或F,(x)二f(x)1已知不定积分的值,求被积函数或被积函数中的一部分,利用两边求导处理已知f ( (x))dx 二F (x) c,求f (x)方法:求导得f ( (x)^ F /(x),令:(x) = t,则x = ,(t),即f (x) = F / (「」(x)) 例1 ( 1) f(x)dx=x2c,求xf(1-x2)dx解:对f(x)dx=x2c 求导得f(x) =2x,f (1-x2) =2-2x22 2 2 2X2则xf(1 -x )dx 二x(2 -2x )dx 二x cdx(2).xf(X)dx"rcsin X C,求.帀2、已知导数值,求原函数,利用两边积分的方法处理已知F /(「(x)) = f (x),求F (x)方法:令:(x^t,则X= ,(t),即F,(t) = f ("(t)),/ 2 2例2( 1) f (sin x)二tan x,求f (x)2cos2 x 1 -t 解:令sin2 x = t,则cos21 = 1 -t,tan2 x =sin X t即f /(t)诂两边积分的f(t)「占d —t _ In |t _11 cf /(x) = -x[f /(-x)-1]f(0) =0,11 0 :: x,求 f(u)f /(t)才0 ::: e t< e t 1即 f/(t)1te 2t< 0当 t 乞 0 时,f/(t) =1, 两边积分得 f (t) = dt = t qt当t 0时,f Lt) =e 2,两边积分得 t二 2e2c 2!im_f(t)=阿@ my因为f(t)在t =0处连续,则 (2)已知 f / (一x) = x[ f / (x) -1],求 f (x)解:令 - X =t ,则上式为 f /(t)二一t[ f /(-t) -1],即2x由上面两式得 f /(x) = —2x +1 x两边积分得 f (x)二 — dx = ln(x 1) c ' x+1(3)设 f (u)在-::::U :: •::内可导,且解:令 In x =t 得 x = £,又因为设f (t)在:::u — v 内可导,所以f (t)在-::::u ;: ?宀内连续t而 Fm . f (t)计叫(2e 2c 2)=2 c 2,2 c 2 = G = 0,即 & = 0 , c 2 = -2'tt 兰 0故f (t)二丄2e2—2 t >0(4)设y = f (x)在x处的改变量为-y — x oG^x) ( -x—0),y(0) = 1,求y'(1)1 + x解:o f (x)dx =xf (x) |°xf(5)设 f(x)= ;^dt,TTf(x)dxn si nx , (x)dx*dx-,兀_x解:由.:y —x oUx)知 y /1 x1 xJ 即鱼=竺 y 1 +x两边积分得 得 In y 二 In(1 x) c而 y(0) =1=1 x故 y /(1)=1 jsi n xdx = 2 二、已知F(x)是f (x)的原函数二 F ,(x)= f(x) ,求被积函数中含有 j ! f (x)dx = F (x) c f (「(x))的积分 1由f (x^F /(x)求出f(x),代入积分计算 2、把积分转化为.f ( (x))d( (x))的形式,利用.f (x)dx 二F(x) c 求值 例3 (1)竺上是f (x)的原函数,a = 0,求 x解:因为s ^是f (x)的原函数,所以 f(x)dx =x t a xf (ax) dx asin xc x (2) e"是 f (x)的原函数,求 x 2f (In x)dx解:因为 f(x) ^(e^)/ - -e^1,所以 f (In x): x 2 x 贝V x 2f (In x)dx - - xdx c 2 三、已知f(x)的表达式,求被积函数中含有 f( ;:(x))的积分 1由f (x)求f 「:(x)),再把f 「:(x))的表达式代入积分计算x53 / 40sin 21、1 - sin212、由f(x)先求 f(x)dx ,把含有f( (x))的积分转化为 f( (x))d (x)的形式处理例 4 (1) f (sin 2x)=—,求 fxf (x)dx sin x - xI解:在(f (x)dx 中,令 x=sin2t 得1 -x2 2 2 2f (sin t)d (sin t)=2 s in t f(sin t)dt=2 tsin tdt 二 -2 td(cost)二-2t cost 2 costdt二-2tcost 2sint c因为 si n t = x , cost = . 1 - x , t = arcs in 、x所以f(x)dx = —2丁1—x arcsi 门依+2依+。

变上限积分函数一定是原函数

变上限积分函数一定是原函数

变上限积分函数一定是原函数
上限积分函数是对定积分进行运算的一种表达形式,它具有一定的性质和特点。

本文将从定义和性质两个方面来详细介绍上限积分函数,并讨论它与原函数的关系。

一、上限积分函数的定义及性质:
上限积分函数又称为积分上限函数,是将定积分的上限作为自变量,将积分结果作为因变量的函数。

设函数f(x)在区间[a, b]上连续,定义函数F(x)=∫[a, x]f(t)dt,其中a≤x≤b。

则F(x)称为f(x)在区间[a, b]上的上限积分函数。

其满足以下性质:
1.定义域:上限积分函数的定义域为[a,b]。

2.连续性:上限积分函数F(x)在区间[a,b]上连续,即F(x)是一个连续函数。

3.导数关系:若f(x)在区间[a,b]上连续,则上限积分函数F(x)在区间[a,b]上可导,并且有F'(x)=f(x),即上限积分函数的导数等于被积函数。

4.奇偶性:若f(x)为奇函数,则上限积分函数F(x)为偶函数;若
f(x)为偶函数,则上限积分函数F(x)为奇函数。

5.增减性:若函数f(x)在区间[a,b]上非负,则上限积分函数F(x)在区间[a,b]上单调递增;若函数f(x)在区间[a,b]上非正,则上限积分函数F(x)在区间[a,b]上单调递减。

二、上限积分函数与原函数的关系:
根据上限积分函数的定义,我们可以看出上限积分函数与原函数的关系如下:
2.根据上限积分函数的导数关系,我们可以得知,若函数f(x)在区间[a,b]上连续,则存在一个原函数F(x),满足F'(x)=f(x),即F(x)就是f(x)的一个原函数。

这与不定积分的定义一致。

变限积分的性质

变限积分的性质

变限积分的性质摘要变限积分是微积分学基本定理之一,是一类很重要的函数,是产生新函数的重要工具,同时它也是连接不定积分和定积分的桥梁,可见它在微积分学中的重要地位。

本文通过对变限积分的定义进行简介,对变限积分的性质进行介绍及举例,包括变限积分的连续性、可微性、奇偶性、单调性和周期性,还介绍了变限积分的一些应用。

通过这些介绍及得到的有关结论,希望可以让我们更加理解变限积分的作用、地位和价值,在以后研究学习中有所帮助。

关键词:变限积分;连续性;可微性;奇偶性;单调性;周期性;应用引言随着时代的要求和科技的进步,由于函数概念的产生和运用的加深,一门新的数学分支——微积分学产生了,而极限的思想是微积分的基础,它是用一种运动的思想看待问题,微积分是与实际联系着发展起来的在许多科学领域中,有越来越广泛地应用,可见微积分在数学发展中的地位是十分重要的,微积分堪称是人类智慧最伟大的成就之一。

积分学是微积分中重要的一部分内容,积分学可分为不定积分和定积分,而变限积分就是一种特殊的定积分,它具有许多特殊的性质,比如连续性、可微性、奇偶性等,它是我们学习积分学经常考察的一个知识点,研究它的性质对我们学习微积分有重要的意义。

下面我们将介绍变限积分的概念、性质和应用。

1. 变限积分的概念与理解1.1变限积分的定义[,]abxab,[,]ff[,]ax设在上可积,根据定积分的性质,对任何,在也可积,于是,由x,,,()(),[,]xftdtxab (1) ,a定义了一个以积分上限为自变量的函数,称为变上限的定积分或积分上x 限函数.类似地,又可定义变下限的定积分:b,,,(),(),[,].xftdtxab (2) ,x与统称为变限积分; 变量复合函数定义为: ,,uxbux()()ftdtftdtftdt(),(),(), ,,,avxvx()()[,],,,[,]abux()vx()ux()vx() 其中、是定义在上的函数且,.xfxdx() 注:在变限积分(1)与(2)中,不可再把积分变量写成(例如),x,a 以免与积分上、下限的混淆。

(整理)第三章一元函数的积分学

(整理)第三章一元函数的积分学

第三章 一元函数的积分学§1 不定积分【考试要求】1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式.2.掌握不定积分的换元积分法和分部积分法.3.会求有理函数、三角函数有理式的积分和简单无理函数的积分.一、基本概念1.原函数与不定积分定义若()()F x f x '=,(,)x a b ∈,则称()F x 是()f x 在(,)a b 内的一个原函数.(一般地,“在区间(,)a b 内”几个字常省略).若()F x 是()f x 的一个原函数,则()F x C +也是()f x 的原函数(其中C 为任意常数),()f x 的全体原函数称为()f x 的不定积分,记作()d f x x ⎰.若()F x 是()f x 的一个原函数,则()d ()f x x F x C =+⎰.2.不定积分与原函数的关系(1)不定积分与原函数是两个不同的概念,前者是个集合,后者是该集合中的一个元素,因此()d ()f x x F x ≠⎰.(2)设()F x ,()G x 是()f x 的任意两个原函数,则()()F x G x C =+((,)x a b ∈).(3)原函数的几何意义:称()y F x C =+为()f x 的积分曲线,其上横坐标为x 处的切线互相平行.3.原函数存在定理设()f x 在(,)a b 内连续,则在(,)a b 内必有原函数.4.不定积分的基本性质(1)()d ()d kf x x k f x x =⎰⎰ (k 为常数);(2)[()()]d ()d ()d f x g x x f x x g x x ±=±⎰⎰⎰;(3)求导与求不定积分互为逆运算① (()d )()f x x f x '=⎰ ,d ()d ()d f x x f x x =⎰;② ()d ()f x x f x C '=+⎰,d ()()f x f x C =+⎰;5.基本积分公式(熟练掌握)(1)d k x kx C =+⎰;(2)11d 1x x x C μμμ+=++⎰; (3)1d ln ||x x C x=+⎰; (4)d ln x x a a x C a=+⎰; (5)e d e x x x C =+⎰;(6)sin d cos x x x C =-+⎰;(7) cos d sin x x x C =+⎰;(8) 2sec d tan x x x C =+⎰;(9)2csc d cot x x x C =-+⎰;;(10)sec tan d sec x x x x C ⋅=+⎰;(11)csc cot d csc x x x x C ⋅=-+⎰;(12)d arcsin xx C =+⎰;(13)2d arc ta n 1x x C x=++⎰; (14)tan d ln |cos |x x x C =-+⎰;(15)cot d ln |sin |x x x C =+⎰;(16)d arcsin xx C a =+⎰; (17)22d 1arctan x x C a x a a=++⎰; (18)sec d ln |sec tan |x x x x C =++⎰;(19)csc d ln |csc cot |x x x x C =-+⎰;(20)22d 1ln 2x a x C a x a a x +=+--⎰;(21)d ln x x C =++⎰; (22)21arcsin 22a x x C a =++⎰. 6.初等函数的原函数初等函数在其定义区间内必有原函数,但它的原函数不一定是初等函数.不能用初等函数来表示(积不出来)的不定积分如下:2e d x x ⎰, 2e d x x -⎰, sin d x x x ⎰, cos d x x x⎰, 2sin d x x ⎰, 2cos d x x ⎰, d ln x x ⎰,e d x x x⎰,e ln d x x x ⎰,ln |sin |d x x ⎰等.二、不定积分的积分法1.公式法 将被积函数变形,直接利用公式.2.换元法 引入新的变量,再积分.第一类换元法(凑微分法)设()f u 的原函数为()F u ,()u x ϕ=有连续的导数,则[()]()d f x x x ϕϕ'⋅⎰ [()]d ()f x x ϕϕ=⎰()u x ϕ=()()d [()][()]u x f u u F u C F x C ϕϕ==+=+⎰凑微分 换元 积分 变量还原常见的凑微分公式(1)1()d ()d()f ax b x f ax b ax b a+=++⎰⎰,0a ≠;(2)11()d ()d()n n n n f x x x f x x n -=⎰⎰; (3)(e )e d (e )d(e )x x x x f x f =⎰⎰;(4)d 1(ln )(ln )d(ln )x f x f x x x n =⎰⎰;(5)21111()d ()d()f x f x x x x=-⎰⎰; (6)12f x f =⎰⎰; (7)(sin )cos d (sin )d(sin )f x x x f x x =⎰⎰;(8)(cos )sin d (cos )d(cos )f x x x f x x =-⎰⎰;(9)2(tan )sec d (tan )d(tan )f x x x f x x =⎰⎰;(10)2(cot )csc d (cot )d(cot )f x x x f x x =-⎰⎰;(11)21(arctan )d (arc tan )d(arc tan )1f x x f x x x ⋅=+⎰⎰; (12)1(arcsin )d (arcsin )d(arcsin )f x x f x x ⋅=⎰⎰; (13)d xf x f ⋅=⎰⎰;(14)()d ()d ln |()|()()f x f x x f x C f x f x '==+⎰⎰. 第二类换元法设()x t ϕ=单调,有连续的导数,且()0t ϕ'≠,如果[()]()d ()f t t t F t C ϕϕ'=+⎰,则()d f x x =⎰ ()x x ϕ=[()]()d f t t t ϕϕ'⎰1()[()]t x F t C ϕ-==+1[()]F x C ϕ-=+.换元 积分 变量还原3.分部积分法 设()u u x =,()v v x =具有连续的导数,则d d uv x uv u v x ''=-⎰⎰ 或 d d u v uv v u=-⎰⎰称为分部积分公式.4.特殊函数类的积分有理函数:先化为多项式与简单分式,再逐项积分.三角函数有理式:令tan 2x u =,化为有理函数的积分.简单无理函数:引入代换去掉根号,化为有理函数的积分.常用的分项公式如下:(1)111(1)1x x x x=-++; (2)111(1)1x x x x=+--; (3)2211(1)1x x x x x=-++; (4)22211111(1)(1)(1)1(1)x x x x x x x x x =-=--+++++; (5)2222111(1)1x x x x=-++. 常用的三角公式如下:(1)21cos 2cos 2x x +=;(2)21cos 2sin 2x x -=;(3)21sin (sin cos )22x x x ±=±三、典型例题题型1 直接积分法 (即将被积函数分解为几个简单函数的代数和再分项积分)例1 求下列不定积分(1) 231d 5x xx x ++⎰; (2)10d (2)x x x +⎰;(3) 42d x x x +⎰; 解 原式2222d 111d arctan (1)1x x x C x x xx x ⎡⎤==-=--+⎢⎥++⎣⎦⎰⎰.(4)2222+sin sec d 1x x x x x ⋅+⎰; 解 原式精品文档()()2222221+sin 11sec d sec d d 11xx x x x x xx x +-=⋅=-++⎰⎰⎰tan arctan x x C =-+.题型2 换元积分法(第一类和第二类)例1 求下列不定积分(1)2sin cos d 1sin x xx x ⋅+⎰; (2)d x⎰解原式ln dln d u x x u ========⎰⎰⎰11d()2arcsin arc 12u u C --==+=⎰ .(3)3xx ⎰;解原式23221122u x x x x x u========⎰⎰⎰32111(1(1)d(1)222u u u u =+-=++-⎰⎰⎰535222212211[(1)(1)](1)(125353u u C x =+-++=+-+ . (4)sin 222esin d exxxx ⋅⎰; 解 原式sin 222sin 22sin11esin d e d(sin 22)e44x xx x x x x x --=⋅=--=-⎰⎰(5)1d (1e )xxx x x ++⎰; (6)ln(tan )d sin cos x x x x ⋅⎰.例2 求x ⎰.解:原式2[ln()3x x =+=+⎰例3 求 342e ed e 2e 1x xx xx +-+⎰. 解:原式2222e (e e )d(e e )1d e (e e )(e e )e ex x x x x x x x x x x x x C -----+-===-+---⎰⎰ 例4 求 241d 1x x x ++⎰.解:原式22221111d()1d arctan 11()2x x x x x C x x x x+--===++-+⎰⎰例5 求下列不定积分(1)xx ⎰;(2)3d x x ⎰; 解 令π323sec ,0,d sec tan d 22x t t x t t t ⎛⎫=<<=⋅ ⎪⎝⎭ ,原式23233tan 34tan 4sec tan d d sin 23sec 33sec 2t t t t t t t t =⋅⋅==⎛⎫ ⎪⎝⎭⎰⎰⎰241231sin 2arccos 324322t t C x x ⎛⎫=-+=- ⎪⎝⎭.(3)d x ⎰.解 令2tan ,d sec d x t x t t ==,原式2222sec d cos d dsin arcta (2tan 1)sec 1sin 1sin t t t t tt t t t ====+++⎰⎰⎰arctanx C =+.注 1ο,令s i n x a t = 或 cos x a t =;2ο,令sec x a t = 或 csc x a t =或 ch x a t =;3ο,令tan x a t = 或 cot x a t =或 sh x a t =;4ο三角代换变量还原时利用辅助三角形. 例6 求下列不定积分(1)d x⎰;解 原式()d31d13xx-==⎰⎰1ln|31|3x C=-++.(2)21d446xx x-+⎰.解原式()()2111212d21arctan221xx C x-=-=⋅+ -+⎰.(注对二次三项式2ax bx c++或其平方根,配方后使用公式).例7求下列不定积分(1)d x⎰(2)21lnd(ln)xxx x--⎰.(注1xt=称为倒代换,当分母的次数高于分子的次数时,可考虑用此代换).例8 求e (1e )d x xx +⎰(注 可考虑指数代换e xu =或e sin xt =).例9 求d x x⎰,(令:t =)解令t =,22tan 1tan d 2tan sec d .t x t x t t t =⇒=+⇒=⋅原式(2222arctan 2sec tan d 2tan d 2sec 1tan t t t t t t t t t t t ⋅=⋅⋅=⋅=⋅+⎰⎰⎰()222sec 1d 2d(tan )2tan tt t t t t t t t =⋅-=-=⋅-⎰⎰⎰22tan 2ln |cos |t t t t C =⋅+-+212ln ||arctan x=⋅+-+22ln ||arctanx =⋅--+.题型3 分部积分法关键:正确地选择u 和v ,选择u ,v 的原则:1οv 好求; 2οd v u ⎰要比d u v ⎰简单.例1 求下列不定积分(1)2(22)e d xx x x +-⎰; (2)2(1)ln d xx x +⎰;(3)e cos d xx x x ⎰; (4)sin ln d x x ⎰ 解 原式1sinln dsinln sinln cosln d x x x x x x x x xx=-=-⋅⋅⎰⎰sinln cosln d sinln cox x x x x x x ⎡=-=-⋅⎣⎰()()1sinln cosln sinln d x x x x x xx=-+-⎰()sinln cosln sinln d x x x x x =--⎰所以 原式()sinln cosln 2xx x C =-+.(5)22arctan d (1)xx x x +⎰; 解 原式22arctan arctan 1d d arctan d(-)arctan d 1x x x x x x x x x =-=-+⎰⎰⎰⎰()221111arctan d arctan 12x x x x x x =-+⋅-+⎰()()22221111arctan d arctan 221x x x x x x =-+-+⎰ 22211111arctan d 212x x x x x ⎛⎫=-+-- ⎪+⎝⎭⎰()()22111arctan ln ln 122x x x x =-+-+-()22111arctan ln arctan 212x x x x x =-+-+.(6)ln(x x x +⎰.解原式ln(x x x =+⋅⎰dln(x =⋅+-⋅⎰ln(d x x =⋅+-=⎰.例2 求 22sin d (cos sin )xx x x x -⎰. 解 原式2sin sin sin 1d d (cos sin )cos sin x x x x x x x x x x x x x ⎛⎫=⋅= ⎪--⎝⎭⎰⎰sin 11cos sin cos sin x x x x x x x x ⎛⎫=⋅-⋅ ⎪--⎝⎭⎰2sin 11s d cos sin (cos x x x x x x x x x ⎛⎫=⋅-=⎪-⎝⎭⎰.例3 求ed xx x ⎰.(先换元,后分部积分) 解: 原式222222d d 12ln(1)d 2[ln(1)2d ]1tt x t t ttt t t t t =++=+-+⎰⎰24arctan C =-++.题型4 分项--分部积分法(将积分分成两项(或多项)的积分和,然后利用分部积分抵消不可积部分)例1 求 2ln 1d ln x x x-⎰; 例2求 22e (tan 1)d x x x +⎰. 题型5 有理函数积分例1 求25d 613x x x x +-+⎰; 例2 求221d (1)x x x +⎰.题型6 三角有理函数积分例1 求 d sin 22sin xx x+⎰ 例2 求d 1sin cos xx x --⎰题型7 简单无理函数积分例1求d x⎰; 例2 求d x⎰.例3求d x⎰(0,0)a b x <<>.解:原式2=⎰2arcsin C =+;题型8 分段函数的积分例1 求|1|ed x x -⎰.例2 求2()max(1,)x x ϕ=的一个原函数()F x ,且(0)1F =.题型9 含有抽象函数的不定积分例1设()d arcsin xf x x x C =+⎰,求1d ()x f x ⎰.例2设()f x 为非负连续函数,当0x ≥时,有20()()d e 1xxf x f x t t ⋅-=-⎰,求()d f x x ⎰. 解 方程化为20()()d ()()d =e 1xxxf x f x t t f x f x t t ⋅-=--⎰⎰,()d ()d u x txxf x t t f u u =--====⎰⎰,代入原方程得()20()d e 1xxf x f u u ⋅=-⎰,令()()()()()20()d exxF x f u u F x f x F x F x ''=⇒=⇒⋅=⎰,两边积分()()()2d e 1d xF x F x x x '⋅=-⎰⎰,得()2211e 22xF x x C =-+, 又()()22100,e 212xF C F x x =⇒=-∴=--,()()(F x F x ∴=≥.()()d f x x F x C =+=⎰.例3设(,)f x y 可微,且(,)ff x y x∂=-∂,e cos xf y y-∂=∂,(0,0)0f =,求(,)d f x x x ⎰. 例4设()f x 在[0,)+∞上可导,(0)1f =,且满足01()()()d 01xf x f x f t t x '-+=+⎰,求[()()]e d xf x f x x -'''-⎰.四、不定积分常用的计算技巧总结(考生自看)1.加减常数法例1 求 cos d 1cos xx x-⎰. 解:原式2cos 111()d (1)d 1cos 1cos 2sin (/2)x x x x x x x -=+=-+=----⎰⎰.2.加减函数法例2 求 21d 1exx +⎰. 解:原式2222221e e e 1d (1)d ln(1e )1e 1e 2x x xx x xx x x C +-==-=-++++⎰⎰.例3 求 d (1)nxx x +⎰. 解:原式1111d d d ln ||ln |1(1)1nnn n n nx x x x x x x x x x x x n -+-==-=-+++⎰⎰⎰.3.乘除函数法例4 求 d e ex x x-+⎰.解:原式22e d de arctane 1(e )1(e )x xxx x x C ===+++⎰⎰. 4.分母整体化法例5 求 2100d (1)xx x +⎰. 解:原式2219899100100100(1)(1)d d (2)d u xu u u u u u u uu u=+-----=====-+⎰⎰⎰9798991212979899u u u C ---=-+-+.例6 求 2sin d (sin cos )xx x x +⎰.解:原式π4222πsin()sin csin 114d d π2sin 2sin ()4u x u x u x x u u x =+-=====+⎰⎰⎰2d d(sin )()[l n |csc(4sin sin 4u u x u u =-=+⎰⎰.5.依分母分解法例7 求 3cos 4sin d cos 2sin x xx x x-+⎰. 解:因为cos x 与sin x 的导数互相转化,所以 可设3cos 4sin (cos 2sin )(cos 2s x x A x x B x -=+++(2)cos (2)sin A B x A B x =++- 故得:231,224A B A B A B +=⎧⇒=-=⎨-=-⎩. 原式cos 2sin (cos 2sin )d 2d cos 2sin cos 2sin x x x x x x x x x x '++=-+=-++⎰⎰.6.还原法例8 求 11(1)ed x xx x x++-⎰.解:11121ed (1)ed ed d(ex x x x xxx x x x x x+++=+-=+⎰⎰⎰⎰1111ed eed ex x x x xxxxx x x x C ++++=+-=+⎰⎰.7.待定函数法 例9 (上例)解:因为被积函数是一个函数与1ex x+的乘积,它的一个原函数必定也是某一个函数与1e x x+的乘积.令 111(1)ed ()ex x xxx x F x C x +++-=+⎰,其中()F x 为待定函数, 两边求导数11211(1)e[()()(1)]ex x xxx F x F x xx++'+-=+-,22111(1)()()(1)()x F x F x F x x x'∴+-=+-⇒=, 故 原式1ex xx C +=+.8.相关积分法例10 求 221e sin d x I x x =⎰,221e cos d xI x x =⎰.解:221222211e d e ,21e cos2d e (cos2sin 2),4xx x x I I x C I I x x x x C ⎧+==+⎪⎪⎨⎪-==++⎪⎩⎰⎰ 1I ∴=22111e e (cos2sin 2)224x x x x C⎡⎤-++⎢⎥⎣⎦2211e e (cos2sin 2)48x xx x C =-++; 2I =22111e e (cos2sin 2)224x x x x C⎡⎤+++⎢⎥⎣⎦2211e e (cos2sin 2)48x xx x C =+++.五、练习题31-1.若()f x 的导函数是e cos xx -+,则()f x 的一个原函数为( ).(A) e cos xx -- (B) esin x x --+ (C)ecos xx --- (D) esin xx -+2.若()f x '为连续函数,则(2)d f x x '=⎰( ).(A) (2)f x C + (B) ()f x C + (C)1(2)2f x C + (D) 2(2)f x C + 3.若()f x 是以l 为周期的连续函数,则其原函数( ).(A) 是以l 为周期的连续函数 (B)是周期函数,但周期不是l(C) 不是周期函数 (D)不一定是周期函数4.设cos x x 是()f x 的一个原函数,求()d xf x x '⎰. 5.2222221sin cos d d sin cos sin cos x x x x x x x x +=⋅⋅⎰⎰. 6. 22e 1e (1)d (e )d sin sin xxxx x x x--=-⎰⎰.7.11e ed d 1e 1e xxx xx x +-=++⎰⎰. 8.45422sincos d sin (1sin )dsin x x x x x x =⋅-⎰⎰.9.1515sin cos d (sin cos )d(sin cos )(sin cos )x xx x x x x x x +=---⎰⎰.10.21111d d d(1)111n n n nnn n n x x x x x x x x x x --⋅+-==++++⎰⎰⎰. 11.cos sin d(sin cos )d cos sin cos sin x x x x x x x x x-+=++⎰⎰.12.321()arctan d arctan d()33x x x x x x x ++=⎰⎰. 13.2d x x⎰. 14.d 1d(3)3xx =⎰⎰ 15.22222d 2ln 2d d 2d 1d 12(14)2(12)ln 2(1)ln 2xxxu x x x x u x x x u u u =========+++⎰⎰⎰.16.22sin d x x x ⎰.17.arcsin 2arcsin x =-⎰⎰.18.2arctan tan 3d sec d 22ed sin d (1)xx ttx t tx x e t t x ==+====⎰⎰. 19.241d 1x x x -+⎰. 20.421d (1)x x x +⎰21. 1183848282821d d d (1)(1)4(1)x x x x x x x x x x ⋅==+++⎰⎰⎰42221d 4(1)x tt t t =+===⎰2tan 24d sec d 1tan sec d 4sec t u t u u u u u u ======⎰.22. 112d d x x x x +-+=⎰⎰22112d[(1)3]2x =-++⎰⎰.23. 2d d d x xx x x =+⎰⎰⎰.24.313(1)4d d x x x x +-+=⎰⎰.25.d 4sin 3cos 5x x x ++⎰(可令tan 2xt =);26. 3sin 2cos d 2sin 3cos x x x x x ++⎰(可令tan 2xt =或依分母分解法);27.设(cos )sin f x x '=(0)x π<<,求()f x . 28.设()F x 是()f x 的一个原函数,且当0x ≥时,有2e()()2(1)xx f x F x x ⋅=+,又(0)1F =, ()0F x >, 求()f x .29.()d ()f x x F x C =+⎰,且当0x ≥时,有2()()sin 2f x F x x ⋅=,又(0)1F =,()0F x ≥,求()f x .30.求2[ln ()ln ()][()()()]d f x f x f x f x f x x ''''++⎰.31.设ln(1)(ln )x f x x +=,计算()d f x x ⎰.32.2()(1)()d exxf x x f x x x '-+⎰. 33.1e (ln )d x x x x +⎰.3-1参考答案1.A2.C3.D 4.2cos sin xx C x--+. 5.tan cot x x C -+.6.e cot xx C ++. 7.ln(1e )xx C -++.8.579111sin sin sin 579x x x C -++9.455(sin cos )4x x C -+.10.1[(1)ln |1|]n nx x C n+-++.11.ln|cos sin|x x C++.12.32arctan36x x xx C+-+.13.arcsin x Cx--+14.1ln|3|3x C++. 15.11(arctan2)ln22xxC-++.16.321sin2cos2sin26448x x xx x x C --++.17.arcsin C-++.18arctan1e+xxC-.1ln C+. 20.311arctan 3x C x x-+++. 21. 44811arctan 881x x C x-⋅++. 22. 2ln |1|x C +-++.23. 1arcsin 22x x C --+. 244ln |1|x C +-++.25. 1tan 22C x -++. 26.125ln |2sin 3cos |1313x x x C -++.27. 1()arcsin 22x f x x C =++. 28.232e()2(1)xx f x x =+.29.2sin 2()xf x =.30.()()[ln ()()1]f x f x f x f x C ''-+. 31.e ln(1e )ln(1e )xxxx C --++-++.32.()ex f x C x +. 33.e ln xx C +.§2 定 积分【考试要求】 1.理解定积分的概念,掌握定积分的基本性质及定积分中值定理.2.掌握定积分的换元积分法和分部积分法.3.理解积分上限函数,会求它的导数,掌握牛顿 –莱布尼茨公式.4.了解反常(广义)积分的概念,会计算反常(广义)积分.一、基本概念 1.定积分定义设()f x 在[,]a b 上有定义且有界,做下述四步:(1)分割:用1n -个分点分割区间[,]a b011i ia x x x x -=<<<<;(2)作乘积:()i i f x ξ∆,其中1[,]i i i x x ξ-∈,1i i i x x x -∆=-;(3)求和:1()ni i i f x ξ=∆∑;(4)取极限:01lim ()ni i i f x λξ→=∆∑,其中1max ||i i nx λ≤≤=∆,如果上述极限存在,则称()f x 在[,]a b 上可积,并称上述极限为()f x 在[,]a b 上的定积分,记作1lim ()()d nbi i ai f x f x x λξ→=∆=∑⎰.注 ()d baf x x ⎰的值与对区间[,]a b 的分法无关,与i ξ的取法无关,与积分变量用什么字母表示无关;与[,]a b 有关,与()f x 有关, 即()d ()d bbaaf x x f t t =⎰⎰.2.定积分的存在性定理设()f x 在[,]a b 上连续,或在[,]a b 上有界且只有有限个第一类间断点,则()d ba f x x ⎰一定存在.3.几何意义定积分()d baf x x ⎰表示由曲线()y f x =,,x a x b ==及x 轴所围平面图形面积的代数和.4.定积分的运算性质:(1)()d ()d a abbf x x f x x =-⎰⎰. (4)[()()]d ()d ()d bb baaaf xg x x f x x g x x ±=±⎰⎰⎰.(2)()d 0aaf x x =⎰. (5)()d ()d b baakf x x k f x x =⎰⎰.(3)d bax b a =-⎰. (6)()d ()d ()d bc baacf x x f x x f x x =+⎰⎰⎰.5.定理定理1 (定积分的比较定理)若在[,]a b 上恒有()()f x g x ≤,则()d ()d bbaaf x xg x x ≤⎰⎰.推论1 若()f x 与()g x 在[,]a b 上连续,()()f x g x ≤,且至少有一点0[,]x a b ∈,使00()()f x g x <,则()d ()d bbaaf x xg x x<⎰⎰.推论2 若在[,]a b 上恒有()0f x ≥,则()d 0baf x x ≥⎰.推论3 ()d ()d bbaaf x x f x x ≤⎰⎰. 定理2(估值定理)若在[,]a b 上,()m f x M ≤≤,则()()d ()ba mba f x x Mb a -≤≤-⎰.定理3(积分中值定理)(1)若()f x 在[,]a b 上连续,则[,]a b ξ∃∈,使()d ()()baf x x f b a ξ=-⎰.(2)若()f x 在[,]a b 上连续,()g x 在[,]a b 上不变号,且在[,]a b 上可积,则[,]a b ξ∃∈,使()()d ()baf xg x x f ξ=⎰⎰.定理4(变上限积分函数及其导数) 设()f x 在[,]a b 上连续,()()d xa F x f t t =⎰称为变上限积分函数,则导数为d ()()d ()()d xt x aF x f t t f t f x x ='===⎰.推论1 设()()()d x aF x f t t ϕ=⎰,则()d ()()d [()]()d x aF x f t t f x x x ϕϕϕ''==⋅⎰.推论2 设21()()()()d x x F x f t t ϕϕ=⎰,则21()2211()d ()()d [()]()[()](d x x F x f t t f x x f x x x ϕϕϕϕϕϕ'''==⋅-⋅⎰.推论3 设()()()()d x aF x f t g x t ϕ=⎰,则()()()()d x a F x g x f t t ϕ'⎡⎤'=⎢⎥⎣⎦⎰()()()d ()[()](x ag x f t t g x f x ϕϕϕ''=+⎰.定理5(变上限积分函数与不定积分的关系) 设()f x 在[,]a b 上连续,则变上限积分函数()()d xaF x f t t =⎰是()f x 的一个原函数, 即()d ()d xaf x x f t t C =+⎰⎰.注:不定积分()d f x x ⎰只能作为运算符号,不能表示一个具体的原函数,特别当()f x 为一个抽象的函数时,无法用()d f x x ⎰来讨论它的某一原函数的性质;而()d xa f t t ⎰为某一确定的原函数,可以用它来讨论此原函数的性质.定理6(牛顿-莱布尼兹公式)设()f x 在[,]a b 上连续,()F x 是()f x 的一个原函数,则()d ()()()bb aaf x x F x F b F a ==-⎰. 6.定积分的计算方法(1) 换元法:设()f x 在[,]a b 上连续,()x t ϕ=在[,]αβ上有连续的导数,且当t 从α变到β时,()t ϕ从()a ϕα=单调地变到()b ϕβ=,则()d [baf x x f βαϕ=⎰⎰要点:换元要换限,变量不还原,不换元则不换限.(2)分部积分法:设()u x ,()v x 在[,]a b 上有连续的导数,则d d bbb aaauv x uv u v x ''=-⎰⎰或 d d b b b aaau v uv v u =-⎰⎰.注:求不定积分时适用的积分法,相应地也适用定积分的求法.7.广义积分的概念与计算 (1)无穷限的广义积分ο1 设()f x 在[,)a +∞上连续,则()d lim()d baab f x x f x x +∞→+∞=⎰⎰;ο2 设()f x 在(,]b -∞上连续,则()d lim()d b baa f x x f x x -∞→-∞=⎰⎰;ο3 设()f x 在(,)-∞+∞上连续,则()d lim()d lim ()d bbaaa b f x x f x x f x x +∞-∞→-∞→+∞=+⎰⎰⎰.仅当等式右边的两个极限都存在时,左边的无穷限广义积分收敛,否则发散.注意: ο3式中等式右边的两个极限若有一个不存在,则()d f x x +∞-∞⎰发散.(2)无界函数的广义积分(瑕积分) ο1 设()f x 在(,]a b 上连续,lim ()x af x +→=∞, 则()d lim ()d bbaa f x x f x x εε++→=⎰⎰,x a =称为瑕点.ο2 设()f x 在[,)a b 上连续,lim ()x bf x -→=∞, 则0()d lim ()d bb aaf x x f x x εε+-→=⎰⎰,x b =称为瑕点.ο3 设()f x 在[,]a b 上除点c 外均连续,lim ()x cf x →=∞,则()d ()d ()d bc baacf x x f x x f x x=+⎰⎰⎰12120lim ()d lim ()d c bac f x x f x x εεεε++-+→→=+⎰⎰.x c =称为瑕点.仅当等式右边的极限存在时,瑕积分收敛,否则发散.注意:ο3式中等式右边的两个极限若有一个不存在,则瑕积分()d ba f x x ⎰发散.二、重要结论(1)利用定积分定义求n 项和的极限 设()f x 连续,则ο1 1()d lim ()nban k b a b af x x f a k n n →∞=--=+⋅∑⎰.ο2 111()d lim ()nn k k f x x f n n →∞==⋅∑⎰.(2)奇、偶函数的积分ο1 设()f x 连续,若()f x 为偶函数,则()d xf t t ⎰为奇函数;若()f x 为奇函数,则对任意a ,()d xaf t t ⎰为偶函数.ο2 设()f x 在[,]a a -上连续,则()d [()()]d aaaf x x f x f a x-=+-⎰⎰(3)周期函数的积分设()f x 在(,)-∞+∞上连续,且以T 为周期,则ο1 202()d ()d ()d T a TTT af x x f x x f x x +-==⎰⎰⎰;ο2 0()d ()d nTT a f x x n f x x =⎰⎰;ο3 0()d ()d a nT Taf x x n f x x +=⎰⎰.即:周期函数在每个周期长度区间上的积分均相等,与起点无关.(4)常用结论ο1 ππ22(sin )d (cos )d f x x f x x =⎰⎰, 令π2x t =-;ο2 ππ00π(sin )d (sin )d 2xf x x f x x =⎰⎰, 令πx t =-;ο3 ππ2(sin )d 2(sin )d f x x f x x =⎰⎰,。

牛顿莱布尼茨公式课件

牛顿莱布尼茨公式课件


a
f (x)dx 2
a
f (x)dx
a
0
2若f (x)为奇函数, 则 a f (x)dx 0. a
定理2 设函数f (x)为周期为T的连续函数,

aT
T
a f (x)dx 0 f (x)dx.
以上两个定理可以作为性质用.
例9
计算
1
2x2 x cos x dx.
1 1 1 x2

原式
3.微积分基本公式
b
a
f
(
x)dx
F
(b)
F
(a)
牛顿-莱布尼茨公式沟通了微分学与积分学 之间的关系.
三、定积分计算方法
(一)Newton Leibniz公式
b a
f
(x)dx
F(b)
F (a)
F ( x)
b a
(1)求原函数(即不定积分);
(2)计算F(b) F(a).
例1.计算 1 1 x2 dx.(参照第一节例26) 0
y
( x)
oa
x x x b x
定理1 设函数在区间[a , b]上连续 , 则
(x) x f (t)dt在区间[a , b]上可导,且 a x (x) (a f (t)dt) f (x).
定理2 设函数f (x)在区间[a , b]上连续 ,

x
(b]上的一个原函数.
1
1
1
2x2 1
x2
dx
1
1
x cos x 1 1 x2
dx
偶函数
奇函数
1
40 1
x2 1
x2
dx
1

利用定积分计算不定积分

利用定积分计算不定积分

变限积分法由牛顿莱布尼兹公式,可用不定积分求定积分。

那么能否反过来,用定积分求不定积分呢?当然能!当f(t)确定时,仅与a和b有关。

假设将b替换为x,那么得到变上限积分函数。

积分结果当然是F(x)-F(a),然后对其求导,必然有F’(x)=f(x)。

所以,求得不定积分,其中-F(a)已经换成积分常数c。

这就是变限积分法。

〔17世纪出现此法〕例1:当x>0时,求当x<0时的。

解:对于任意x<0,必然存在a,满足x<a<0。

由定积分的定义可知。

由的中心对称性可知。

所以。

因为x<a<0,所以-x>-a>0,符合条件中的积分公式。

所以。

将-ln(-a)换成积分常数c,得到当x<0时。

经过检验:对不定积分求导能得到被积函数,并且不定积分与被积函数都满足x<0。

综合上述,当x>0时,当x<0时,整合其实,如果ln(-1)有意义,且适用原来的运算法那么,那么lnx-lna=ln(x/a)=ln(-x/-a)=ln(-x)-ln(-a)如果扩大至复数领域,那么,不用也不能添加绝对值符号。

例2:求,其中a>0。

解法1,换元积分法。

因为-a<x<a,且-a<asint<a,所以不妨令x=asint。

〔〕那么,dx=acostdt,t=arcsin(x/a)。

经过检验:对不定积分求导能得到被积函数,且不定积分和被积函数都满足-a<x<a。

去端点原理:因为去掉区间端点后不影响积分,且函数在区间端点处不可导,所以求积分和求导一样都应该忽略区间端点。

即,求积分或求导时,应该视所有闭区间为开区间。

此原理可用积分定义与导数定义证明。

解法2,变限积分法。

如下列图,a>|OT|=t>0,|OP|=|OQ|=a,,。

经过检验:对不定积分求导能得到被积函数,且不定积分和被积函数都满足-a<x<a。

从几道重要例题看不定积分与变限定积分的关系

从几道重要例题看不定积分与变限定积分的关系

从几道重要例题看不定积分与变限定积分的关系白秀琴 杨宝玉(平顶山工业职业技术学院基础部 河南平顶山 467001)摘 要:通过一类考研题的讨论,表明不定积分⎰dx x f )(只能作为运算符号,无法用来讨论)(x f 的某一原函数的性质;而变限定积分函数⎰xadt t f )(为某一确定的原函数。

可以用它来讨论)(x f 的原函数的性质;如函数的奇偶性、单调性、极值等. 关键词:不定积分 原函数 变限定积分函数From a few s see the indefinite integral with change to limitthe definite integral of relationBAI Xiu-qin,Yang Bao-yu(Pingdingshang Industrial College Of Technology,Pingdingshan,Henan,467001) Abstract: Through the discussion of this kind of problems in the entranceexams for pastgraduate schools ,it showa that the indefinite integration can just be used as mathematical symbol, but can ’t used to discuss the primary function of f(x); while the Change tolimit the definite integral ,⎰xadt t f )( as one certain primary function,can discuss the quality of f(x), such as the odd or even quality, monotonity extremeum, and value etc.Key words: indefinite integration; primary function, Change to limit the definite integral求导数(或微分)的逆运算问题——求不定积分,是积分学的基本问题之一,而定积分是通过微元分析,并归结为同一类型的黎曼和的极限,这是从两个完全不同的角度引进的两个不同的概念,两者之间的联系之一就是微积分第二基本定理,也就是我们熟悉的牛顿——莱布尼兹公式:)()()(b F a F dx x f ba-=⎰该公式表明,在定理条件下,函数)(x f 在],[b a 上定积分的值等于它任意一个原函数)(x F 在该区间上的改变量)()(b F a F -,它将定积分的计算转化为求原函数的函数值问题.上面公式的重要性不用置疑,然而很多人往往忽视他们之间的另外一个联系,也就是从微积分第一基本定理得到的,这也是本文主要讨论的内容;不定积分与定积分中的变限定积分的关系,绝大部分的高等数学教材,例如同济大学的《高等数学》介绍不定积分与变限定积分的关系,主要就介绍变上限函数求导定理,并引出原函数存在定理 ,同时证明牛顿——莱布尼兹公式.,现在首先来看 变上限积分函数的求导定理:设)(x f 在],[b a 上连续,则)()(x f dt t f xx a ='⎪⎭⎫ ⎝⎛⎰.,由此可知⎰xadt t f )(是)(x f 的一个原函数,很多高等数学教材就只介绍上面这个求导的式子,接下来并没有强调另一关键的式子:C dt t f dx x f xa+=⎰⎰)()( (*)因为要注意的是不定积分⎰dx x f )(只能作为运算符号,或者说它表示一类函数的集合,不能表示)(x f 的一个具体的原函数,特别当)(x f 为一个抽象的函数时,无法用⎰dx x f )(来讨论它的某一原函数的性质,而dt t f xa⎰)(的最大优点在于它的确定性,可以用它来讨论)(x f 原函数的性质;如函数的奇偶性、单调性、极值等等,以下我们通过几个例子来看看变限积分函数⎰xadt t f )(的应用以及它的重要性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不定积分与变限积分的关系
【原创实用版】
目录
一、不定积分与变限积分的定义及关系
二、不定积分与变限积分的几何意义
三、利用变限积分法求解不定积分
四、结论
正文
一、不定积分与变限积分的定义及关系
不定积分是指对一个函数进行积分,但不限定积分上下限的一种积分方式。

其主要目的是求解函数在某一特定区间内的积分,该区间通常在求解过程中被视为变量。

不定积分的结果是一个函数,其导数等于被积函数。

变限积分是指在积分过程中,对积分上下限之一进行替换或者调整的一种积分方式。

通过变限积分,我们可以求解一系列具有相同被积函数的不同积分问题。

变限积分与不定积分的关系在于,变限积分可以看作是不定积分的特例,即当变量取某个固定值时,变限积分便转化为不定积分。

二、不定积分与变限积分的几何意义
不定积分的几何意义是:满足牛顿 - 莱布尼兹公式的所有函数曲线族。

简单来说,就是求解一条曲线下的面积,但这个面积并不固定,而是随着曲线的形状和位置而变化。

变限积分的几何意义是:由变量作为积分限,另有一参数作为被积变量,目标函数值是由变限量决定参数变量积分的面积。

也就是说,变限积分表示的是一个参数范围内的积分面积,这个面积会随着参数的变化而变化。

三、利用变限积分法求解不定积分
变限积分法是一种求解不定积分的有效方法。

通过变限积分法,我们可以将不定积分转化为定积分,进而求解。

具体操作是:先对被积函数进行求导,得到原函数,然后将原函数中的自变量替换为变量,最后进行定积分运算。

这样,我们就可以利用定积分的性质,求解原本较为复杂的不定积分问题。

四、结论
总之,不定积分与变限积分在定义和几何意义上存在一定的差异,但它们之间也存在紧密的联系。

利用变限积分法,我们可以将不定积分转化为定积分,从而简化求解过程。

相关文档
最新文档