双样本假设检验及区间估计练习题(1)
假设检验习题答案

假设检验习题答案1.假设某产品的重量服从正态分布,现在从⼀批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性⽔平α=0.01与α=0.05,分别检验这批产品的平均重量是否是800克。
解:假设检验为800:,800:0100≠=µµH H (产品重量应该使⽤双侧检验)。
采⽤t 分布的检验统计量nx t /0σµ-=。
查出α=0.05和0.01两个⽔平下的临界值(df=n-1=15)为2.131和2.947。
667.116/60800820=-=t 。
因为t <2.131<2.947,所以在两个⽔平下都接受原假设。
2.某牌号彩电规定⽆故障时间为10 000⼩时,⼚家采取改进措施,现在从新批量彩电中抽取100台,测得平均⽆故障时间为10 150⼩时,标准差为500⼩时,能否据此判断该彩电⽆故障时间有显著增加(α=0.01)?解:假设检验为10000:,10000:0100>=µµH H (使⽤寿命有⽆显著增加,应该使⽤右侧检验)。
n=100可近似采⽤正态分布的检验统计量nx z /0σµ-=。
查出α=0.01⽔平下的反查正态概率表得到临界值2.32到2.34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性⽔平应先乘以2,再查到对应的临界值)。
计算统计量值3100/5001000010150=-=z 。
因为z=3>2.34(>2.32),所以拒绝原假设,⽆故障时间有显著增加。
3.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了⼀个容量为26的样本,计算得平均值为1637。
问在5%的显著⽔平下,能否认为这批产品的指标的期望值µ为1600?解: 01:1600, :1600,H H µµ=≠标准差σ已知,拒绝域为2Z z α>,取0.05,α=26,n =0.0250.9752 1.96z z z α===,由检验统计量716001.251.960/26Z ===<,接受0:1600H µ=, 即,以95%的把握认为这批产品的指标的期望值µ为1600.4.某电器零件的平均电阻⼀直保持在2.64Ω,改变加⼯⼯艺后,测得100个零件的平均电阻为2.62Ω,如改变⼯艺前后电阻的标准差保持在O.06Ω,问新⼯艺对此零件的电阻有⽆显著影响(α=0.05)?解: 01: 2.64, : 2.64,H H µµ=≠已知标准差σ=0.16,拒绝域为2Z z α>,取0.02520.05, 1.96z z αα===,100,n =由检验统计量3.33 1.96Z ===>,接受1: 2.64H µ≠, 即, 以95%的把握认为新⼯艺对此零件的电阻有显著影响.5.某⾷品⼚⽤⾃动装罐机装罐头⾷品,每罐标准重量为500克,每隔⼀定时间需要检查机器⼯作情况。
《统计学》第13讲:假设检验(续2+习题) (1)

net
1
net
2
H0 :P1- P2 ≤ 0 H1 :P1- P2 > 0 = 0.05 n1=200 , n2=200 临界值(c):
p1n1 p2 n2 0.27*2001 0.35*200 p = =0.31 n1 n2 200 200
检验统计量:
z
0 .27 0 .35
F F1 (n1 1, n2 1)
F F (n1 1, n2 1)
5.6 总体比率假设检验
一、单样本总体比率假设检验 1. 假定条件
总体服从二项分布 可用正态分布来近似(大样本)
2. 检验的 z 统计量
z pP 0 ~ N (0,1) P 0 (1 P 0) n
2 s2 或 F 2 ~ F ( n 2 1, n1 1) s1
拒绝H0
拒绝H0
F1 2
方差比F检验示意图
F 2
F
两独立样本方差比例题(单侧检验)
【例14】为比较生产同一种 假设检验过程如下: 2 产品的两条生产线的技术状 H 0 : 12 2 1 2 况,分别从两条生产线上随 H1 : 12 2 1 机 抽 取 容 量 分 别 为 41 件和 计算检验统计量的值: 31件两个产品重量的样本, 2 s 120 并计算出样本方差分别为 1 F 2 1.50 s2 80 120 和 80 。 现 以 0.05 的 显 著性水平,比较两条生产线 临界值为 产品重量的方差。 F n1 1, n2 1 F0.05 40,30 1.79
所以没有理由拒绝原假设
两个独立样本总体方差比检验
假设
假设形式
双侧检验
H0:12/22=1 H1 :12/221
参数估计和假设检验练习题

作业二(一)单项选择题1.标准误的英文缩写为:A.S B.SE C.S D.SDX2.通常可采用以下那种方法来减小抽样误差:A.减小样本标准差B.减小样本含量C.扩大样本含量D.以上都不对3.配对设计的目的:A.提高测量精度B.操作方便C.为了可以使用t检验D.提高组间可比性4.以下关于参数估计的说法正确的是:A.区间估计优于点估计B.样本含量越大,参数估计准确的可能性越大C.样本含量越大,参数估计越精确D.对于一个参数只能有一个估计值5.关于假设检验,下列那一项说法是正确的A.单侧检验优于双侧检验B.采用配对t检验还是成组t检验是由实验设计方法决定的C.检验结果若P值大于0.05,则接受H0犯错误的可能性很小D.用u检验进行两样本总体均数比较时,要求方差齐性6.两样本比较时,分别取以下检验水准,下列何者所取第二类错误最小A.α=0.05 B.α=0.01 C.α=0.10 D.α=0.207.统计推断的内容是A.用样本指标推断总体指标B.检验统计上的“假设”C.A、B均不是D.A、B均是8.当两总体方差不齐时,以下哪种方法不适用于两样本总体均数比较A.t检验B.t’检验C.u 检验(假设是大样本时)D.F检验A.1X=2X,1S=2SB.作两样本t检验,必然得出无差别的结论C.作两方差齐性的F检验,必然方差齐D.分别由甲、乙两样本求出的总体均数的95%可信区间,很可能有重叠10.以下关于参数点估计的说法正确的是A.CV越小,表示用该样本估计总体均数越可靠B.σ越小,表示用该样本估计总体均数越准确XC.σ越大,表示用该样本估计总体均数的可靠性越差XD.S越小,表示用该样本估计总体均数越可靠(二)名词解释(三)是非题1.若两样本均数比较的假设检验结果P值远远小于0.01,则说明差异非常大。
P小于0.01只能说明两样本均数有差异,但并不能说明差异的大小。
2.对同一参数的估计,99%可信区间比90%可信区间好。
假设检验习题答案

1.假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性水平α=0.01与α=0.05,分别检验这批产品的平均重量是否是800克。
解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。
采用t 分布的检验统计量nx t /0σμ-=。
查出α=0.05和0.01两个水平下的临界值(df=n-1=15)为2.131和2.947。
667.116/60800820=-=t 。
因为t <2.131<2.947,所以在两个水平下都接受原假设。
2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(α=0.01)?解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显著增加,应该使用右侧检验)。
n=100可近似采用正态分布的检验统计量nx z /0σμ-=。
查出α=0.01水平下的反查正态概率表得到临界值2.32到2.34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性水平应先乘以2,再查到对应的临界值)。
计算统计量值3100/5001000010150=-=z 。
因为z=3>2.34(>2.32),所以拒绝原假设,无故障时间有显著增加。
3.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。
问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600?解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2Z z α>,取0.05,α=26,n =0.0250.9752 1.96z z z α===,由检验统计量716001.251.960/26Z ===<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600.4.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工艺前后电阻的标准差保持在O.06Ω,问新工艺对此零件的电阻有无显著影响(α=0.05)?解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=0.16,拒绝域为2Z z α>,取0.02520.05, 1.96z z αα===,100,n =由检验统计量3.33 1.96Z ===>,接受1: 2.64H μ≠, 即, 以95%的把握认为新工艺对此零件的电阻有显著影响.5.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工作情况。
假设检验例题和习题

(第二版) (原假设与备择假设旳拟定)
1. 属于决策中旳假设检验
2. 不论是拒绝H0还是不拒绝H0,都必需采用 相应旳行动措施
3. 例如,某种零件旳尺寸,要求其平均长度为 10cm,不小于或不不小于10cm均属于不合 格
我们想要证明(检验)不小于或不不小于这两种 可能性中旳任何一种是否成立
4. 建立旳原假设与备择假设应为
H0: = 5
H1: 5
= 0.05
df = 10 - 1 = 9 临界值(s):
拒绝 H0
拒绝 H0
.025
.025
-2.262 0 2.262 t
8 - 20
检验统计量:
t = x 0 = 5.3 5 = 3.16
s n 0.6 10
决策:
在 = 0.05旳水平上拒绝H0
结论:
阐明该机器旳性能不好
符?( = 0.05)
统计学
(第二版)
均值旳单尾 t 检验
(计算成果)
H0: 40000 H1: < 40000 = 0.05 df = 20 - 1 = 19 临界值(s):
拒绝域
.05
-1.7291 0
t
8 - 23
检验统计量:
t = x 0
sn
= 41000 40000 = 0.894 5000 20
8 - 12
双侧检验
统计学
(第二版)
H0: = 0.081
H1: 0.081
= 0.05
n = 200
临界值(s):
拒绝 H0
拒绝 H0
.025
.025
-1.96 0 1.96 Z
8 - 13
检验统计量:
区间估计、假设检验练习题

区间估计、假设检验练习题a)某大学为了了解学生每天上网的时间,在全校7500名学生中采取重复抽样的方法随机抽取36人,调查他们每天上网的时间,得到下面数据(单位:小时)求该校大学生平均上网时间的置信区间,置信水平为95%。
b)某居民小区为研究职工上班从家到单位的距离,抽取了由16人组成的一个随机样本,他们到单位的距离(单位:千米)分别是:假定总体服从正太分布,求职工上班从家里到单位平均距离的95%的置信区间。
c)顾客到银行办理业务时往往需要等待一段时间,而等待时间的长短与许多因素有关,比如,银行业务员办理业务的速度,顾客等待排队的方式等。
为此银行准备采取两种排队方式进行试验。
第一种排队方式是:所有顾客都进行一个等待队列;第二种排队方式是:顾客在三个窗口处列队三排等待。
为比较那种排队方式使顾客等待的时间更短,银行各随机抽取10名顾客,他们在办理业务时所等待的时间(单位:分钟)如下:要求(1)构建第一种排队方式等待时间标准差的95%的置信区间;(2)构建第二种排队方式等待时间标准差的95%的置信区间;(3)根据(1)与(2)的计算结果,你认为那种排队方式更好d)为了控制贷款规模,某商业银行有个内部要求,平均每项贷款数额不能超过60万元。
随着经济的发展,贷款规模有增大的趋势。
银行经理想了解在同样项目条件下,贷款的平均规模是否明显地超过60万元,故一个n=144的随机样本被抽出,测得x=68.1万元,s=45。
用a=0.01的显著性水平,采用p值进行检验。
e) 有人说在大学中男生的学习成绩比女生的学习成绩好。
现从一个学校中随机抽取了25名男生和16名女生,对他们进行了同样题目的测试。
测试结果表明,男生的平均成绩为82分,方差为56分,女生的平均成绩为78分,方差为49分。
假设显著性水平α=0.02,从上述数据中能得到什么结论f) 糖厂用自动打包机打包,每包标准重量是100千克。
每天开工后需要检验一次打包机工作是否正常。
总体均数的估计与假设检验(练习题)

练 习 题一、最佳选择题1.( C )小,表示用该样本均数估计总体均数的可靠性大。
A. CV B. S C. σXD. RE.四分位数间距2.两样本均数比较的t 检验,差别有统计意义时,P 越小,说明( C )。
A.两样本均数差别越大 B.两总体均数差别越大 C.越有理由认为两总体均数不同 D.越有理由认为两样本均数不同E.越有理由认为两总体均数相同3.甲乙两人分别从随机数字表抽得30个(各取两位数字)随机数字作为两个样本,求得1X 和21S ;2X 和22S ,则理论上( E )。
A.12X X =B.2212S S =C.作两样本均数的t 检验,必然得出无差别的结论D.作两方差齐性的F 检验,必然方差齐E.由甲、乙两样本均数之差求出的总体均数95%可信区间,很可能包括0 4.在参数未知的正态总体中随机抽样,X μ-≥( A )的概率为5%。
A. 1.96σ B. 1.96 C. 2.58 D.0.05, t S ν E.0.05, X t S ν 5.某地1992年随机抽取100名健康女性,算得其血清总蛋白含量的平均数为74g/L ,标准差为4g/L ,则其95%的参考值范围(B )。
A.74±4⨯4B.74±1.96×4C.74±2.58⨯4D.74±2.58⨯4÷10E. 74±1.96⨯4÷10 6.关于以0为中心的t 分布,错误的是( E )。
A. t 分布是一簇曲线B. t 分布是单峰分布C.当ν→∝时,t →uD. t 分布以0为中心,左右对称E.相同ν时,|t|越大,P 越大7.在两样本均数比较的t 检验中,无效假设是( D )。
A.两样本均数不等 B.两样本均数相等 C.两总体均数不等D.两总体均数相等E.样本均数等于总体均数8.两样本均数比较时,分别取以下检验水准,以( E )所取第二类错误最小。
(完整版)统计学假设检验习题答案

1.假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性水平α=0.01与α=0.05,分别检验这批产品的平均重量是否是800克。
解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。
采用t 分布的检验统计量nx t /0σμ-=。
查出α=0.05和0.01两个水平下的临界值(df=n-1=15)为2.131和2.947。
667.116/60800820=-=t 。
因为t <2.131<2.947,所以在两个水平下都接受原假设。
2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(α=0.01)?解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显著增加,应该使用右侧检验)。
n=100可近似采用正态分布的检验统计量nx z /0σμ-=。
查出α=0.01水平下的反查正态概率表得到临界值2.32到2.34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性水平应先乘以2,再查到对应的临界值)。
计算统计量值3100/5001000010150=-=z 。
因为z=3>2.34(>2.32),所以拒绝原假设,无故障时间有显著增加。
3.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。
问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600?解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2Z z α>,取0.05,α=26,n =0.0250.9752 1.96z z z α===,由检验统计量1.25 1.96Z ===<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600.4.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工艺前后电阻的标准差保持在O.06Ω,问新工艺对此零件的电阻有无显著影响(α=0.05)?解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=0.16,拒绝域为2Z z α>,取0.02520.05, 1.96z z αα===,100,n =由检验统计量3.33 1.96Z ===>,接受1: 2.64H μ≠, 即, 以95%的把握认为新工艺对此零件的电阻有显著影响.5.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工作情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章 双样本假设检验及区间估计第一节 两总体大样本假设检验两总体大样本均值差的检验·两总体大样本成数差的检验 第二节 两总体小样本假设检验两总体小样本均值差的检验·两总体小样本方差比的检验 第三节 配对样本的假设检验单一试验组的假设检验·一试验组与一控制组的假设检验·对实验设计与相关检验的评论第四节 双样本区间估计σ12和σ22已知,对双样本均数差的区间估计·σ12和σ22未知,对对双样本均值差的区间估计·大样本成数差的区间估计·配对样本均值差的区间信计一、填空1.所谓独立样本,是指双样本是在两个总体中相互( )地抽取的。
2.如果从N (μ1,σ12)和N (μ2,σ22)两个总体中分别抽取容量为n 1和n 2的独立随机样本,那么两个样本的均值差(1X ―2X )的抽样分布就是N ( )。
3.两个成数的差可以被看作两个( )差的特例来处理。
4.配对样本,是两个样本的单位两两匹配成对,它实际上只能算作( )样本,也称关联样本。
5.配对样本均值差的区间估计实质上是( )的单样本区间估计6.当n 1和n 2逐渐变大时,(1X ―2X )的抽样分布将接近( )分布。
7.使用配对样本相当于减小了( )的样本容量。
8. 在配对过程中,最好用( )的方式决定“对”中的哪一个归入实验组,哪一个归入控制组。
9. 单一实验组实验的逻辑,是把实验对象前测后测之间的变化全部归因于( )。
10. 方差比检验,无论是单侧检验还是双侧检验,F 的临界值都只在( )侧。
二、单项选择1.抽自两个独立正态总体样本均值差(1X ―2X )的抽样分布是( )。
A N (μ1―μ2,121n σ―222n σ) B N (μ1―μ2,121n σ+222n σ)C N (μ1+μ2,121n σ―222n σ) D N (μ1+μ2,121n σ+222n σ)2.两个大样本成数之差的分布是( )。
A N (∧1p -∧2p ,111n q p ―222n q p ) B N (∧1p -∧2p ,111n q p +222n q p )C N (∧1p +∧2p ,111n q p ―222n q p ) D N (∧1p +∧2p ,111n q p +222n q p )3.为了检验两个总体的方差是否相等,所使用的变量抽样分布是( )。
A F 分布B Z 分布C t 分布D 2χ分布4.配对小样本的均值d 的抽样分布是( )。
A Z 分布B 自由度为n 的t 分布C 自由度为(n —1)的t 分布D 自由度为(n —1)的2χ分布5.若零假设中两总体成数的关系为p 1=p 2,这时两总体可看作成数p 相同的总体,它们的点估计值是( )。
A p 1 + p 2B p 1p 2C p 1 -p 2 D212211n n p n p n ++∧∧6.在σ12和σ22未知,但可假定它们相等的情况下,σ的无偏估计量∧S 是( )。
A22122211-++n n nS S n B22122211-++n n nS S n •2121n n n n +C 2121n n n n +σ D222121n n σσ+三、多项选择1.两个成数之差的假设检验所使用的测量尺度包括( )。
A 定类尺度B 定序尺度C 定距尺度D 定比尺度2.在单一实验组与一控制组的实验设计之中,对前测后测之间的变化,消除额外变量影响的基本做法包括( )。
A 前测B 试验刺激C 中测D 计算试验效应E 后侧3.下列关于配对样本假设检验的陈述正确的是( )。
A 两个样本在其他方面相同,经检验后测不同于前测的变化,是由于实验刺激所造成。
B 对于 “前—后”对比型配对样本的假设检验,是用均值差检验的。
C 单一实验组实验的逻辑,是把实验对象前测后测之间的变化全部归因于实验刺激D 配对样本的一实验组与一控制组之假设检验,要设法把实验变量的作用和额外变量的作用区分开来E 否定零假设,即说明该实验刺激有效 4.下列关于配对的陈述正确的是( )。
A 配对的目的在于减小无关变量引起的差异B 使用配对样本相当于减小了一半样本容量C 与损失的样本容量比较,S d 减小得更多D 在配对过程中,最好用掷硬币的方式决定“对”中的哪一个归入实验组,哪一个归入控制组E 对许多未知的变量,依赖于匹配过程“对”的内随机化,期望未被控制的变量的作用被中和。
5. 对于大样本,σ12和σ22未知,对均数和的估计区间是( )。
A 上限 (1X +2X )―Z α/2222121n n σσ+B 下限(1X +2X ) + Z α/2222121n n σσ+C 上限 (1X +2X )―t α/2(n 1+ n 2 ―2))(21X X -σ D 下限(1X +2X ) + t α/2(n 1+ n 2 ―2))(21X X-σE [(1X ―2X )―t α/2(n 1+ n 2 ―2))(21X X-σ,(1X ―2X ) + t α/2(n 1+ n 2 ―2))(21X X-σ]6.进行方差比检验时,( )。
A 计算F 值时,21∧S 、22∧S 大者在分母上 B 计算F 值时,21∧S 、22∧S 小者在分母上C 双侧检验,F 的临界值在右侧D 单侧检验,F 的临界值在左侧E 单侧检验,F 的临界值在右侧四、名词解释1.独立双样本 2.配对样本3.单一试验组的试验4.一试验组与一控制组的试验五、判断题1.均值差的抽样误差比各个均值的抽样误差大,是因为它多了一个误差来源。
( )2.对于小样本,σ12和σ22未知,两样本均值差的抽样服从Z 分布。
( )3.匹配的目的就在于尽可能对实验变量以外的其他独立变量进行控制。
( )4.σ12和σ22未知时,可以利用样本的信息检验他们是否可能相等。
( )5.把22∧S 和21∧S 中的较大者放在分子上,那么无论是单侧检验还是双侧检验,F 的临界值都只在右侧,这样就可以统一使用右侧检验的方法得出检验的结论。
( )6. 两个样本在其他方面相同,经检验后测不同于前测的变化,是由于实验刺激所造成。
( )7. 配对样本的一实验组与一控制组之假设检验,要设法把实验变量的作用和额外变量的作用区分开来。
( )8. 两个成数的差的检验适用于各种量度层次的数据。
( ) 9. 配对样本均值差的区间估计是两个的单样本区间估计。
( )10.配对样本是由两个样本中的个体按序组合而成的。
( )六、计算题1.独立随机样本取自均值未知,标准差已知的两个正态总体。
如果第一个总体的标准差为0.73,抽出的样本容量为25,样本均值为6.9;第二个总体的标准差为0.89,抽出的样本容量为20,样本均值为6.7。
试问,两个总体的均值是否显著相等(α=0.05)?2.对两所学校学生组织的社会活动获奖情况进行调查,发现甲校共组织60次,有18次获奖;乙校共组织40次,有14次获奖。
据此,能否认为乙校获奖次数的比例高于甲校(α=0.05)?3.为研究睡眠对记忆的影响,在两种条件下对人群进行了试验。
(1)在早7点放电影,被测者晚上睡眠正常,第二天晚上就电影的50项内容进行测试;(2)在早7点放电影,被测者白天情况正常,同一天晚7点就电影的50项内容进行测试。
样本是独立的,每组人数15人,测试结果为:1X =37.2个正确, S 1=3.33,n 1=15;2X =35.6个正确, S 2=3.24,n 2=15。
假定两种条件下总体均服从正态分布,且方差相等,是否认为睡眠对记忆有显著影响(α=0.05)?4.某公司调查了甲居民区的网民(21户)和乙居民区的网民(16户)的平均上网小时数。
对这两个独立样本得到的数据是:1X =16.5小时, S 1=3.7小时;2X =19.5小时, S 2=4.5小时。
要求(α=0.10):(1)两个居民区网民每天上网时间的方差是否相等?(2)是否认为甲居民区的网民(21户)比乙居民区的网民(16户)的平均上网小时数少。
5.某项研究对10名高血压患者进行心理治疗。
下表中给出了每人在治疗前后的血压数量,试判断这种疗效是否显著(α=0.01)?6.一个研究小组想知道城市家庭和农村家庭每月购物次数是否不同。
假定两个总体的购物次数服从正态分布,调查员选取了城市家庭(1X =8.6次/月, σ1=2.3次/月,n 1=50)和农村家庭(2X =7.4次/月,σ2=2.8次/月,n 2=50)的独立样本。
试求城市家庭每月购物次数和农村家庭每月购物次数之差的置信区间(α=0.05)。
试问此项培训是否有效?(α=0.05)8.在第1题中,试求两个总体均值之差的范围(α=0.05)。
9.在第3题中,试求μ1―μ2的95%的置信区间。
10.在第4题中,试求μ1―μ2的95%的置信区间。
11.在第5题中,试求μd的95%的置信区间。
12.在第6题中,试以95%的置信水平检验城市家庭是否显著地多于农村家庭每月购物次数?13.在第7题中,试求μd的95%的置信区间。
14.为了了解居民对银行加息的看法。
对200名城市居民的抽样调查,有90人赞成;对200名农村居民年的抽样调查,有126人反对。
问城市居民和农村居民对加息赞成的比例是否存在显著差异?七、问答题1、什么是配对样本?配对的目的是什么?2、简述配对样本的一试验组与一控制组的实验设计中消除额外变量影响的基本方法。
参考答案一、填空1.独立 2.(μ1―μ2,121n σ+222n σ) 3.均值 4.一个 5.μd 6.正态 7.一半8.掷硬币9.实验刺激10.右二、单项选择1.B 2.B 3.A 4.C 5.D 6.A三、多项选择1. ABCD 2.ABDE 3.ACDE 4.ACBDE 5. CD 6.ACE四、名词解释1.独立双样本:所谓独立样本,指双样本是在两个总体中相互独立地抽取的。
2.配对样本:所谓配对样本,指只有一个总体,双样本是由于样本中的个体两两匹配成对而产生的。
3.单一试验组的试验:单一实验组实验是对同一对象在某种措施实行前后进行观察比较的一种简单实验,它只有实验组而没有控制组。
或者说,同一个组在实施实验刺激之前是实验中的“控制组”,在实施实验刺激之后就成了“实验组”。
4.一试验组与一控制组的试验:配对样本的一实验组与一控制组之假设检验,要设法把实验变量的作用和额外变量的作用区分开来,然后就像对待单一实验组实验一样,把问题转化为零假设μd =0的单样本检验来处理。
五、判断题1.( √ )2.( × )3.( √ ) 4.( √ )5.( √ )6.( √ )7.( √ )8.( √ )9.( × )10.( × )六、计算题1.Z=0.81<1.96, 不能否定H 0:μ1―μ2=0 2.Z= —0.5253<1.96, 不能否定H 0:μ1―μ2=03.)(21X X -∧σ=0.6618,t=2.4176>2.048,拒绝H 0:μ1―μ2=0 ,认为平均的睡眠组的得分较高。