直齿轮例题:按齿根弯曲疲劳强度设计(静载荷)知识分享
直齿锥齿轮传动计算例题图文稿

直齿锥齿轮传动计算例题集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-例题10-3 试设计一减速器中的直齿锥齿轮传动。
已知输入功率P=10kw ,小齿轮转速n1=960r/min ,齿数比u=3.2,由电动机驱动,工作寿命15年(设每年工作300天),两班制,带式输送机工作平稳,转向不变。
[解] 1.选定齿轮类型、精度等级、材料及齿数(1)选用标准直齿锥齿轮齿轮传动,压力角取为20°。
(2)齿轮精度和材料与例题10-1同。
(3)选小齿轮齿数z1=24,大齿轮齿数z2=uz1=3.2×24=76.8,取z2=77。
2.按齿面接触疲劳强度设计(1)由式(10-29)试算小齿轮分度圆直径,即d 1d ≥√4d dd d 1d (1−0.5d )2d(d d d d [d d ])231) 确定公式中的各参数值。
① 试选d dd =1.3。
② 计算小齿轮传递的转矩。
d 1=9.55×106×10960d dd =9.948×104d ?dd③ 选取齿宽系数d =0.3。
④ 由图10-20查得区域系数d d =2.5。
⑤ 由表10-5查得材料的弹性影响系数d d =189.8MPa 1/2。
⑥ 计算接触疲劳许用应力[d d ]。
由图10-25d 查得小齿轮和大齿轮的接触疲劳极限分别为d ddddd =600ddd ,d dddd2=550ddd 。
由式(10-15)计算应力循环次数:d 1=60d 1dd d =60×960×1×(2×8×300×15)=4.147×109,N 2=d 1d =4.147×1093.2=1.296×109由图10-23查取接触疲劳寿命系数d HN1=0.90,d dd2=0.95。
取失效概率为1%,安全系数S=1,由式(10-14)得[d d ]1=d dd1d dddd1d =0.90×6001ddd =540ddd[d d ]2=d dd2d dddd2d =0.95×5501ddd =523ddd取[d d ]1和[d d ]2中的较小者作为该齿轮副的接触疲劳许用应力,即[d d ]=[d d ]2=523MPa2)试算小齿轮分度圆直径d 1d ≥√4d dd d 1d (1−0.5d )2d(d d d d [d d ])23=√4×1.3×9.948×1040.3×(1−0.5×0.3)2×(7724)×(2.5×189.8523)23dd =84.970mm(2)调整小齿轮分度圆直径1)计算实际载荷系数前的数据准备。
机械设计练习题_(6)

1、为什么轮齿的弯曲疲劳裂纹首先发生在齿根受拉伸一侧?解题要点:(1)齿根弯曲疲劳强度计算时,将轮齿视为悬臂梁,受载荷后齿根处产生的弯曲应力最大。
(2)齿根过渡圆角处尺寸发生急剧变化,又由于沿齿宽方向留下加工刀痕产生应力集中。
(3)在反复变应力的作用下,由于齿轮材料对拉应力敏感,故疲劳裂纹首先发生在齿根受拉伸一侧。
2、有一闭式齿轮传动,满载工作几个月后,发现硬度为200~240HBS 的齿轮工作表面上出现小的凹坑。
试问:(1)这是什么现象?(2)如何判断该齿轮是否可以继续使用?(3)应采取什么措施?解题要点:(1)已开始产生齿面疲劳点蚀,但因“出现小的凹坑”,故属于早期点蚀。
(2)若早期点蚀不再发展成破坏性点蚀,该齿轮仍可继续使用。
(3)采用高粘度的润滑油或加极压添加剂于没中,均可提高齿轮的抗疲劳点蚀的能力。
3、一对齿轮传动,如何判断大、小齿轮中哪个齿面不易产生疲劳点蚀?哪个轮齿不易产生弯曲疲劳折断?并简述其理由。
解题要点:(1) 大、小齿轮的材料与热处理硬度及循环次数N 不等,通常21HP HP σσ>, 而21H H σσ=,故小齿轮齿面接触强度较高,则不易出现疲劳点蚀。
(2)比较大、小齿轮的111Sa Fa FP Y Y σ与222Sa Fa FP Y Y σ,若111Sa Fa FP Y Y σ<222Sa Fa FP Y Y σ,则表明小齿的弯曲疲劳强底低于大齿轮,易产生弯曲疲劳折断;反之亦然。
4、图为两级斜齿圆柱齿轮减速器,已知条件如图所示。
试问: (1) 低速级斜齿轮的螺旋线方向应如何选择才能使中间 轴Ⅱ上两齿轮所受的轴向力相反?(2) 低速级小齿轮的螺旋角β2应取多大值,才能使 轴Ⅱ轴上轴向力相互抵?解题要点:(1)轴Ⅱ上小齿轮为左旋;Ⅲ轴上大齿轮为左旋。
(2)若要求Ⅱ轴上轮1、2的轴向力能互相抵消,则必须满足下式: F a1=F a2即 12122211t a n t a n ,t a n t a nββββt t t t F F F F == 由中间轴的力矩平衡,得222211dF d F t t = 则 1121211212t a n c o s /513cos /175tan tan tan ββββββ⨯⨯===d d F F t t 得1438.015sin 513175sin 2=︒⨯⨯=β 则 2161827.82'''︒=︒=β5、今有两对斜齿圆柱齿轮传动,主动轴传递的功率P 1=13kW ,n 1=200r/min ,齿轮的法面模数m n =4mm ,齿数z 1=60均相同,仅螺旋角分别为9°与18°。
(机械设计基础)

《机械设计基础》复习要点一、基本知识:1.模数m=2mm,压力角a=20 度,齿数z=20,齿顶圆直径 da=44.0mm ,齿根圆直径d f=35.0mm 的渐开线直齿圆柱齿轮是齿轮。
2.渐开线直齿圆柱外齿轮齿廓根切发生在场合。
3.速比不等于1的带传动,当工作能力不足时,传动带将在打滑。
4.带传动在工作时产生弹性滑动,是由于。
5.滚动轴承轴系两端固定支承方式常用在和时。
6.键的结构尺寸:b×h是根据选择的。
7.带传动中,带上受的三种应力是应力,应力和应力。
最大应力等于,它发生在处。
8.带传动与齿轮传动一起做减速工作时,宜将带传动布置在齿轮传动之。
9.确定单根带所能传递功率的极限值P0的前提条件是。
10.普通平键的工作面是()。
11.带传动不能保证精确的传动比,其原因是。
12.普通V带带轮的槽形角随带轮直径的减小而。
13.为了减少装夹工件的时间,同一轴上不同轴段处的键槽应布置在轴的。
14.一定型号V带中的离心拉应力,与带线速度。
15.在一传动机构中,有圆锥齿轮传动和圆柱齿轮传动时,应将圆锥齿轮传动安排在()16.对轴进行表面强化处理,可以提高轴的。
17.工作时只承受弯矩,不传递转矩的轴,称为,自行车的前轴是。
18.转轴设计中在初估轴径时,轴的直径是按来初步确定的19.增大轴在截面变化处的过度圆角半径,可以。
20.开式齿轮传动的主要失效形式是齿面()。
21.滚动轴承62312中轴承的内径为()壹22.带传动的设计准则为。
23.带传动主要依靠来传递运动和动力的。
24.负变位齿轮的分度圆齿槽宽标准齿轮的分度圆齿槽宽。
25.工作时同时承受弯矩和传递转矩的轴,称为,自行车的中轴是。
26.轴的常用材料主要是。
27.在轴的设计中,采用轴环是。
28.为了使齿轮、轴承等有配合要求的零件装拆方便,并减少配合表面的擦伤,在配合轴段前应采用的轴径。
29.为了使零件能靠紧轴肩而得到准确可靠的定位,轴肩处的过渡圆角半径r必须与之相匹配的零件毂孔端部的圆角半径R或倒角尺寸C。
齿轮传动例题

a0
F
F
F
F
F
•
•
4.齿轮受力方向的判别 圆周力 F :主动轮 与转动方向相反 从动轮 与转动方向相同 径向力F :各自指向轮心 轴向力F :圆锥齿轮 从小端指向大端 圆柱齿轮:主动轮 应用左(右)手定则,拇指方向即为轴向力方向 从动轮 与 主动轮的轴向力相反 5.根据给定工况,正确设计齿轮传动 熟悉不同工况下可能产生的主要失效形式(轮齿的折断、齿面疲劳点蚀、齿面磨损、 齿面胶合、轮齿塑性变形等,参见表4.1 ) ,正确确定设计准则,结合工况需求选择材 料、热处理方式及加工精度,在强度计算中,合理地选择各相关参数,掌握参数选择 原则,正确解释设计过程。 6.载荷系数引人的目的及主要影响因素 载荷系数K(K = K K K K )综合考虑了齿轮由于工作特性、制造及安装误差、 齿轮及其支承变形等因素引起的外部及内部附加动载荷、偏载及载荷分配不均等因素 对轮齿受力及应力的影响,利用计算载荷对齿轮进行强度计算,可以使所设计的齿轮 更安全、更符合实际工况需求。关于各系数引人的意义、主要影响因素及改进措施等 可参见表4.2。 7.熟练分析齿轮主要参数的选择原则 1 a m z z d m z (1)模数m和齿数 z 的选择。因为 , 2 当d 1 或a一定时,齿轮的接触 应力与m 和z的组合无关,因此软齿面闭式传动时,在满足齿根弯曲强度条件的基础上, m 尽可能取小值,而z尽可能取大值,常取 18-30 -2 z (但要注意传递动力时m 1.5 mm) ,因为齿数z多,可增大重合度 ,使传动平稳, m 小,可减小滑动速度,增加 z z 与z 应互质为好。在硬齿面闭式传动中,按齿根弯曲 耐磨和抗胶合性能。 z 且 z 17-20 ,以免传动尺寸过大。在开式传动中,由弯曲强度求得m 后应再 强度条件, =
机械设计练习题_(6)

1、为什么轮齿的弯曲疲劳裂纹首先发生在齿根受拉伸一侧解题要点:(1)齿根弯曲疲劳强度计算时,将轮齿视为悬臂梁,受载荷后齿根处产生的弯曲应力最大。
(2)齿根过渡圆角处尺寸发生急剧变化,又由于沿齿宽方向留下加工刀痕产生应力集中。
(3)在反复变应力的作用下,由于齿轮材料对拉应力敏感,故疲劳裂纹首先发生在齿根受拉伸一侧。
2、有一闭式齿轮传动,满载工作几个月后,发现硬度为200~240HBS 的齿轮工作表面上出现小的凹坑。
试问:(1)这是什么现象(2)如何判断该齿轮是否可以继续使用(3)应采取什么措施解题要点:(1)已开始产生齿面疲劳点蚀,但因“出现小的凹坑”,故属于早期点蚀。
(2)若早期点蚀不再发展成破坏性点蚀,该齿轮仍可继续使用。
(3)采用高粘度的润滑油或加极压添加剂于没中,均可提高齿轮的抗疲劳点蚀的能力。
3、一对齿轮传动,如何判断大、小齿轮中哪个齿面不易产生疲劳点蚀哪个轮齿不易产生弯曲疲劳折断并简述其理由。
解题要点:(1) 大、小齿轮的材料与热处理硬度及循环次数N 不等,通常21HP HP σσ>, 而21H H σσ=,故小齿轮齿面接触强度较高,则不易出现疲劳点蚀。
(2)比较大、小齿轮的111Sa Fa FP Y Y σ与222Sa Fa FP Y Y σ,若111Sa Fa FP Y Y σ<222Sa Fa FP Y Y σ,则表明小齿的弯曲疲劳强底低于大齿轮,易产生弯曲疲劳折断;反之亦然。
4、图为两级斜齿圆柱齿轮减速器,已知条件如图所示。
试问: (1) 低速级斜齿轮的螺旋线方向应如何选择才能使中间轴Ⅱ上两齿轮所受的轴向力相反(2) 低速级小齿轮的螺旋角β2应取多大值,才能使 轴Ⅱ轴上轴向力相互抵 解题要点:(1)轴Ⅱ上小齿轮为左旋;Ⅲ轴上大齿轮为左旋。
(2)若要求Ⅱ轴上轮1、2的轴向力能互相抵消,则必须满足下式: F a1=F a2即 12122211tan tan ,tan tan ββββt t t t F F F F == 由中间轴的力矩平衡,得222211d F d F t t = 则 1121211212tan cos /513cos /175tan tan tan ββββββ⨯⨯===d d F F t t 得1438.015sin 513175sin 2=︒⨯⨯=β 则 2161827.82'''︒=︒=β5、今有两对斜齿圆柱齿轮传动,主动轴传递的功率P 1=13kW ,n 1=200r/min ,齿轮的法面模数m n =4mm ,齿数z 1=60均相同,仅螺旋角分别为9°与18°。
机械设计作业题

机械设计作业题作业:3-1 已知:MPa 1801=-σ,60105⨯=N ,9=m ,70001=N ,250002=N ,6200003=N 。
求N1、N2、N3的有限寿命弯曲疲劳极限。
解:∵1Nσσ--=,1N < N C =410, 11SN σσσ-->>∴11180180 1.9947359.05MPa N σσ--≈==⨯= 3-5 已知:圆轴轴肩尺寸为54mm D =,45mm d =,3mm r =;该轴肩材料的力学性能为260MPa s σ=,1170MPa σ-=,σϕ=0.2,420MPa B σ=;危险截面上的平均应力20MPa m σ=,30MPa a σ=。
按m C σ=求该截面的计算安全系数Sca 。
解:(1)∵102σσσϕσ--=∴ 1022170340283.33MPa 110.2 1.2σσσϕ-⨯====++, MPa 67.14120=σ ∴(0,180)'A ,(141.67,141.67)'D ,(360,0)C (2)查附图3-1,材料的敏性系数78.0≈σq ;067.0453==d r ,2.14554==d D查附表3-2(弯曲,插值法),轴肩圆角处的理论应力集中系数 1.88σα≈;轴肩的弯曲有效应力集中系数()()1110.78 1.881 1.686k q σσσα=+-=+⨯-=查附图3-2,尺寸及截面形状系数75.0=σε; 查附图3-4,表面质量系数0.87σβ=;查附表3-10,化学热处理的强化系数2=q β(有应力集中); 由公式(3-12),弯曲疲劳极限的综合影响系数系数由公式(3-8),零件的对称循环弯曲疲劳极限为11170142MPa 1.199e K σσσ--===。
所以有(0,142)A ,(141.67,118)D ,(360,0)C (3)C m =σ在极限应力线图中标出点M 和M '的位置。
齿轮强度设计PPT课件
2 齿根弯曲疲劳强度计算
1. 计算公式
30度切线法确定齿根处的危险截面:如右图所示,作与轮齿对称中线 成30度并与齿根过渡曲线相切的切线,通过两切点 平行于齿轮轴线的截面,即齿根危险截面。
图12.20 齿根危险截面应力
以受拉侧为计算依据,齿根的最大弯曲力矩为
计入K、Ysa、Yε 后,得齿根弯曲强度校核公式
调质钢和铸钢
渗碳淬火及表面淬火钢
附 齿轮弯曲疲劳可靠性试验
对称双向弯曲(如惰轮、行星轮)时,应将查表得到的σFlim 乘以0.7。双向运转时,所乘系数可稍大于0.7。
闭式传动常先按接触疲劳强度求出齿轮直径和齿宽,再校核其弯曲疲劳强度。齿面硬度很高的闭式传动,也可按弯曲疲劳强度确定齿轮模数,再校核其接触疲劳强度。开式传动只需进行弯曲疲劳强度计算求取模数。
试验齿轮的接触疲劳极限sHlim查表
铸铁
正火结构钢和铸钢
调质钢和铸钢
渗碳淬火及表面淬火钢
接触疲劳寿命系数ZN
最小安全系数SN
12.7 直齿圆柱齿轮传动的强度计算
4、分度圆直径的初步计算
式中,Ad 见表12.16,若为其他材料配对时,应将Ad 乘以修正系数 (表12.16)。同时,
3 静强度校核计算----略讲
当齿轮工作可能出现短时间、少次数(小于表12.15中N0值)的超过额定工况的大载荷(异常重载或重复性中等甚至严重冲击)时,则进行静强度校核: 102<NL<N0时,进行少循环次数强度校核; NL<102时,进行瞬时过载强度校核计算。 各计算公式见表12.18。
1 齿面接触疲劳强度计算
二、 直齿圆柱齿轮传动的强度计算
1、原始计算公式
取节点处ρ1、ρ2 ,将式12.7中的变量ρ换为定值,同时计算偏于安全。
齿轮传动的作用力及计算
11-4直齿圆柱齿轮传动的作用力及计算载荷:一、齿轮上的作用力:为了计算齿轮的强度,设计轴和选用轴承,有必要分析轮齿上的作用力。
当不计齿面的摩擦力时,作用在主动轮齿上的总压力将垂直于齿面,(因为齿轮传动一般都加以润滑,齿轮在齿啮合时,摩擦系数很小,齿面所受的摩擦力相对载荷很小,所以不必考虑),即为P175图11-5b所示的F n(沿其啮合线方向),Fn可分解为两个分力:圆周力:Ft=2T1/d1 N径向力:Fr=Fttgα N而法向力:Fn=Ft/cosα NT1:小齿轮上的扭矩 T1=9550000p/n1 n·mmP:传递的功率(KW) d1:小齿轮分度圆直径 mmα:压力角 n1:小齿轮的转速(r·p·m)Ft1:与主动轮运动方向相反;Ft2与从动轮运动方向一致。
各力的方向 Fr:分别由作用点指向各轮轮心。
Fn:通过节点与基圆相切(由法切互为性质)。
根据作用力与反作用力的关系,主从动轮上各对的应力应大小相等,方向相反。
二、计算载荷:Fn是根据名义功率求得的法向力,称为名义载荷,理论上Fn沿齿宽均匀分布,但由于轴和轴承的变形,传动装置的制造安装误差等原因,载荷沿齿宽的分布并不均匀,即出现载荷集中现象(如P176图11-6所示,齿轮相对轴承不对称布置,由于轴的弯曲变形,齿轮将相互倾斜,这时,轮齿左端载荷增大,轴和轴承刚度越小,b越宽,载荷集中越严重。
此外,由于各种原动机和工作机的特性不同,齿轮制造误差以及轮齿变形等原因,还会引起附加动载荷。
精度越低,圆周速度V越大,附加载荷越大。
因此在计算强度时,通常以计算载荷K·Fn代替名义载荷Fn,以考虑上两因素的影响。
K—载荷系数表达式11-311-5 直齿圆柱齿轮的齿面接触强度计算:一、设计准则:齿轮强度计算是根据齿轮失效形式来决定的,在闭式传动中,轮齿的失效形式主要是齿面点蚀,开式传动中,是齿轮折断,在高速变截的齿轮传动中,还会出现胶合破坏,因胶合破坏的计算方法有待进一步验证和完善。
齿轮传动设计计算实例(114)
解:
cos
mn 2a
z1
z2
4 30 60
2 190
0.9474
所以
1840
tan t
tan n cos
tan 20 cos1840
0.3640 0.9474
0.3842
d1
mn cos
z1
4 30 0.9474
mm 126.662mm
F2
2KT1 bm 2 z 2
YFa2YSa2
F1
YFa 2 YSa 2 YFa1YSa1
82.76 2.2881.734 MPa 2.52 1.625
80.18MPa< F 2
故轮齿齿根弯曲疲劳强度足够。
(4)计算齿根传动的中心距 a
a
m 2
z1
z2
2 2
db2 d 2 cos t 253.325 0.9335mm 236.479mm
例 3 试设计带式运输机减速器的高速级圆柱齿轮传动。已知输入功率 P 40kW ,小齿轮转速 n1 970r / min ,传动比 i 2.5 ,使用寿命为 10a(年)(设每年工作 300d(天)),单班制,电动机驱动,
(3)校核齿面接触疲劳强度
由式(8.45)
H 3.17Z E
KT u 1
bd 12 u
H
确定有关参数和系数:
1)分度圆直径
d1
mn z1 cos
3 24 cos1415
mm 74.29mm
机械设计(6.6.1)--标准直齿圆柱齿轮齿根弯曲疲劳强度计算
5-6 标准直齿圆柱齿轮齿根弯曲疲劳强度计算 Fh FS 30o 30oaF a nF 基圆过渡曲线Fs 一、力学模型轮齿悬臂梁,F n 作用于齿顶齿根危险截面位置、尺寸:30°切线法:2cos /6n Fn F F F h M F h bWW bS a ==力臂弯矩齿宽抗弯截面模量二、齿根弯曲应力二、齿根弯曲应力12216cos cos 2/6cos aaF F nc F F F F F h F h KT M m W bS bd m S m a a s a ������===������齿根弯曲应力:26cos ,514,cos aa F F F F h mY mS m a a ⎛⎫⎪⎝⎭=-⎛⎫⎪⎝⎭齿形系数图与齿廓形状有关,与模数无关(515)0.750.25sa Y Y e ae -=+应力修正系数图重合度系数2112N/mm a F F sa KT Y Y Y bd mes =齿根弯曲应力:三、标准直齿圆柱齿轮齿根弯曲疲劳强度112:aF F sa F KT Y Y Y bd me s s =≤⎡⎤⎣⎦1.齿根弯曲疲劳强度条件2.分别校核大小齿轮根齿弯曲疲劳强度11111112222122F Fa sa F F Fa sa F KT Y Y Y bd mKT Y Y Y bd me e s s s s =ᆪ����=ᆪ����3.按齿根弯曲疲劳强度设计三、标准直齿圆柱齿轮齿根弯曲疲劳强度()3121312d 14mm12 mm Fa sa a F Fa sa F Y Y Y KT m u z Y Y Y KT m z e eϕs ϕs ≥±⎡⎤⎣⎦≥⎡⎤⎣⎦或1a a 1d 1(1);2d mz u b a b d mz f f f f ᆪ====1122121max ,(2)0.8~1.4,()Fa sa Fa sa Fa sa F F F t ttY Y Y Y Y Y KY KY KY KY m m KY e e ee e s s s ����=����������������==4.设计式的有关说明()设计式中,设计时,试选。