圆周角定理及推论

合集下载

圆周角定理及推论

圆周角定理及推论

一、圆周角定理:一条弧所对圆周角等于它所对圆心角的一半已知在⊙O中,∠BOC与圆周角∠BAC对同弧BC,求证:∠BOC=2∠BAC。

以下分五种情况证明【证明】情况1:当圆心O在∠BAC的内部时:图1连接AO,并延长AO交⊙O于D解:OA=OB=OC(OA、OB、OC是半径)∴∠BAD=∠ABO,∠CAD=∠ACO(等腰三角形底角相等)∴∠BOD=∠BAD+∠ABO=2∠BAD∠COD=∠CAD+∠ACO=2∠CAD(∠BOD、∠COD分别是△AOB、△AOC的外角,而三角形的一个外角等于与它不相邻的两个内角和)∴∠BOC=∠BOD+∠COD=2(∠BAD+∠CAD)=2∠BAC【证明】情况2:当圆心O在∠BAC的外部时:图2连接AO,并延长AO交⊙O于D,连接OB、OC。

解:OA=OB=OC(OA、OB、OC是半径)∴∠BAD=∠ABO,∠CAD=∠ACO(等腰三角形底角相等)∴∠BOD=∠BAD+∠ABO=2∠BAD∠COD=∠CAD+∠ACO=2∠CAD(∠BOD、∠COD分别是△AOB、△AOC的外角,而三角形的一个外角等于与它不相邻的两个内角和)∴∠BOC=∠COD-∠BOD=2(∠CAD-∠BAD)=2∠BAC【证明】情况3:当圆心O在∠BAC的一边上时,即A、O、B在同一直线上时:图3∵OA、OC是半径解:∴OA=OC∴∠BAC=∠OCA()∴∠BOC=∠BAC+∠OCA=2∠BAC(三角形的一个外角等于与它不相邻的两个内角和,由AB为平角180°、三角形△AOC内角和为180°得到。

)【证明】情况4:圆心角等于180°:圆心角∠AOB=180°,圆周角是∠ACB,∵∠OCA=∠OAC=21∠BOC(BC弧)∠OCB=∠OBC=21∠AOC(AC弧)∴∠OCA+∠OCB=(∠BOC+∠A OC)/2=90度∴∠AO B2=∠ACB【证明】情况5:圆心角大于180°:图5圆心角是(360°-∠AOB),圆周角是∠ACB,延长CO交园于点E,∠CAE=∠CBE=90°(圆心角等于180°)∴∠ACB+∠AEB=180°,即∠ACB=180°-∠AEB ∵∠AOB=2∠AEB∴360°-∠AOB=2(180°-∠AEB)=2∠ACB二、圆周角定理的推论:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

《圆周角定理的推论》课件

《圆周角定理的推论》课件
所以∠AEB=90°.
所以 AB 为☉O 的直径.
探究点二

圆周角定理的推论2
[例2] 如图所示,AB为☉O的直径,CF⊥AB于点E,交☉O于点D,AF交☉O于点G.求证:
∠FGD=∠ADC.
[导学探究]
1.根据圆内接四边形的性质,可得∠ACD+ ∠AGD =180°,从而可得∠FGD= ∠ACD .
圆内接四边形的对角互补,并且任何一个外角都等于它的相邻内角的对角,这一
结论在探求角的相等或互补关系时常常用到.
点击进入
训练案
BE=DE,求证:AB为☉O的直径.
[导学探究]
,则∠DAE= ∠BAE
90° .
2.欲证 AB 为☉O 的直径,可证明∠AEB=
1.连结 AE,由 BE=DE 可得=

.
证明:如图所示,连结 AE,
因为 BE=DE,
所以=.
所以∠DAE=∠BAE.
因为 AB=AC,
所以 AE⊥BC.
第2课时
圆周角定理的推论
一、圆周角定理的推论
直径
1.90°的圆周角所对的弦是
2.圆内接四边形的对角 互补 .
.
二、外接圆、内接多边形
如果一个圆经过一个多边形的各个顶点,这个圆叫做这个多边形的
个多边形叫做这个圆的 内接多边形 .
外接圆 ,这
探究点一
圆周角定理的推论1
[例1] 已知等腰△ABC的顶点A,B在☉O上,AC=AB,AC,BC分别交☉O于点D,点E,若
2.根据垂径定理,可得=

,则∠ADC=
∠ACD
,从而可得结论.
证明:因为四边形 ACDG 内接于☉O,
所以∠ACD+∠AGD=180°.

圆周角定理及其推论

圆周角定理及其推论
合肥市第三十中学 李国松
在圆中,画一个角使其顶点在圆上, 并且两边都与圆还有另一个交点。
A A
A
A
你能仿照圆心角的定义给这个角起个名并下个定
义吗?
圆周角:顶 角点 叫在 圆圆 周上角,。两边都与圆还有另一个公共点的
圆中BC所对的圆周角与圆心角有几种位置关系?
A
O.
B
C
A
.OO
B
C
B
C
A
O.
C B
例.如图,AB是⊙O的直径,弦CD交AB于点P, ∠ACD=60°,∠ADC=70°。求∠APC的度数.
解 :连接BC, ∵ AB是⊙O的直径 ∴ ∠ACB= 90 ° ∵∠ACD=60° ∴ ∠DCB =30°.
又 ∵ ∠BAD= ∠DCB=30° Nhomakorabea ∠APC=∠BAD+∠ADC =30°+70° =100°.
C A OP B
D
直径条件常构造:90°的圆周角
知识内容:
圆周角定义 圆周角定理
推论1 推论2
数学思想方法: 类比思想、分类思想、划归方法等
1、习题24.3第2题、第3题. 2、《同步练习》24.3同步一
3、试找出下图中所有相等的圆周角
D
∠1=∠5
A1
87
3
2
6
54
B
C
∠2=∠6
∠3=∠7 ∠4=∠8
4、如图,AB是⊙O的直径,请问:
① ∠C1、∠C2、∠C3的度数是 90° 。
② 若∠C1、∠C2、∠C3是直角,则 ∠AOB= 180°。
C2 C1
C3
A
O
B
推论2:半圆(或直径)所对的圆周角是直角; 90°的圆周角所对的弦是直径。

圆周角定理 课件

圆周角定理 课件

AD=BD=5
3 2 cm.
在 Rt△AOD 中,OD=
OA2-AD2

5 2
cm,所以
∠OAD=30°,
所以∠AOD=60°.


∠AOB

2∠AOD

120
°



∠ACB

1 2
∠AOB=60°.因为∠AOB=120°,所以劣弧A︵EB的度数为
︵ 120°,优弧ACB的度数为 240°.
所以∠AEB=12×240°=120°. 所以此弦所对的圆周角为 60°或 120°.
所以 OG∥CF.所以∠AOB=∠FCB,(2 分) 所以∠DAO=90°-∠AOB, ∠FBC=90°-∠FCB,(4 分) 所以∠DAO=∠FBC.(6 分)
(2)连接 AB,AC, 因为 BC 为直径, 所以∠BAC=π2, 又因为 AD⊥BC, 所以∠BAD=∠BCA,(8 分)
︵︵ 又因为AB=AF, 所以∠ABF=∠BCA,(9 分) 所以∠ABF=∠BAD, 所以 AE=BE.(10 分)
类型 2 利用定理及推论进行证明(规范解答)
[典例 2] 如图所示,BC 是半圆 O 的直径,AD⊥BC, ︵︵
垂足为 D,AB=AF,BF 与 AD、AO 分别交于点 E、G. (1)证明:∠DAO=∠FBC; (2)证明:AE=BE.
︵︵ [规范解答] (1)连接 FC,OF,因为AB=AF,OB =OF, 所以点 G 是 BF 的中点, OG⊥BF. 因为 BC 是⊙O 的直径, 所以 CF⊥BF.(1 分)
反过来,弧的度数相等,它们所对圆心角的度数也相 等.2.由于圆心角的度数与它所对弧的度数相等,所以圆周 角的度数等于它所对弧的度数的一半.

圆周角定理 课件

圆周角定理 课件

3.关于圆周角定理推论的理解
(1)在推论1中,注意:“同弧或等弧”改为“同弦或等弦” 的话结论就不成立了,因为一条弦所对的圆周角有两种可 能,在一般情况下是不相等的.
(2)圆心角的度数和它所对的弧的度数相等,但并不是 “圆心角等于它所对的弧”.
(3)“相等的圆周角所对的弧也相等”的前提条件是“在 同圆或等圆中”.
【示例2】 如图,D,E分别为△ABC边AB,AC 的中点,直 线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明: (1)CD=BC; (2)△BCD∽△GBD.
证明 (1)因为D,E分别为AB,AC的中点,所以DE∥BC.又 已知CF∥AB,故四边形BCFD是平行四边形,所以CF=BD = AD. 而 CF∥AD , 连 接 AF , 所 以 ADCF 是 平 行 四 边 形 , 故 CD=AF.
证明 连结 CE、CF、EF,∵BC 为⊙O 的直径,∴∠BFC =90°,∠BEC=90°.又∵∠ACB=90°,∴∠BCE=∠A. 又∵∠BFE=∠BCE,∴∠BFE=∠A.又∵∠EBF=∠DBA, ∴△BEF∽△BDA.∴EBFE=ABDD. ∵∠BFC=∠BCA,∠CBD=∠CBD, ∴△CBF∽△DBC.∴CBCF=CBDD. 又∵AD=CD,∴EBFE=CBCF,∴BBCE=CEFF.
(4)在同圆或等圆中,由弦相等⇒弧相等时,这里的弧要求 同是优弧或同是劣弧,一般选劣弧.
题型一 圆中相关角度数的求解
【例 1】 在半径为 5 cm 的圆内有长为 5 3 cm 的弦 AB,求此弦
所对的圆周角.
[思维启迪] 对于弦所对的圆周角要考虑全面.
解 如图所示,过 O 点作 OD⊥AB 于点 D.因为 OD⊥AB,OD
反思感悟 弦所对的圆周角有两个,易丢掉120°导致错误,另外求圆周角时易应用到解三角形的知识.

圆心角圆周角定理推论笔记

圆心角圆周角定理推论笔记

圆心角圆周角定理推论笔记一、圆心角定理圆心角的度数等于它所对的弧的度数。

理解:(定义)(1)等弧对等圆心角(2)把顶点在圆心的周角等分成360份时,每一份的圆心角是1°的角.(3)因为在同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份,这时,把每一份这样得到的弧叫做1°的弧.(4)圆心角的度数和它们对的弧的度数相等.推论:在同圆或等圆中,如果(1)两个圆心角,(2)两条弧,(3)两条弦(4)两条弦上的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等二、圆周角定理推论:圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角都等于这条弧所对的圆心角的一半。

①圆周角度数定理:圆周角的度数等于它所对的弧的度数的一半。

②同圆或等圆中,圆周角等于它所对的弧上的圆心角的一半。

③同圆或等圆中,同弧或等弧所对的圆周角相等,相等圆周角所对的弧也相等。

(不在同圆或等圆中其实也相等的。

注:仅限这一条。

)④半圆(或直径)所对圆周角是直角,90°的圆周角所对的弦是直径。

⑤圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

⑥在同圆或等圆中,圆周角相等<=>弧相等<=>弦相等。

三、圆的定义:在同一平面内,到定点的距离等于定长的点的集合叫做圆。

这个定点叫做圆的圆心。

图形一周的长度,就是圆的周长。

圆心角:顶点在圆心的角叫做圆心角。

圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角。

圆周角的顶点在圆上,它的两边为圆的两条弦。

1、弦:连接圆上任意两点的线段。

2、弧:圆上任意两点间的部分叫做圆弧,简称弧。

弧用符号“⌒”表示以A,B为端点的弧记作“ ”,读作“圆弧AB”或“弧AB”。

优弧:大于半圆的弧(多用三个字母表示);劣弧:小于半圆的弧(多用两个字母表示)圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

3、圆心角:顶点在圆心的角叫做圆心角。

24.3.1圆周角-定理及推论 沪科版

24.3.1圆周角-定理及推论 沪科版
A
O A B
化 归 完全归纳法
O
A B
分类讨论
圆周角定理 一条弧所对的圆周角等于它所对的圆心角 的一半
C
O A B
1、已知∠AOB=75°, 求:∠ACB
2、已知∠AOB=120°,
O B
C
求:∠ACB
A
3、已知∠ACD=30°, 求:∠AOB
O
C
4、已知∠AOB=110°, B 求:∠ACB
A
O
E O1 C
C 在同圆或等圆中
如图,⊙O1和⊙O2是等圆, 如果弧AB=弧CD,那么 ∠E和∠F是什么关系?反 过来呢?
A
D B
O2
F
推论1 在同圆和等圆中,同弧或等弧所对的 圆周角相等;相等的圆周角所对的弧相等。
思考: 1、“同圆或等圆”的条件能否去掉? 2、判断正误:在同圆或等圆中,如果两个 圆心角、两条弧、两条弦、两条弦心距、两个 圆周角中有一组量相等,那么它们所对应的 其余各组量也相等。 B C
A
C
O
B
D
推论2 半圆(或直径)所对的圆周角是90°; 90°的圆周角所对的弦是直径。 推论3 如果三角形一边上的中线等于这条边 的一半,那么这个三角形是直角三角形。
C E D A O B
什么时候圆周角是直角?
反过来呢? 直角三角形斜边中线有什 么性质?反过来呢?
AD是ΔABC的高,AE是
ΔABC的外接圆直径。 求证:AB· AC=AE· AD。
A
O
经验: •构造直径上的圆周 角,是常用的辅助线
B E
D
C
已知:点O是ΔABC的外心, ∠BOC=130°,求∠A的度数。

圆周角定理推论

圆周角定理推论
图2
E
圆周角定理的推论1:
同弧或等弧所对的圆周角相等;
D 8 7 A 2 1 E 5 3 B 4 6 C
作图探索证明 问题讨论 1.如图(1),BC是⊙O的直径,A是⊙O上 任一点,你能确定∠BAC的度数吗? 2.如图(2),圆周角∠BAC =90º,弦BC经过 圆心O吗?为什么?
A
E A O B C
A
B C
C
O
A
O E
B
圆周角定理的推论:
推论1 同弧或等弧所对的圆 周角相等;同圆或等圆中,相等 的圆周角所对的弧也相等. 推论2 半圆(或直径)所对的 圆周角是直角; 90°的圆周角 所对的弦是直径.
2.填空题: A (1)如图所示, ∠BAC= ∠BDC ,∠DAC=∠DBC .
B
D
C A
(2)如图所示,⊙O的直径 AB=10cm,C为⊙O上一 点,∠BAC=30°, 则BC= 5 cm

O
C
B
分析
1.如图,AB是⊙O的直径,BD是弦 ,延长BD到C,使DC=BD,AC与AB的大 小有什么关系?为什么?
A

O
C
D
B
2.如图,△ABC的顶点均在⊙O上, AB=4, ∠C=30°, 求⊙O的直径.
B

A
O
C
E
⌒ ⌒ 3.如图⊙O中,D、E分别是AB和AC的 中点, DE分别交AB和AC于点M、N; 求证:△AMN是等腰三角形.
如图:OA、OB、OC都是⊙ O的半径, ∠AOB=2∠BOC. 求证:∠ACB=2∠BAC.
O
A C
B 规律:解决圆周角和圆心角的计算和证明问题,要准确找出 同弧所对的圆周角和圆心角,然后再灵活运用圆周角定理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 / 6
24.1.4圆周角
第1课时圆周角定理及推论
教学内容
1.圆周角的概念.
2.圆周角定理:
在同圆或等圆中,同弧或等弧所对的圆周角相等,?都等于这条弦所对的圆心角的一半.
推论:
半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径及其它们的应用.
教学目标
1.了解圆周角的概念.
2.理解圆周角的定理:
在同圆或等圆中,同弧或等弧所对的圆周角相等,?都等于这条弧所对的圆心角的一半.
3.理解圆周角定理的推论:
半圆(或直径)所对的圆周角是直角,90?°的圆周角所对的弦是直径.
4.熟练掌握圆周角的定理及其推理的灵活运用.
设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证
明定理推论的正确性,最后运用定理及其推导解决一些实际问题.重难点、关键
2 / 6
1.重点:
圆周角的定理、圆周角的定理的推导及运用它们解题.
2.难点:
运用数学分类思想证明圆周角的定理.
3.关键:
探究圆周角的定理的存在.
教学过程
一、复习引入
(学生活动)请同学们口答下面两个问题.
1.什么叫圆心角?
2.圆心角、弦、弧之间有什么内在联系呢?
老师点评:
(1)我们把顶点在圆心的角叫圆心角.
(2)在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有
一组量相等,?那么它们所对的其余各组量都分别相等.
刚才讲的,顶点在圆心上的角,有一组等量的关系,如果顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,要研究,要解决的问题.二、探索新知
问题:
如图所示的⊙O,我们在射门游戏中,设
E、F是球门,?设球员们只能在所在的⊙O其它位置射门,如图所示的
3 / 6
A、B、C点.通过观察,我们可以发现像∠
EAF、∠
EBF、∠ECF这样的角,它们的顶点在圆上,?并且两边都与圆相交的角叫做圆周角.
现在通过圆周角的概念和度量的方法回答下面的问题.
1.一个弧上所对的圆周角的个数有多少个?
2.同弧所对的圆周角的度数是否发生变化?
3.同弧上的圆周角与圆心角有什么关系?
(学生分组讨论)提问二、三位同学代表发言.
老师点评:
1.一个弧上所对的圆周角的个数有无数多个.
2.通过度量,我们可以发现,同弧所对的圆周角是没有变化的.3.通过度量,我们可以得出,同弧上的圆周角是圆心角的一半.下面,我们通过逻辑证明来说明“同弧所对的圆周角的度数没有变化,?并且它的度数恰好等于这条弧所对的圆心角的度数的一半.”
(1)设圆周角∠ABC的一边BC是⊙O的直径,如图所示
∵∠AOC是△ABO的外角
∴∠AOC=∠ABO+∠BAO
∵OA=OB
∴∠ABO=∠BAO
∴∠AOC=∠ABO
∴∠ABC=∠AOC
4 / 6
(2)如图,圆周角∠ABC的两边
AB、AC在一条直径OD的两侧,那么∠ABC=∠AOC吗?请同学们独立完成这道题的说明过程.
老师点评:
连结BO交⊙O于D同理∠AOD是△ABO的外角,∠COD是△BOC 的外角,?那么就有∠AOD=2∠ABO,∠DOC=2∠CBO,因此∠AOC=2∠
ABC.
(3)如图,圆周角∠ABC的两边
AB、AC在一条直径OD的同侧,那么∠ABC=∠AOC吗?请同学们独立完成证明.
老师点评:
连结O
A、OC,连结BO并延长交⊙O于D,那么∠AOD=2∠ABD,∠COD=2∠CBO,而∠ABC=∠ABD-∠CBO=∠AOD-∠COD=∠AOC
现在,我如果在画一个任意的圆周角∠AB′C,?同样可证得它等于同弧上圆心角一半,因此,同弧上的圆周角是相等的.从(1)、(2)、
(3),我们可以总结归纳出圆周角定理:
在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.进一步,我们还可以得到下面的推导:
半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
下面,我们通过这个定理和推论来解一些题目.例1.如图,AB 是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?
5 / 6
分析:
BD=CD,因为AB=AC,所以这个△ABC是等腰,要证明D是BC 的中点,?只要连结AD证明AD是高或是∠BAC的平分线即可.解:
BD=CD
理由是:
如图24-30,连接AD
∵AB是⊙O的直径
∴∠ADB=90°即AD⊥BC
又∵AC=AB
∴BD=CD
三、巩固练习
1.教材P92思考题.
2.教材P93练习.
四、应用拓展例2.如图,已知△ABC内接于⊙O,∠
A、∠
B、∠C的对边分别设为a,b,c,⊙O半径为R,求证:
===2R.
分析:
要证明===2R,只要证明=2R,=2R,=2R,即sinA=,sinB=,sinC=,因此,十分明显要在直角三角形中进行.
6 / 6
证明:
连接CO并延长交⊙O于D,连接DB
∵CD是直径
∴∠DBC=90°
又∵∠A=∠D
在Rt△DBCxx,sinD=,即2R= 同理可证:
=2R,=2R ∴===2R
五、归纳小结(学生归纳,老师点评)
本节课应掌握:
1.圆周角的概念;
2.圆周角的定理:
在同圆或等圆中,同弧或等弧所对的圆周角相等,?都相等这条弧所对的圆心角的一半;
3.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.。

相关文档
最新文档