计量经济学复习要点
计量经济学复习笔记要点

计量经济学 总复习第一部分:统计基础知识均值的概念:通常人们所说的均值就是“平均数”,统计意义上的均值是“期望值”。
方差:变量的每个样本与均值的距离大小的概念。
标准差:对方差开根号就是标准差。
数学期望值与方差的数学性质总体方差: 1.常量aE (a )=a 2σ(a)=0抽样方差: 2.变量 y=a+bxE(y)=a+bE(x)总体标准偏差: 2σ(y)=b^2 * 2σ(x)抽样标准偏差:假设检验的定义:事先做一个假设,然后再用统计方法来检验这个假设是否有统计意义。
假设检验的步骤:第一步,设定假设条件。
原定假设,H0:u=u0,和替代假设,Ha:u ≠u0。
第二步,决定用哪种检验, 如果n ≥30,用Z 检验,如果n<30, 用t 检验。
第三步,找出临界值, 根据给定的定义域的大小,即α=1%、α=5%、或 α=10% 从概率分布表中查出Zc 值,或tc 值。
第四步,计算统计值, 或者第五步,比较统计值与临界值而得出结论。
如果统计值的绝对值大于临界值,那么我们就否定原定假设; 如果统计值的绝对值小于临界值,那么我们就不能否定原定假设。
第二部分 最小二乘法最小二乘法的假设条件:(1) (2) (3) (4) (5) 文字解释:Nu x Ni ∑-=22)(σ1)(22--=∑n x xs ni2σσ=2s s =nux Z σ0*-=n s u x t 0*-=)(=X E i ε∞<=22,)(σσεi Var 0),(=j i Cov εε0),(=i i X Cov ε1),(±≠j i X X Cov(1)每个误差必须是随机的,其误差的期望值是零;(2)误差都是雷同的,其方差相等,同时其方差的变化量必须是有限的; (3)每个误差之间必须是相互独立的; (4)误差项与方程式中的自变量是无关的; (5)自变量之间无直接的线性关系。
通用最小二乘法的步骤:第一步:求出误差项:第二步:求误差的平方和最小。
计量经济学复习资料

计量经济学复习资料一、引言计量经济学是研究经济现象的数量关系和经济变量之间相互影响的学科。
它通过运用统计学和数学方法,以实证的方式分析经济模型和数据,以期为经济理论的验证和决策制定提供科学依据。
计量经济学作为经济学的重要分支,在经济学领域里起着举足轻重的作用。
本文将为大家提供一个关于计量经济学的复习资料,以便大家更好地复习和理解这门学科。
二、计量经济学基础1. 理论基础:回顾计量经济学的理论基础,包括经济学中的基本原理、假设和模型,以及计量经济学方法的发展演变过程。
2. 计量经济学的基本概念:介绍计量经济学中的一些基本概念,如变量、参数、模型、数据等,帮助读者建立对计量经济学基础概念的理解和认知。
三、计量经济模型1. 线性回归模型:介绍线性回归模型的基本原理和假设,包括最小二乘估计法、截距项、解释变量的选择和回归结果的解释等。
2. 多元线性回归模型:介绍多元线性回归模型的基本原理、假设和参数估计方法,包括多重共线性、异方差和自相关等问题的处理方法。
3. 非线性回归模型:介绍非线性回归模型,如对数线性模型、二项式模型和估计方法等。
4. 时间序列模型:介绍时间序列模型的基本原理、假设和参数估计方法,包括平稳性、季节性和趋势性等问题的处理方法。
四、计量经济学常用方法1. 模型诊断:介绍计量经济学中的模型诊断方法,包括残差分析、异方差检验和自相关检验等。
2. 假设检验:介绍计量经济学中的假设检验方法,包括参数显著性检验、模型拟合优度检验和模型比较等。
3. 预测方法:介绍计量经济学中的预测方法,包括时间序列分析、回归分析和面板数据分析等。
4. 因果推断:介绍计量经济学中的因果推断方法,包括工具变量法、自然实验和计量分析的注意事项等。
五、计量经济学在实际应用中的案例研究1. 劳动经济学:介绍计量经济学在劳动经济学领域的实际应用,包括劳动力市场分析、教育回报率和人力资本投资等。
2. 金融经济学:介绍计量经济学在金融经济学领域的实际应用,包括资本市场分析、投资组合选择和风险管理等。
计量经济学重点

计量经济学重点计量经济学复习资料一、名词解释1.广义计经济学:利用经济理论、统计学和数学定量研究经济现象的经济计量方法的统称,包括回归分析方法、投入产出分析方法、时间序列分析方法等。
2.狭义计经济学以揭示经济现象中的因果关系为目的,在数学上主要应用回归分析方法。
3.总体回归函数:指在给定Xi下Y分布的总体均值与Xi所形成的函数关系(或者说总体被解释变量的条件期望表示为解释变量的某种函数)。
4.样本回归函数:指从总体中抽出的关于Y, x的若干组值形成的样本所建立的回归函数。
6、随机的总体回归函数:含有随机千扰项的总体回归函数(是相对于条件期望形式而言的)。
5.线性回归模型:既指对变量是线性的,也指对参数β为线性的,即解释变量与参数β只以他们的I次方出现。
6.随机干扰项:即随机误差项,是一个随机变量,是针对总体回归函数而言的。
9、残差项:是一随机变量,是针对样本回归函数而言的。
7.条件期望:即条件均值,指X取特定值Xi时Y的期望值。
8.回归系数:回归模型中βo, β1等未知但却是固定的参数。
9.回归系教的估计量:指用β 0^ β1^等表示的用已知样本提供的信息所估计出来总体未知参数的结果。
10.最小二乘法:又称最小平方法,指根据使估计的剩余平方和最小的原则确定样本回归函数的方法。
11.最大似然法:又称最大或然法,指用生产该样本概率最大的原则去确定样本回归函数的方法。
12.估计的标准差:度量一个变量变化大小的测量值。
13.总离差平方和:用TSS表示,用以度量被解释变量的总变动。
14.回归平方和:用ESS表示:度量由解释变量变化引起的被解释变量的变化部分。
15.残差平方和:用RSS表示:度量实际值与拟合值之间的差异,是由除解释变量以外的其他因素引起的被解释变量变化的部分。
16.协方差:用Cov(X, Y)表示,度量XY两个变量关联程度的统计量。
17.拟合优度检验:检验模型对样本观测值的拟合程度,用R2表示,该值越接近1,模型对样木观测值拟合得越好。
计量经济学复习重点

计量经济学复习重点第一章1. 计量经济学的性质计量经济学是以经济理论和经济数据的事实为依据,运用数学和统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。
研究的主体(出发点、归宿、核心):经济现象及数量变化规律研究的工具(手段):模型数学和统计方法方法手段要服从研究对象的本质特征(与数学不同),方法是为经济问题服务计量经济研究的三个方面理论:即说明所研究对象经济行为的经济理论(计量经济研究的基础)数据:对所研究对象经济行为观测所得到的信息(计量经济研究的原料或依据)方法:模型的方法与估计、检验、分析的方法(计量经济研究的工具与手段2. 计量经济学与相关学科的联系与区别联系:●计量经济学研究的主体—经济现象和经济系的数量规律●计量经济学必须以经济学提供的理论原则和经济运行规律为依据●经济计量分析的结果:对经济理论确定的原则加以验证、充实、完善区别:●经济理论重在定性分析,并不对经济关系提供数量上的具体度量●计量经济学对经济关系要作出定量的估计,对经济理论提出经验的内容3. 学习计量经济学的必要性4. 计量经济学研究的基本思路和步骤模型设定(选择变量和数学关系式)、估计参数(确定变量间的数量关系)、模型检验(检验所得结论的可靠性)、模型应用(作经济分析和经济预测)5. 模型的设定、参数估计、模型检验的要求模型设定要求●要有科学的理论依据●选择适当的数学形式(单一方程、联立方程线性形式、非线性形式)●模型要兼顾真实性和实用性●包含随机误差项●方程中的变量要具有可观测性参数估计要求参数的估计值:所估计参数的具体数值参数的估计式:估计参数数值的公式6. 模型中的变量及其类型从变量的因果关系区分:被解释变量(应变量)——要分析研究的变量解释变量(自变量)—说明应变量变动主要原因的变量(非主要原因归入随机误差项)从变量的性质区分内生变量—其数值由模型所决定的变量,是模型求解的结果外生变量—其数值由模型以外决定的变量(相关概念:前定内生变量、前定变量)注意:外生变量数值的变化能够影响内生变量的变化,内生变量却不能反过来影响外生变量7. 计量经济研究中数据的类型时间数列数据(同一空间、不同时间)、截面数据(同一时间、不同空间)、混合数据(面板数据 Panel Data)、虚拟变量数据8. 参数估计的方法类型单一方程模型最常用的是普通最小二乘法、极大似然估计法等联立方程模型常用二段最小二乘法和三段最小二乘法等9. 建立计量经济模型的依据第二章1、变量间的关系:函数关系——相关关系相关系数——对变量间线性相关程度的度量◆相关关系的类型●?从涉及的变量数量看简单相关、多重相关(复相关)●?从变量相关关系的表现形式看线性相关——散布图接近一条直线、非线性相关——散布图接近一条曲线●??从变量相关关系变化的方向看正相关——变量同方向变化,同增同减、负相关——变量反方向变化,一增一减不相关2、现代意义的回归:一个被解释变量对若干个解释变量依存关系的研究实质:由固定的解释变量去估计被解释变量的平均值3、总体回归函数(PRF):将总体被解释变量Y的条件均值表现为解释变量X 的某种函数样本回归函数(SRF):将被解释变量Y 的样本条件均值表示为解释变量X 的某种函数。
计量经济学复习重点

1、经济变量:用来描述经济因素数量水平的指标。
2、解释变童:用来解释作为研究对象的变量(即因变量)为什么变动、如何变动的变量。
它对因变量的变额为发热所引5动做出解释。
3、被解释变量:是作为研究对象的变量。
它的变动是由•解释变量做出廉释的4、控制变量:在计量经济模型中人为设置的反映政黃要求、决策者意愿、经济系统运行条件和状态等方面的变量。
5、计量经济模型:为了研究分析某个系统中经济变量之问的数量关系而采用的随机代数模型。
6、相关关系:如果一个变量y的取值受另一个变量或另一组变量的彩响.但并不由它们惟一确定,则y与这个变量或这组变量之问的关系就是相关关系。
7、最小二乘法:用使估计的剩余平方和最小的原则确定样本回归函数的方法。
8、拟合优度:样本回归直线与样本观测数据之问的拟合程度。
(9、残差:样本回归方程的拟合值与观測值的误差。
10、显著性检验:利用样本结果,来证实一个虚拟假设的真伪的一种检豔程序。
11、偏相关系数:在Y. X|. 1三个变量中,当儿既定时,表示Y与X2之问相关关系的指标。
12、异方差性:在线性回归模型中,如果随机误差项的方差不是常数,即对不同的解释变量观测值彼此不同,则称葩机项U1具有异方差性。
13、序列相关性:对于模型Xi = % + 妙九 +色乜+•••+%%+“i = 12 …屮菠机误差项互相独立的基本假设表现为C"(冷"” =0 /> j,i,j = \2…』(I分)如果出现Cov(比,“ J) H 0 i H人i J = 12…屮即对于不同的样本点•随机误差项之问不再是完全互相独立,而是存在某种相关性,则认为出现了序列相关性。
14、自回归模型:15、广乂最小二乘法:是最有普遍意义的最小二乘法,普通最小二乘法和加权最小二乘法是它的特例。
16、相关系数:度量变量之问相关程度的一个系数,一般用P表示。
17、多重共线性:解释变量之问存在完全或不完全的线性关系。
计量经济学复习知识点重点难点

计量经济学复习知识点重点难点计量经济学知识点第一章导论1、计量经济学的研究步骤:模型设定、估计参数、模型检验、模型应用。
2、计量经济学是统计学、经济学和数学的结合。
3、计量经济学作为经济学的一门独立学科被正式确立的标志:1930年12月国际计量经济学会的成立。
4、计量经济学是经济学的一个分支学科。
第二章简单线性回归模型1、在总体回归函数中引进随机扰动项的原因:①作为未知影响因素的代表;②作为无法取得数据的已知因素的代表;③作为众多细小影响因素的综合代表;④模型的设定误差;⑤变量的观测误差;⑥经济现象的内在随机性。
2、简单线性回归模型的基本假定:①零均值假定;②同方差假定;③随机扰动项和解释变量不相关假定;④无自相关假定;⑤正态性假定。
3、OLS回归线的性质:①样本回归线通过样本均值;②估计值的均值等于实际值的均值;③剩余项ei的均值为零;④被解释变量的估计值与剩余项不相关;⑤解释变量与剩余项不相关。
4、参数估计量的评价标准:无偏性、有效性、一致性。
5、OLS估计量的统计特征:线性特性、无偏性、有效性。
6、可决系数R2的特点:①可决系数是非负的统计量;②可决系数的取值范围为[0,1];③可决系数是样本观测值的函数,可决系数是随抽样而变动的随机变量。
第三章多元线性回归模型1、多元线性回归模型的古典假定:①零均值假定;②同方差和无自相关假定;③随机扰动项和解释变量不相关假定;④无多重共线性假定;⑤正态性假定。
2、估计多元线性回归模型参数的方法:最小二乘估计、极大似然估计、矩估计、广义矩估计。
3、参数最小二乘估计的性质:线性性质、无偏性、有效性。
4、可决系数必定非负,但是根据公式计算的修正的可决系数可能为负值,这时规定为0。
5、可决系数只是对模型拟合优度的度量,可决系数越大,只是说明列入模型中的解释变量对被解释变量的联合影响程度越大,并非说明模型中各个解释变量对被解释变量的影响程度也大。
6、当R2=0时,F=0;当R2越大时,F值也越大;当R2=1时,F→∞。
计量经济学复习重点

1、统计检验是利用统计推断的原理,对参数估计的可靠程度、观察数据的拟合程度进行检验;主要方法有拟合优度检验、变量和方程的显著性检验2、计量经济学检验:检验模型的计量经济学性质,即检验模型基本假设的满足程度、各种经济计量假设的合理性。
主要检验准则:序列相关检验、异方差检验和多重共线检验。
3、模型预测检验:检验模型参数估计量的稳定性以及相对样本容量变化时的灵敏度,确定所建立的模型是否可以用于观察值以外的范围。
具体检验方法:(1)利用扩大了的样本 重新估计参数,检验两次估计结果的差异显著性;(2)将所建立的模型用于样本以外某一时期的实际预测,预测值与实际值进行比较并检验差异显著性。
4、建立计量经济模型的步骤5、样本回归模型回归分析是研究一个变量关于另一个(些)变量的具体依赖关系的计算方法和理论。
由于总体的信息往往无法掌握,现实的情况只能是在一次观测中得到总体的一组样本样本散点图近似于一条直线,画一条直线以尽可能好地拟合该散点图,由于样本取自总体,可以该线近似地代表总体回归线。
该线称为样本回归线,其函数形式记为:6、随机扰动项U :理论经济学和数理经济学一般假定经济变量之间存在确定性的规律,从而建立确定性的模型。
引入随机扰动项是为了更准确地描述社会经济系统。
随机扰动项是不可观察的,只能通过残差——实际值与拟合值的差——进行估计7、Gauss —Markov 定理(高斯-马克):满足性质1、2、3的最小二乘估计量是最优线性无偏估计量 最小二乘法求出参数估计量达到最小值。
性质1:线性特性;估计量a,b 均可由被解释变量Y 线性表示出来。
性质2:无偏性E (a )= E (b )= β 性质3:在a 、β的各种线性无偏估计中,最小二乘估计量a,b 具有最小方差。
8、完全共线性:如果存在 c 1X 1i +c 2X 2i +…+c k X ki =0 i=1,2,…,nii i X X f Y 10ˆˆ)(ˆββ+== (2.1.4)称为样本回归函数(sample regression function )SRF 。
(完整版)计量经济学重点知识归纳整理

1.普通最小二乘法(Ordinary Least Squares,OLS):已知一组样本观测值{}n i Y X i i ,2,1:),(⋯=,普通最小二乘法要求样本回归函数尽可以好地拟合这组值,即样本回归线上的点∧i Y 与真实观测点Yt 的“总体误差”尽可能地小。
普通最小二乘法给出的判断标准是:被解释变量的估计值与实际观测值之差的平方和最小。
2.广义最小二乘法GLS :加权最小二乘法具有比普通最小二乘法更普遍的意义,或者说普通最小二乘法只是加权最小二乘法中权恒取1时的一种特殊情况。
从此意义看,加权最小二乘法也称为广义最小二乘法。
3.加权最小二乘法WLS :加权最小二乘法是对原模型加权,使之变成一个新的不存在异方差性的模型,然后采用普通最小二乘法估计其参数。
4.工具变量法IV :工具变量法是克服解释变量与随机干扰项相关影响的一种参数估计方法。
5.两阶段最小二乘法2SLS, Two Stage Least Squares :两阶段最小二乘法是一种既适用于恰好识别的结构方程,以适用于过度识别的结构方程的单方程估计方法。
6.间接最小二乘法ILS :间接最小二乘法是先对关于内生解释变量的简化式方程采用普通小最二乘法估计简化式参数,得到简化式参数估计量,然后过通参数关系体系,计算得到结构式参数的估计量的一种方法。
7.异方差性Heteroskedasticity :对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同,则认为出现了异方差性。
8.序列相关性Serial Correlation :多元线性回归模型的基本假设之一是模型的随机干扰项相互独立或不相关。
如果模型的随机干扰项违背了相互独立的基本假设,称为存在序列相关性。
9.多重共线性Multicollinearity :对于模型i k i i X X X Y μββββ++⋯+++=i k 22110i ,其基本假设之一是解释变量X 1,X 2,…,Xk 是相互独立的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计量经济学复习要求(2011专升本)
一、基本概念:
1、名词:
1)解释变量:自变量x,自变量是研究者选用或操纵的变量,以确定其对心理或行为的影响;
2)被解释变量:因变量y,因变量是被试者在实验室中的行为反应。
3)內生变量:内生变量是具有一定概率分布的随机变量,它的数值是由模型本身决定的。
4)外生变量:是指非随机变量,它的取值是在模型之外决定的,是求解模型时的已知数。
5)滞后变量:是指内生变量和外生变量的时间滞后量(前期量)。
6)前定变量:外生变量与滞后内生变量统称为前定变量。
7)虚拟变量:虚拟变量又称虚设变量、名义变量或哑变量,用以反映质的属性的一个人工变量,是量化了的质变量,通常取值为0或1。
8)工具变量:某一个变量与模型中随机解释变量高度相关,但却不与随机误差项相关,那么就可以用此变量与模型中相应回归系数的一个一致估计量,这个变量就称为工具变量9)相关系数:相关系数是用以反映变量之间相关关系密切程度的统计指标。
相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。
定义;若随机变量X与Y的 EX,EY,及DX,DY存在,称为X与Y的相关系数10)协方差:E[(X-E(X))(Y-E(Y))]称为随机变量X和Y的协方差,记作COV(X,Y),即COV(X,Y)=E[(X-E(X))(Y-E(Y))]。
定义:Cov(X,Y) =E( X - EX)(Y-EY)=E(XY) - (EX)(EY)
当Y=X,Cov(X,X) =E(X2) - (EX)2 = D(X)
11)回归方程:
解: X与Y相关关系,设 Y= a+ bX+ε
其中:X是可控变量,Y 和ε是随机变量, ε~N(0,σ2),a、b未知,
当X取值:x1, x2,… x n时,对Y观察,得到一组样本:
(x1, y1),(x2, y2), …,(x n, y n),
满足: y i= a+ bx i +εi
εI ~ N(0,σ2), εi .εj相互独立
E(y i)= a+ bx i +0
ˆ
ˆˆ
Y a bX
=+
12)异方差性:
13)序列相关性:
14)多重共线性:
2、概念:
1)数据类型:时间序列数据、横截面数据、合并数据
2)计量经济研究的步骤:
a. 建立理论模型(模型设定),包括模型的总体设计和个体设计;
(1)确定模型中的变量
(2)确定模型的函数形式
(3)确定统计指标并搜集整理数据
b. 估计模型的参数
c. 模型的检验
d. 模型的应用
可进一步概括成:
3)回归系数的经济意义:自变量每增加一个单位,因变量增加的平均值。
4)相关系数的性质、作用:
性质:1、|r XY| £ 1 定义: r XY > 0 称为:正相关
r XY < 0 称为:负相关
r XY = 0 称为:不相关
2、若随机变量X与Y存在线性关系:Y= aX+ b
则:当a >0 r XY =1
当a <0 r XY = -1
3、若随机变量X与Y独立,则 r XY = 0 即不相关
意义:相关系数反映X与Y 之间的线性关系程度
5)一元线性回归模型的基本假定:
P36 3.2
6)多元线性回归模型的基本假定:
P50 4.2
7)平方和分解公式:
= ESS +RSS
TSS= L
yy
8)判定系数R2的作用:
9)假设检验:F-检验的作用:
F-检验可称为模型的整体显著性检验,作用是检验模型中所有的解释变量与被解释变量之间的线性关系是否显著的。
10)假设检验:t-检验的作用:
t-检验又被称为变量的显著水平检验,作用是检验解释变量对于被解释变量的影响是否是显著的。
11)DW-检验的作用:
DW-检验作用是检验模型是否存在一阶序列相关性的。
二、基本技能:
1、一元线性回归方程的建立方法(即参数估计)、回归方程的效果检验,回归系数的显著性检验。
利用回归方程作预测
2、一元非线性回归方程的建立方法(即参数估计)、回归方程的效果检验,回归系数的显著性检验。
利用回归方程作预测
3、二元线性回归方程判定系数R2的计算、方差分析,回归方程的效果检验,回归系数的显著性检验。
4、异方差性的概念(举例说明),对模型估计产生的后果,检验模型存在的异方差问题的常用方法,解决异方差性的方法(写出修改模型参数的步骤)
答案见:课件幻灯片P74-P86
5、序列相关性的概念(举例说明),对模型估计产生的后果,检验模型存在自相关的方法(自相关系数ρ和dw值的计算),如何解决(写出修改模型参数的步骤)
6、多重共线性的概念(举例说明),对模型估计产生的后果,检验模型存在的多重共线性的常用方法,解决多重共线性的方法
答案见:课件幻灯片P101-P108
7、虚拟变量的作用,添加虚拟变量的原则,掌握实际问题添加虚拟变量的方法、如何检验虚拟变量的作用
答案见:课件幻灯片P110-P122
8、联立方程组模型中变量的类型,方程的识别,估计模型未知参数的方法(写出确定模型参数的步骤)
答案见:课件幻灯片P124
(注:本资料素材和资料部分来自网络,仅供参考。
请预览后才下载,期待您的好评与关注!)。