雷达原理实验报告

合集下载

雷达的使用实验报告

雷达的使用实验报告

雷达的使用实验报告一、引言雷达(Radar)是一种利用电磁波进行探测的设备,广泛应用于军事、天气预报、航空等领域。

雷达通过发送电磁波,并通过接收返回的信号来测量目标的位置、速度等信息。

本实验旨在通过自行搭建雷达实验装置,了解雷达的工作原理和基本应用。

二、实验装置本实验所用的雷达实验装置包括雷达发射器、接收器、信号处理系统和显示及记录装置。

雷达发射器负责发射脉冲电磁波,接收器用于接收返回的信号,信号处理系统对接收到的信号进行处理,显示及记录装置用于显示和记录结果。

三、实验步骤1. 首先,将雷达装置搭建起来,并确保所有连接正确。

检查电源、天线等部件是否正常工作。

2. 设置雷达发射器的参数,包括频率、脉宽等。

根据实验要求和具体情况进行调整。

3. 打开雷达发射器,并观察接收器上是否有返回信号。

若有,表示雷达正常工作。

4. 将接收到的信号传递给信号处理系统进行处理。

根据需要,可以对信号进行滤波、放大等处理。

5. 最后,将处理后的信号连接至显示及记录装置,以便进行观测和记录。

四、实验结果经过实验,我们观察和记录了几组雷达信号的实验结果,其中包括目标的位置、速度等信息。

通过分析实验数据,我们可以看出雷达能够有效地探测到目标,并获取准确的信息。

五、实验分析本实验通过自行搭建雷达实验装置,对雷达的工作原理和应用进行了初步了解。

通过观察和分析实验结果,我们发现雷达可以在一定范围内探测到目标的位置和速度等信息,这对军事、天气预报等领域具有重要意义。

然而,在实际应用中,还需要考虑到这样的因素,如天气、地形对雷达信号的影响,以及其他干扰对雷达探测的影响等。

因此,我们需要进一步开展相关实验和研究,以完善雷达的性能和提高其应用效果。

六、实验总结通过本次实验,我对雷达的工作原理和基本应用有了更进一步的了解。

实验过程中,通过搭建和调试雷达装置,我熟悉了雷达的基本构成和工作流程;通过观察和分析实验结果,我了解了雷达的探测能力和信号处理方法。

雷达基础实训报告

雷达基础实训报告

一、实训目的本次雷达基础实训旨在使学员掌握雷达的基本原理、组成、工作过程以及雷达在现代军事和民用领域中的应用,提高学员对雷达技术的认识和操作能力。

二、实训内容1. 雷达基本原理雷达(Radar)是一种利用电磁波探测目标的无线电设备。

其基本原理是发射电磁波,然后接收目标反射回来的回波,通过分析回波的特性来确定目标的位置、速度等信息。

2. 雷达组成雷达主要由发射机、接收机、天线、信号处理器和显示器等组成。

(1)发射机:负责产生一定频率的电磁波,并驱动天线发射。

(2)接收机:负责接收目标反射回来的电磁波,并将信号放大。

(3)天线:负责发射和接收电磁波。

(4)信号处理器:负责对接收到的信号进行处理,提取目标信息。

(5)显示器:负责显示雷达检测结果。

3. 雷达工作过程(1)发射机产生一定频率的电磁波。

(2)电磁波经过天线发射出去。

(3)目标反射电磁波,回到雷达接收机。

(4)接收机将接收到的信号放大。

(5)信号处理器对信号进行处理,提取目标信息。

(6)显示器显示目标信息。

4. 雷达在现代军事和民用领域中的应用(1)军事领域:雷达在军事领域应用广泛,如预警雷达、防空雷达、舰载雷达、机载雷达等。

(2)民用领域:雷达在民用领域也有广泛应用,如气象雷达、交通雷达、地质雷达等。

三、实训过程1. 理论学习首先,学员通过查阅资料、听课等方式,对雷达基本原理、组成、工作过程等内容进行深入学习。

2. 实验操作在理论学习的的基础上,学员进行雷达实验操作。

具体步骤如下:(1)连接雷达设备,检查设备是否正常。

(2)调整雷达参数,如频率、脉冲宽度、脉冲重复频率等。

(3)发射电磁波,观察天线发射情况。

(4)接收目标反射回来的电磁波,观察接收机工作情况。

(5)对信号进行处理,提取目标信息。

(6)观察显示器显示的目标信息。

3. 结果分析通过实验操作,学员对雷达基本原理、组成、工作过程有了更直观的认识。

同时,通过对实验结果的分析,学员了解了雷达在探测目标、定位等方面的应用。

雷达实验报告

雷达实验报告

雷达实验报告姓名:学号:指导老师:实验地点:2014年6月9日电子工程学院雷达原理:雷达设备的发射机通过天线把电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波;雷达天线接收此反射波,送至接收设备进行处理,提取有关该物体的某些信息(目标物体至雷达的距离,距离变化率或径向速度、方位、高度等)。

测量距离实际是测量发射脉冲与回波脉冲之间的时间差,因电磁波以光速传播,据此就能换算成目标的精确距离。

测量目标方位是利用天线的尖锐方位波束测量。

测量仰角靠窄的仰角波束测量。

根据仰角和距离就能计算出目标高度。

测量速度是雷达根据自身和目标之间有相对运动产生的频率多普勒效应原理。

雷达接收到的目标回波频率与雷达发射频率不同,两者的差值称为多普勒频率。

从多普勒频率中可提取的主要信息之一是雷达与目标之间的距离变化率。

当目标与干扰杂波同时存在于雷达的同一空间分辨单元内时,雷达利用它们之间多普勒频率的不同能从干扰杂波中检测和跟踪目标。

实验1.雷达测距实地距离测量结果 显示终端距离读数 相对误差第一次 10.5m(0.084-0.078)NM=11.28m 6.9%第二次11.7m(0.078-0.072)NM=11.28m 3.7% 第三次 11.8m(0.072-0.066)NM=11.28m4.6%当前脉宽对应的理论距离分力37,=70ns =m=10.5m 22c R R ττ⨯∆=⇒∆这里出现误差的原因:雷达本身的系统误差;实地测量的度数误差;显示屏上显示的角反射器为较大的点,在定位是存在误差。

实验2.雷达测角角反射器到雷达距离0.084 NM=157.92m角反射器间距计算角度终端方位读数雷达方位差值第一次 5.15m 1.87度356.0度354.3度 1.7度第二次 4.75m 1.72度 354.3度 352.7度 1.6度第三次4.65m1.68度354.3度352.8度1.5度当前波束宽度对应的理论距离37,=70ns =m=10.5m 22c R R ττ⨯∆=⇒∆这里出现误差的原因 :雷达本身的系统误差;实际测角是通过在同一距离环上的不同方位角上放置角反射器,在雷达显示终端上显示的两个目标可以分辨时,测量此时的目标距离,计算目标之间的夹角,作为实测得到的角度分辨力,故存在和测距相同的误差。

雷达原理实验报告1,2

雷达原理实验报告1,2

雷达原理实验报告1,2实验一、二雷达的总体认识及基本操作I、II一、实验目的1.了解Bridge Master E X-Band雷达的基本组成2.学习正确操作Bridge Master E X-Band雷达,熟悉各基本功能的操作二、实验设备:Bridge Master E X-Band雷达两台S-Band收发机一台,天线一副三、实验步骤及要领1.开机检查天线附近是否有人作业火其他障碍物,将亮度(BRILLIANCE)、雨雪干扰抑制(A/CRAIN)海浪干扰抑制(A/CSEA)、增益(GAIN)等控钮反时针旋到底,功能开关(FUNCTION)置“STANDBY”。

开机,接通电源,将电源开关置“POWER ON”,然后雷达开始自检,倒时计数。

时间到后自动显示出“RADAR STANDBY”,此时表明雷达已准备好发射(未发射前天线是不转的)。

2.调节屏幕及数据亮度顺时针旋转显示器前端的键盘(KEY BOARD)上的亮度控钮(BRILLIANCE)使回波明亮清晰,通常应使控钮居中。

3.量程选择在KEY BOARD上,使用操纵杆(JOYSTICK)移动光标到“TRANSMIT”上,单击左键,选择发射及脉冲宽度选择。

使光标移动到显示屏的左上方的“RANGE”,通过单击“+”和“-”来改变量程,量程的选择与发射脉冲的宽度的关系见附录图4.调谐调节调谐控钮是用来调节接收机的本振频率。

在进行调谐前,应首先将海浪抑制控钮(A/CSEA)反时针旋到底,并使雷达工作于最大量程,然后转动调谐控钮使调谐指示亮带达到最长。

5.增益调整增益(GAN)控钮是用来调节接收机的放大量,此控钮应调节到显示屏幕上的背景噪声似见非见的位置。

为了设置合适的增益,首先应选择最远的两个量程之一,因为远量程时背景噪声更为明显,然后俺顺时针方向慢慢旋转增益控钮,使背景噪声达到刚见未见的状态。

若增益设置太低,目标回波可能被淹没在背景噪声中。

6.显示模式选择使用光标在显示屏幕右上方菜单改变显示模式。

雷达实验报告

雷达实验报告

雷达实验报告雷达实验报告摘要:本次实验旨在通过搭建雷达系统,探索雷达技术的原理和应用。

实验中我们使用了雷达模块、控制器和计算机,通过测量反射信号的时间差来确定目标物体的距离,并利用信号的频率变化来获得目标物体的速度。

实验结果表明,雷达系统能够准确地检测目标物体的位置和运动状态,具有广泛的应用前景。

1. 引言雷达(Radar)是一种利用电磁波进行探测和测量的技术。

它广泛应用于军事、民用和科学研究等领域,如航空、天气预报、导航等。

雷达系统通过发射电磁波并接收其反射信号,利用信号的时间和频率变化来确定目标物体的距离和速度。

本次实验旨在通过搭建雷达系统,深入了解雷达技术的原理和应用。

2. 实验设备和方法2.1 实验设备本次实验使用的设备有:雷达模块、控制器、计算机。

2.2 实验方法(1)搭建雷达系统:将雷达模块与控制器连接,并将控制器与计算机连接。

(2)设置实验参数:根据实验需求,设置雷达系统的工作频率和功率。

(3)目标检测:通过控制器发送电磁波,并接收其反射信号。

利用信号的时间差来计算目标物体的距离,并利用频率变化来计算目标物体的速度。

(4)数据分析:将实验结果导入计算机,并进行数据分析和处理。

3. 实验结果与讨论3.1 距离测量我们在实验中选择了不同距离的目标物体进行测量,并记录了实验结果。

通过分析数据,我们发现雷达系统能够准确地测量目标物体的距离。

实验结果与实际距离相差不大,证明了雷达系统的测量精度较高。

3.2 速度测量在实验中,我们选择了运动目标进行速度测量。

通过分析信号的频率变化,我们能够准确地计算目标物体的速度。

实验结果表明,雷达系统能够实时监测目标物体的运动状态,并提供准确的速度信息。

4. 实验误差分析在实验过程中,我们发现了一些误差来源。

首先,由于环境中存在其他电磁波干扰,可能会对实验结果产生一定的影响。

其次,雷达系统的精度受到设备本身的限制,可能会导致测量结果的偏差。

此外,实验操作的不准确也可能引入误差。

雷达运动跟踪实验报告(3篇)

雷达运动跟踪实验报告(3篇)

第1篇一、实验目的本次实验旨在了解雷达运动跟踪的基本原理,掌握雷达运动跟踪系统的组成与工作流程,并通过实际操作,验证雷达运动跟踪系统的性能,分析其优缺点,为后续相关研究提供参考。

二、实验原理雷达运动跟踪是利用雷达波对运动目标进行探测、定位和跟踪的一种技术。

实验中,雷达发射器发射出一定频率的电磁波,当电磁波遇到运动目标时,会发生反射,反射回来的电磁波被雷达接收器接收,通过处理接收到的信号,可以计算出目标的运动轨迹、速度和方向等信息。

三、实验器材1. 雷达运动跟踪系统:包括雷达发射器、雷达接收器、信号处理器、显示器等。

2. 运动目标:如小型无人机、小球等。

3. 实验场地:开阔空间,无遮挡物。

四、实验步骤1. 连接雷达发射器、雷达接收器和信号处理器,确保各设备工作正常。

2. 将运动目标放置在实验场地,确保目标在雷达探测范围内。

3. 启动雷达系统,观察显示器上的雷达信号,确保雷达信号稳定。

4. 改变运动目标的运动状态,如匀速直线运动、匀加速直线运动、曲线运动等。

5. 观察显示器上的雷达跟踪结果,记录目标的位置、速度和方向等信息。

6. 对比不同运动状态下的跟踪效果,分析雷达运动跟踪系统的性能。

五、实验结果与分析1. 雷达运动跟踪系统可以成功跟踪运动目标,实时显示目标的位置、速度和方向等信息。

2. 在匀速直线运动状态下,雷达跟踪效果较好,目标轨迹稳定,速度和方向准确。

3. 在匀加速直线运动状态下,雷达跟踪效果尚可,但目标轨迹和速度变化较慢,可能存在一定的误差。

4. 在曲线运动状态下,雷达跟踪效果较差,目标轨迹和速度变化较大,误差较大。

5. 雷达运动跟踪系统的跟踪精度受多种因素影响,如目标反射面积、雷达探测距离、信号处理算法等。

六、实验结论1. 雷达运动跟踪系统可以成功实现对运动目标的跟踪,具有一定的实用价值。

2. 雷达运动跟踪系统的性能受多种因素影响,需针对不同应用场景进行优化。

3. 在实际应用中,需综合考虑雷达运动跟踪系统的性能、成本等因素,选择合适的雷达型号和信号处理算法。

雷达原理课程实验报告

雷达原理课程实验报告
图2.5单目标测速显示屏速度
定标速度:由记录员记录的一个来回20米为12.15s,13.53s,14.22s,13.77s,13.69s,取中值13.69s。速度为20/13.69=1.46m/s。
图2.6记录员1记下的数据
另一个记录员记下的数据为12.15s(20米),27.43s(40米),27.58s(40米),速度为1.646m/s,1.46m/s,1.45m/s,取中值1.46m/s,由两个记录员数据得定标速度为1.46m/s。
3.3实验原理……………………………………………………………………19
3.4实验过程…………………………………………………………………………20
3.5实验分析……………………………………………………………………21
3.6实验小结……………………………………………………………………22
4实验3:波束宽度测量……………………………………………………………………22
5.4实验过程…………………………………………………………………………31
5.5实验分析………………………………………………………………32
5.6实验小结…………………………………………………………………………33
6结论……………………………………………………………………………………34
7实验心得………………………………………………………………………………35
2.3.2 实验方法
连接雷达、电源、示波器。开电源,4m、9m、14m处各1人定标、计时1人在4~14m之间匀速来回走动,1人计算速度1人操作示波器,截取一段数据同时高声喊停1人立即高声读出雷达显示数值,另2人记录示波器操作人用U盘拷贝截取数据和显示,Matlab画波形并计算速度比较显示速度、定标速度、计算速度。

实验报告雷达

实验报告雷达

实验报告雷达实验报告:雷达的原理与应用一、引言雷达(Radar)是一种利用电磁波进行目标探测与测距的技术。

它广泛应用于军事、航空、航海、气象等领域,成为现代科技的重要组成部分。

本实验旨在通过模拟雷达的工作原理,进一步了解雷达的应用和优势。

二、雷达的工作原理雷达的工作原理基于电磁波的反射和回波时间的测量。

雷达发射器会发射一束电磁波(通常是微波),当这束电磁波遇到目标物体时,会被目标物体反射回来,形成回波。

雷达接收器会接收到这些回波,并通过测量回波的时间来计算目标物体与雷达的距离。

三、雷达的应用领域1. 军事应用雷达在军事领域起到了极为重要的作用。

它可以用于目标探测、目标识别、导弹引导等任务。

通过雷达技术,军队可以实时监测敌方目标的位置和移动速度,为决策提供重要依据。

2. 航空应用在航空领域,雷达用于飞行器的导航和防撞系统。

航空雷达可以探测到飞机周围的其他飞行器或障碍物,以避免碰撞。

此外,雷达还可以帮助飞行员确定飞机的位置和高度,提高飞行安全性。

3. 航海应用雷达在航海领域被广泛应用于船舶导航和海洋测量。

通过雷达,船舶可以检测到周围的其他船只、礁石和岛屿等障碍物,以避免碰撞。

海洋测量方面,雷达可以测量海洋的波浪高度、风速、海况等信息,为航海安全提供重要数据。

4. 气象应用气象雷达用于天气预报和气象监测。

它可以探测到大气中的云层、降雨和风暴等天气现象,为气象学家提供重要的观测数据。

通过分析雷达回波的特征,可以预测天气变化趋势,提前采取相应的预防措施。

四、雷达的优势雷达作为一种远距离、高精度的探测技术,具有以下几个优势:1. 高准确性:雷达可以通过测量回波的时间和频率来计算目标物体的位置和速度,具有较高的测量精度。

2. 长距离探测:雷达可以在较远的距离上进行目标探测,对于远距离目标的监测具有独特的优势。

3. 不受天气影响:雷达的探测能力不受天气条件的限制,无论是晴天、雨天还是雾天,雷达都能够正常工作。

4. 实时性:雷达可以实时监测目标物体的位置和移动情况,为决策提供及时的数据支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告实验课程名称:雷达原理实验姓名:班级:学号:注:1、每个实验中各项成绩按照5分制评定,实验成绩为各项总和2、平均成绩取各项实验平均成绩3、折合成绩按照教学大纲要求的百分比进行折合2014年 5 月相位法与振幅法测角实验报告一、实验目的要求1. 了解雷达常用测角方法。

2. 学会用仿真软件验证测角算法。

3.能够设计并仿真测角解模糊程序。

二、实验原理1. 利用了相位法测角的数学模型2. 利用MATLAB软件编写单基线测向算法和比幅法解模糊程序相位法测角利用了多哥天线所接收回波信号之间的相位差进行测角;振幅法测角利用了天线收到的回波信号幅值来做角度测量,该幅值的变化规律取决于天线方向图及天线扫描的方式。

振幅测角法可以分为最大信号法和等信号法。

三、实验参数设置(1)载频范围:4GHz(2)目标角度范围:-30°~30°(3)天线数量:3个(4)天线间距离范围:0.05m~0.3m(5)回波信号DLVA输出幅度:1.5V(6)两两天线相位差测量范围:0.3p短基线长度0.06长基线长度0.5四.实验仿真波形目标角度/°相位差/*π理论相位差与目标角度关系目标角度/°相位差/*π实际读取相位差与目标角度关系目标角度/°相位差/*π相位差与目标角度关系-60-40-200204060目标角度/°相位差/*相位差与角度关系-60-40-200204060-202目标角度误差/度短基线测角精度误差-60-40-200204060-0.500.5目标角度误差/度长基线测角精度误差四、实验成果分析实验利用三个天线的比对测量目标角度,通过选取天线的距离来比较得到数据的误差,五角星符号位插八度是对应的目标角度。

偏差选取了较小天线距离带来的误差。

五、 教师评语教师签字雷达信号波形分析实验报告一、实验目的要求1. 了解雷达常用信号的形式。

2. 学会用仿真软件分析信号的特性。

3.了解雷达常用信号的频谱特点和模糊函数。

二、实验原理为了测定目标的距离,雷达准确测量从电磁波发射时刻到接收到回波时刻的延迟时间,这个延迟时间是电磁波从发射机到目标,再由目标返回雷达接收机的时间。

根据电磁波的传播速度,可以确定目标的距离为:S=CT/2 其中S:目标距离;T:电磁波从雷达到目标的往返传播时间;C:光速。

三、实验参数设置载频范围:0.5MHz脉冲重复周期:250us脉冲宽度:10us幅度:1V线性调频信号载频范围:90MHz脉冲重复周期:250us脉冲宽度:10us信号带宽:14 MHz幅度:1V四、实验仿真波形x 10-3时间/s 幅度/v脉冲x 10-3时间/s幅度/v连续波x 10-3时间/s幅度/v脉冲调制x 1070124频率/MHz幅度/d B脉冲频谱图x 10705104频率/MHz幅度/d B连续波频谱图x 1070124频率/MHz幅度/d B脉冲调制频谱图0.51 1.52x 10-3-101时间/s 幅度/v脉冲8.2628.26258.263x 10-4-101时间/s 幅度/v连续波0.51 1.52x 10-3-101时间/s幅度/v脉冲调制-4-2024x 1070244频率/MHz幅度/d B脉冲频谱图-4-2024x 10705104频率/MHz幅度/d B连续波频谱图-4-2024x 1070124频率/MHz幅度/d B脉冲调制频谱图频率/MHz功率/d B时间/us功率/d B五、实验成果分析简单脉冲调制信号的产生由脉冲信号和载频信号组成,如图是时域频域分布时域经傅里叶变化得到频域图像。

线性调频信号随时间变换的信号实验利用公式delt=linspace(-T/2,T/2,10001);LFM=exp(i*2*pi(f0*delt+mu*delt^2/2)) (mu 为B/T 频率变化斜率,B 为频率变换范围,即带宽)。

六、 教师评语教师签字雷达测距和接收机灵敏度实验一、实验目的要求1.掌握目标回波测距的方法。

2.雷达回波信号能量变化对接收机输出的信号的幅度(包络)的影响。

3.掌握切线灵敏度的定义。

二、实验原理1.距离测量。

雷达工作时,发射机经天线向指定空间发射一串重复周期的高频脉冲。

如果在电磁波传播的路径上有目标存在,那么雷达可以接收到由目标反射回来的回波。

由于回波信号往返于雷达和目标之间,它将滞后于发射脉冲一个时间r t 。

如图3.1 示电磁波以光速传播,设目标的距离是R ,则传播的距离为光速乘以时间间隔,即2.切线灵敏度。

在某一输入脉冲功率电平的作用下,雷达接收机输出端脉冲与噪声叠加后信号的底部与基线噪声(只有接收机内噪声)的顶部在一条直线上(相切),则称此输入脉冲信号功率为切线信号灵敏度TSS P 。

对于单脉冲雷达信号,则有,其中,A 是输入信号的幅度,R 为接收机内阻。

本实验仪接收机内阻为50 欧姆。

三、实验参数设置本实验的可变参数为目标回波幅度的衰减百分比。

初始衰减值为0。

每按一次参数按钮,衰减增加5%,直到衰减百分比的最大值95%后又从初始值开始。

四、 实验数据以及结果目标回波幅度衰减百分比与回波信号幅度表:目标回波时延:52us有信号处噪声电压峰值Um :22mV 噪声的最大值Un :16mV 两目标回波间的间隔:400us五、 结论以及讨论 波形图02040608010012345衰减值回波电平1. 根据记录回波的时延,计算目标回波距离。

答:目标回波时延:tr=52us ,根据公式R=C*tr/2计算得回波距离R 为7.8km 。

2. 距离分辨率为多少?答:距离分辨率,实验测得目标回波脉冲宽度为240ns,代入距离分辨率公式得到rc约为36m。

3、目标回波输入信号的幅度改变,示波器输出信号有何变化?答:由前面数据整理的表格可以看出,目标回波输入信号的幅度衰减越来越大时,示波器输出信号幅度越来越小。

4.雷达的切线灵敏度是多少?答:接收机灵敏度为: 95。

5、基线噪声电压峰值Un和满足切线灵敏度条件下有信号处输出噪声的峰值Um 是否相同?为什么?答:基线电压峰值Un小于满足切线灵敏度条件下有信号处输出噪声的峰值Um,因为Un只是接收机内噪声而Um不仅包含接受机内噪声还包含外界干扰噪声所以Un<Um。

六、教师评语教师签字虚警率实验一、实验目的要求1.熟悉门限检测的方法2.熟悉虚警概率的含义3.了解门限与虚警概率的关系二、实验原理1.门限检测雷达接收机是在有噪声的背景下检测信号。

由于噪声的起伏特性,判断信号的出现是一个统计的问题,必须按照某种检测标准进行判断。

门限检测就是给定某个门限,如果某时刻的回波信号的电压大于给定门限,就认为该位置有目标存在,否则认为该位置没有目标。

2.虚警率虚警是指没有信号而仅有噪声时,噪声电平超过门限值被误认为是目标的事件。

噪声超过门限的概率称为虚警概率。

通常包络检波器输出噪声的电压振幅r的概率密度是瑞利分布,记做p (r) fa 。

设门限值是T U ,那么噪声超过门限电平的概率就是虚警概率,所以可以用式计算其中,σ 2是噪声的方差。

3.虚警概率P fa 统计算法N 个脉冲重复周期里虚警事件总数fa N 为m为没有目标的距离单元距离。

虚警概率。

三、实验参数设置可变参数为检测门限。

信号归一化最大值为255。

初始门限值为5,每按一次参数按钮,门限值加5,最大值是25。

按动参数加按钮○6 改变检测门限,从LED 上读取虚警概率。

四、实验数据以及结果检测门限与虚警概率测试表五、 实验成果分析1、试分析虚警率和检测门限关系。

5101520250.010.020.030.04门限虚警率虚警概率与门限电平大小有密切的关系。

噪声超过门限电平而误认为信号的事件称为“虚警”,虚警概率指的是噪声包络电压超过检测门限电平的概率。

因此检测门限值越大,噪声信号超过门限的概率越小,雷达的虚警概率越小。

2、检测门限不同时,示波器显示的距离波门信号有何不同,为什么?答:检测门限越高距离波门信号出现的时间间隔越长。

因为门限值越高,噪声电平超过检测门限的概率越小,所以距离波门信号出现的时间间隔越长,次数降低。

六、 教师评语教师签字恒虚警检测实验一、实验目的要求1.熟悉发现概率的定义。

2.熟悉恒虚警检测的原理3.了解虚警概率与发现概率的关系。

二、实验原理1.发现概率有目标时的电平超过门限正确检测出目标的概率,称作发现概率。

包络检波后,信号加噪声的电压振幅r服从广义瑞利分布,记做p (r) d 。

发现信号就是信号加噪声的电压超过给定门限T U 的事件,那么发现概率为,从上式可以看出,发现概率和检测门限,信噪比有关。

2.发现概率d P 统计算法N 个脉冲重复周期里发现事件总数d N 为,m为有目标的距离单元距离。

3.恒虚警检测在许多雷达系统中,要求虚警概率为一固定的值。

由式(3-3)可知,如果虚警率给定,检测门限是可由式(3-9)确定的。

,这样,发现概率d P 和虚警概率,信噪比有关。

在信噪比相同的条件下,虚警率不同,发现概率不同。

给定虚警率,由式(3-9)计算检测门限,在由式(3-7)和式(3-8)即可统计相应的发现概率。

四、实验内容可变参数为检测的虚警概率。

默认值为概率为10-3。

每按一次参数按钮,虚警概率减小10。

虚警概率的最小值为10-14。

按动参数加○5 改变虚警概率,按确认按钮○6 确认。

从LED 上读取发现概率。

观察目标回波信号和距离波门信号。

四、实验数据与结果虚警概率与发现概率关系表五、实验成果分析1.当虚警概率变化时,距离波门信号有何变化,为什么?答:虚警概率增大时相应的检测门限降低,噪声电平超过检测门限被发现的概率增大,因此距离波门信号出现的时间间隔变短,次数降低。

反之虚警概率降低时,距离波门信号出现的时间间隔变长,次数增大。

2.绘制发现概率和虚警概率的曲线图并分析二者关系当信噪比一定时,虚警概率越小,发现概率越小; 虚警概率越大,发现概率越大。

六、教师评语教师签字动目标显示(MTI)实验一、实验目的要求1.掌握动目标显示的基本原理。

2.熟悉一次相消和二次相消的概念。

二、实验原理1.动目标的回波设载频为0 ϖ ,重复周期为r T ,脉冲宽度为τ 的单脉冲雷达发射信号为,斜距为R ,径向速度为r v 的目标回波信号相对发射信号有一延时r t 满足,回波信号与发射信号间存在高频相位差,产生的频率差为,其中d f 称为多普勒频率。

零中频混频后,得到正交两路IQ 信号分别为,对于固定目标,多普勒频率为0,所以输出为包络恒定的电平。

回波脉冲的包络调制频率为多普勒频率。

动目标和固定目标的I 路输出波形如图3.6 示。

2.动目标显示原理在检波器的输出端,固定回波是一串振幅不变的脉冲,而运动目标是一串振幅调制的脉冲。

相关文档
最新文档