核壳乳液聚合
核壳乳液聚合

Related imformation
Title
synthesis and application of anionic acrylic emulsion(阴离 子丙烯酸) used as paper wet-strength additive
Authors
Xin Liu, Chunhua Tian, Yuying Wu, Xueming Zhang College of Materials Science and Technology, Beijing
丙烯酸丁酯、苯乙烯、十二烷基硫酸钠、烷基酚聚氧乙烯醚
the optimal conditions
the ratio of SDS to OP-10 was 1:2, total dosage was 8%;
the dosage of initiator was 0.25 g, including 0.15g in seeded polymerization process and 0.1g in shell polymerization process;
the functional monomer dosage was 7.5 g.
Your site here
LOGO
Abstract
used as wet strength agent
single use of APSBM(苯乙烯-丙烯酸丁酯-α-甲基丙烯酸) was not good simultaneous use of 0.3% APSBM and 0.7% PAE showed great improvement of wet strength to 38% SEM photographs showed that the appearance of paper treated with 0.7% PAE and 0.3% APSBM had a close crosslinking(交联)
核壳乳液聚合

三、聚合物粒子的结构形态
四、核壳结构的影响因素:
1.聚合工艺 聚合工艺
聚合工艺对乳胶粒颗粒形态有较大的影响,其中 最重要的就是加料方式。 单体的加入方式可以采用3种方式: (1)平衡溶胀法:将单体加入到乳液体系中,在一定 温度下溶胀一定时间,然后引发聚合。 (2)间歇法:按配方将种子乳液、单体、水及补加的 乳化剂同时加入反应器中,然后加入引发剂进行壳 层聚合. (3)半间歇法:将引发剂加入种子乳液后,单体以一 定的速度恒速滴加,使聚合期间没有充足的单体。
在磁性微球和免疫磁 珠表面通过化学修饰 结合上一系列不同的 化学官能团及具有特 异性的抗体、蛋白和 核酸,可应用于核酸 纯化、免疫分析、临 床诊断等多个领域, 是医学、分子生物学 研究中不可或缺的分 离纯化工具。
聚合物微球,具有单一粒径范围,目前具 有线性聚苯乙烯等多种微球,其用途涉 及色谱学、显微学、细胞测量学、组织 分离技术、癌症医治和DNA技术等。
乳胶粒的核壳结构与性能的关系
1、成膜性能 核壳聚合物乳液与一般的聚合物乳液相比, 区别仅在于乳胶粒的结构形态不同。聚合物乳 胶形成机械完整性的连续性膜的能力取决于粒 子表面张力作用下的粘弹松弛性,以及粒子与 粒子界面间分子的相互作用,这两个参数都与 聚合物的玻璃化温度有关,特别是粒子表面层 的玻璃化温度有关。
3、引发剂的影响: 、引发剂的影响:
例如以甲基丙烯酸甲酯(MMA)为核单体,以苯乙 烯( S)为壳单体进行乳液聚合,采用油溶性引发剂 (如偶氮二异丁睛)时,会如预期的那样得到“翻转” 的核壳乳胶粒; 但当以水溶性引发剂(如过硫酸钾)引发反应时,由 于大分子链上带有亲水性离子基团,增大了壳层 聚苯乙烯分子链的亲水性。引发剂浓度越大,聚 苯乙烯分子链上离子基团就越多,壳层亲水性就 越大,所得乳胶粒就可能不发生“翻转”。 如果采用水溶性引发剂。随着用量由少到多,则 可能得到“翻转”型、半月型、夹心型或正常型 结构的乳胶粒。
种子乳液聚合与核壳乳液聚合

工业生产中:先用乳液聚合生成丁二烯胶 乳,它将是一种高弹性体胶乳,然后用这种胶 乳与丙烯腈、苯乙烯进行接枝共聚反应生成 ABS接枝共聚物
①
这就是乳液接枝
然后用本体聚合或悬浮聚合制成SAN共聚物 ① ②
最后将丁二烯胶乳与苯乙烯和丙烯腈 的接枝共聚 粒料与SAN粒料掺混
这就是掺混
①
②
③
影响产品质量的重要因素
引发剂对接枝率的影响
乳化剂对接枝率的影响
接枝反应过程中,为了维持体系的稳定性,有 时需要补加一定量的乳化剂,但如果体系中的 乳化剂浓度过高,就会形成新的胶束,使单体 极易进入胶束内反应生成自由共聚物而降低 接枝率。 因此在接枝反应时应不加或少加乳化剂,控 制乳化剂浓度在临界胶束浓度(CMC)以下,从 而保证一定的接枝率。
根据核和壳单体的不同,正常的核壳聚合 物基本上有两种类型: 硬核软壳型:这类聚合物主要用作涂料。 软核硬壳型:以丁二烯﹑丙烯酸丁酯等软 单体,经乳液聚合后为种子,甲基丙烯酸甲 酯﹑苯乙烯﹑丙烯睛等为硬单体,后来加入 继续聚合,就成为硬壳层。以B为核,S和A 共聚物为壳,就成了著名的ABS工程塑料。
以上因素最终影响三组分在产品中的含量
橡胶含量 苯乙烯含量 丙烯睛含量
冲击性能 ↑
流动性
↓
耐热变形性 ↓
抗张强度 ↓
耐热变色性 ↓
耐药品性 ↓
耐候性
↓
透明性
↓
刚性
↓
↓
↓
↑
↓
→
↑
↑
↑
→
↓
↓
↑
→
ቤተ መጻሕፍቲ ባይዱ
↓
↑
→
↑
↑
在这里为单位质量橡胶粒子上接枝SAN的
核壳结构聚合物乳液性能的测试及综合评价

核壳结构聚合物乳液性能的测试及综合评价
1 背景
聚合物乳液具有良好的黏度控制、腐蚀性能和良好的湿润能力,
因此在化学、冶金和石油等不同行业中都得到了广泛应用。
核壳结构
聚合物乳液是一种在外核层包裹一层聚合物核壳的复杂分子结构,它
具有抗原污染性强、抗腐蚀性强和耐热性高的优点,作为新型的产品
被关注度越来越高。
2 测试及评价
核壳结构聚合物乳液测试主要分为理化性能测试和力学性能测试
两个部分。
在理化性能测试中,可以通过黏度、粘度系数、流变曲线、抗腐蚀和抗氧化指数等方法,评估乳液的性能。
同时,在力学性能测
试中,还可以通过抗冲切模量和抗压强度等来衡量乳液的结构强度。
为了能够清晰、准确地评价核壳结构聚合物乳液的性能,还需要
将上述测试结果进行整合,获得一个比较完整的性能综合评价。
根据
乳液的复杂性,可以将性能综合评价分为定性和定量两个部分,在定
性评价中,可以测定乳液的储存、生物相容性、抗氧化性等方面,而
在定量评价中,可以用折算の系数等数字评估乳液的复杂性能。
3 结论
核壳结构聚合物乳液的性能是复杂的,因此,其在不同行业中的
应用需要进行综合测试、综合鉴定才能确定最佳的性能。
另外,未来
也可以根据聚合物乳液特定的应用加以改进,更好地适应不同行业的特点,并提供更出色的性能。
核壳乳液聚合

3.乳胶粒的核-壳结构
在乳胶粒的中心附近是一个富聚合 物的核,其中聚合物含量大而单体 含量少,聚合物被单体所溶胀。。
在核的外围是一层富单体的壳, 其中聚合物被单体溶胀
在壳表面上吸附乳化剂分子而成 一单分子层,以使该乳胶粒稳定 的悬浮在水相中
在核与壳的界面上,分布有正在 增长的或失去活性的聚合物末端, 聚合反应就是发生在这个界面上
核壳乳液聚合的建立
随着复合技术在材料科学中的发展,20世纪80年代,科学家们提 出了“粒子设计”的新概念,即从粒子层面而非宏观的机械混合
来复合。核壳乳液聚合就是在“粒子设计”的概念下建立起来
的。
定义:把两种或多种性质不同的物质在一定条件下分两阶段或 多阶段聚合,使乳胶粒的内侧与外侧分别富集不同的成分,即
3、乳胶粒子核壳结构的表征
Seigou kaw aguchi等对核层单体甲基丙烯 酸进行电位滴定,测得电势与乳液球形涂膜 的电压相同,从而证实了乳液的核壳结构。 用透射电镜(TEM)观察所制得的核壳的粒子 形态。
AndreaM等在壳层单体中加入可提供阳离子 的氨基甲基丙烯酸的氯化物,通过乳液在不同 pH值和温度下的动电特性也证实了带有电荷 的壳层的存在。
5、核壳聚合性能以及应用
①制备互穿聚合物网络胶乳.
有网络结构的网络聚合物胶乳的形成可以增进聚 合物之间的相容性,这是因为采用特定工艺产生的 三维结构把两种聚合物连接起来了。
相分离一般是在聚合过程中产生的。高相容体系 的相区尺寸比低相容体系的要小;由聚合产生的相区 尺寸通常比由机械共混制得的要小得多。而且构成 复合材料互穿聚合物网络的两种聚合物相均为连续 相,相区尺寸小,一般在10- -100nm,小于可见 光的波长,故常成透明状。
核壳乳液聚合及互穿网络聚合物( IPN )制备工艺及原理

随着复合技术在材料科学的发展,20世纪80年代Okubo 提出了“粒子设计”的新概念,其主要内容包括异相结构的控制、异型粒子官能团在粒子内部或表面上的分布、粒径分布及粒子表面处理等。
核-壳型乳液聚合可以认为是种子乳液聚合的发展。
乳胶粒可分为均匀粒子和不均匀粒子两大类。
其中不均匀粒子又可分为两类:成分不均匀粒子和结构不均匀粒子。
前者指大分子链的组成不同,但无明显相界面,后者指粒子内部的聚合物出现明显的相分离。
结构不均匀粒子按其相数可分为两相结构和多相结构。
核﹣壳结构是最常见的两相结均。
如果种子乳液聚合第二阶段加入的单体同制备种子乳液的配方不同,且对核层聚合物溶解性较差,就可以形成具有复合结构的乳胶粒,即核﹣壳型乳胶粒。
即由性质不同的两种或多种单体分子在一定条件下多阶段聚合,通过单体的不同组合,可得到一系列不同形态的乳胶粒子,从而赋予核﹣壳各不相同的功能。
核﹣壳型乳胶粒由于其独特的结构,同常规乳胶粒相比即使组成相同也往往具有优秀的性能。
一、核壳乳液乳胶粒的结构形态根据“核﹣壳”的玻璃化温度不同,可以将核壳型乳胶粒分为硬核﹣软壳型和软核﹣硬壳型:从乳胶粒的结构形态看,主要着几种:正常型、手镯型、夹心型、雪人型及反常型。
其中反常型以亲水树脂部分为核。
图5-7是几种常见的核売型乳胶粒的模型。
核壳乳胶粒子结构形态多种多样,在形成过程中受到诸多因素的影响,很难用热力学分析解决。
大量的研究结果表明,对粒态的影响因素主要有:加料方法和顺序,核壳单体及两聚合物的互溶性,两聚合物的亲水性,引发剂的种类和浓度,聚合场所的黏度,聚合物的分子量,聚合温度等。
这些因素是互相联系、互相制约和矛盾的,不能孤立看待。
(1)单体性质乳胶粒的核﹣壳结构常常是由加入水溶性单体而形成的。
这些聚合单体通常含有羧基、酰胺基、磺酸基等亲水性基团。
由于其水溶性大易于扩散到胶粒表面,在乳胶粒﹣水的界面处富集和聚合。
当粒子继续生长时,其水性基团仍留在界面区,而产生核﹣売结构。
“核-壳”型丙烯酸乳液聚合物的制备及其溶胶、凝胶性能研究

“核-壳”型丙烯酸乳液聚合物的制备及其应用性能研究王国军(北京东方亚科力化工科技有限公司研究中心,北京101149)摘要:采用乳液聚合制备了一系列丙烯酸类“核-壳”聚合物,通过分子设计改变核与壳单体组成考察对聚合物综合性能的影响,以及非极性增塑剂DOP和极性增塑剂TCP对其溶胶和凝胶性能的影响。
研究显示:选用玻璃化温度较高的P i-BMA作为聚合物的核层,MMA/MAA共聚物作为壳层,其溶胶和凝胶性能明显优于其它“核-壳”聚合物,该“核-壳”聚合物在汽车工业中具有广阔的应用前景。
关键词:“核-壳”乳液聚合;溶胶;凝胶;储存稳定性“核-壳”乳液聚合物是由不同性质的两种或多种单体在一定条件下按阶段聚合(即种子聚合或多阶段聚合),使乳胶颗粒内部的内侧和外侧分别富集不同的成分,通过核和壳的不同组合,得到一系列不同形态的乳胶粒子;该方法赋予核/壳不同的功能,获得具有一般无规共聚物、机械共混物难以实现的优异性能[1-3]。
当前“核-壳”乳液聚合物以优异、独特的性能在粘接领域得到广泛的应用[4-6];但“核-壳”结构固体粉末聚合物的应用报道很少。
本文采用乳液聚合方法合成出一系列具有核壳结构的丙烯酸类聚合物,与增塑剂、填料等添加剂共混制备溶胶,在高温烘培工艺下溶胶转变成凝胶,同时兼顾溶胶的储存稳定性和凝胶的物理机械性能,最终在金属部件表面形成一层坚韧的保护膜,具有防震、防腐、隔热、抗石击等物理机械性能,在汽车工业中具有广阔的应用前景[7]。
1 试验部分1.1 原料甲基丙烯酸甲酯(MMA),丙烯酸正丁酯(BA),甲基丙烯酸正丁酯(nBMA),甲基丙烯酸异丁酯(iBMA),甲基丙烯酸(MAA),化学纯,英国Inoes Acrylics公司;过硫酸钾(KPS),分析纯,韩国大井化金株式会社;琥珀酸二辛酯亚硫酸钠(乳化剂AOT),荷兰Cytec工业公司;硫酸镁,分析纯,韩国大井化金株式会社;邻苯二甲酸二辛酯(DOP),三甲酚磷酸酯(TCP),工业级,韩国东洋化学工业株式会社;超细碳酸钙填充剂,韩国LG化学株式会社。
核壳乳液聚合

性能优越
那么核壳结构乳胶粒形成的聚合物乳液的性 能到底比一般聚合物乳液有哪些方面的优越 性呢? 性呢?
1.热处理性能 热处理性能
PEA/PS复合胶乳膜的热处理性能,处理之前膜又软又 复合胶乳膜的热处理性能, 复合胶乳膜的热处理性能 经热处理之后, 弱;经热处理之后,变成刚性和脆性,并且膜的拉伸强 经热处理之后 变成刚性和脆性, 度也增加了。 度也增加了。 而对于50/50的PEA/PS复合胶乳膜,其粒子形态由相 复合胶乳膜, 而对于 的 复合胶乳膜 分离的PS微粒分散在连续相 微粒分散在连续相PEA中.这些膜的力学行为 分离的 微粒分散在连续相 中 这些膜的力学行为 属于软的热塑性弹性体,经过高于Tg以上的温度的热 属于软的热塑性弹性体,经过高于 以上的温度的热 处理,其模量、断裂强度和断裂能量显著增加。 处理,其模量、断裂强度和断裂能量显著增加。 这是由于高于PS的 时 这是由于高于 的Tg时,PS的分子链可以有效的移 的分子链可以有效的移 进行重排,达到平衡状态。此时PEA和PS相的界 动,进行重排,达到平衡状态。此时 和 相的界 面张力达到最小, 可能以半连续或整连续的方式分 面张力达到最小,PS可能以半连续或整连续的方式分 散于PEA相中。这样从热力学角度降低了分散相的凝 相中。 散于 相中 这样从热力学角度降低了分散相的凝 聚作用。 聚作用。
核--壳乳胶粒的生成机理 --壳乳胶粒的生成机理
1.接枝机理 接枝机理
乙烯基单体以乳液聚合方式接枝到丙烯酸系橡胶 还有ABS树脂也是苯乙烯和丙烯腈的混合单体 上。还有ABS树脂也是苯乙烯和丙烯腈的混合单体 以乳液聚合法接枝到丁二烯种子乳胶粒上,制成性 以乳液聚合法接枝到丁二烯种子乳胶粒上, 能优异的高抗冲工程塑料.在核一壳乳液聚合中, 能优异的高抗冲工程塑料.在核一壳乳液聚合中,如 果核、壳单体中一种为乙烯基化合物, 果核、壳单体中一种为乙烯基化合物,而另一种为 丙烯酸酯类单体, 丙烯酸酯类单体,核壳之间的过渡层就是接枝共聚 也就是说, 物,也就是说,在这种情况下核壳乳胶粒的生成是 按接枝机理进行的。 按接枝机理进行的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Your site here
LOGO
Abstract
used as wet strength agent
single use of APSBM(苯乙烯-丙烯酸丁酯-α-甲基丙烯酸) was not good simultaneous use of 0.3% APSBM and 0.7% PAE showed great improvement of wet strength to 38% SEM photographs showed that the appearance of paper treated with 0.7% PAE and 0.3% APSBM had a close crosslinking(交联)
Your site here
Results and discussion
During seed reaction stage, when emulsifier dosage was 3%, the monomer conversion rate was the lowestof all; During core reaction stage, as the reaction went on, the monomer conversion rate increased fast,especially the emulsifier dosage 3% increased significantly; During shell reaction stage, the conversion rate increased slowly; At the end of reaction, the conversion rates of four different emulsifier dosages system were almost the same, which could all reach more than 99%
Company name
核壳乳液聚合的应用举例(1) 多层特种结构聚合物乳胶粒子
递变进料、单体A单体B、洋葱 当R0:R1=1:2,内部富含B外部富含A的核壳聚合物; 当R0»R1,无规共聚物;当R0«R1,典型的B核A壳聚合物
Company name
LOGO
核壳乳液聚合的应用举例(2)
synthesis and application of anionic acrylic(阴离子 丙烯酸) emulsion used as paper wet-strength additive
Your site here
LOGO
LOGO
Thank You!
Results and discussion
1/more than 98% 2/as the amount of SDS increased, the flocculation of emulsion significantly increased and the storing stability reduced,also the emulsion began to layer. 3/same charge causes the bonding of the emulsifier molecules and latex particles to decline. LOGO
Seed(种子聚合) emulsifier, buffer and distilled water mixed seed monomers, potassium peroxydisulfate(过硫酸钾) Core (核聚合) core monomers which were well pre-emulsified Shell(壳聚合) well pre-emulsified shell monomers
Company name
影响核壳乳液聚合的因素
核壳乳液粒子构成机理 接枝机理 一种单体在另一种聚合物存在下进行聚合时,在适当 的条件下,会多去聚合物上的活泼氢原子而发生接枝 共聚。如St-BA核壳乳液聚合
互穿聚合物网络机理 两种聚合物分子链相互贯穿并以化学键的方式各自交 联而成的网络结构 离子键合机理——不同电荷的相互作用
Emulsion characterization
observation of emulsion’s state,viscosity and color; the solid content, conversion mechanical stability, ionic stability, pH stability and storing stability (one month)
核壳乳液聚合
核壳乳液聚合
1
什么是核壳乳液聚合 核壳乳液聚合的核壳结构 影响核壳乳液聚合的因素 核壳乳液聚合运用举例
2 3 4
Company name
什么是核壳乳液聚合
核壳乳液聚合
核壳乳液聚合是种子乳液聚合的发展。 若种子聚合和后继聚合采用不同单体,则形成核 壳结构的胶粒,在核与壳的界面上形成接枝层, 增加两者的相容性和粘结力,提高力学性能。 在总配比完全相同的情况下,因为组分性质的差 异,采用种子乳液聚合的方法,控制不同的加料 顺序和条件,可以得到结构形态不同的核壳乳胶 粒子。 与普通乳液乳液聚合相比,它有显著的优越性, 如在流变性、最低成膜温度、玻璃转化温度、抗 张强度、粘接性能、加工性等方面有显著的特点。
Your site here
LOGO
Experienment
A constitutional formula synthesized by St(苯乙烯) ,BA(丙烯酸丁酯) and α-MAA(甲基丙烯酸)
Your site here
LOGO
Experienment
Copolymer synthesis
Company name
核壳乳液聚合的核壳结构
单体液滴
单体液滴
种子胶乳
单体、乳化剂分别处在水溶液、 胶束、液滴三相中的示意图
Company name
影响核壳乳液聚合的因素
根据核和壳单体的不同,正常的核壳聚合物基本上 有两种类型: 硬核软壳型:这类聚合物主要用作涂料。 软核硬壳型:调节玻璃化温度或最低成膜温度。以 丁二烯﹑丙烯酸丁酯等软单体,经乳液聚合后为种 子,甲基丙烯酸甲酯﹑苯乙烯﹑丙烯睛等为硬单体, 后来加入继续聚合,就成为硬壳层。以B(聚丁二烯) 为核,S(苯乙烯)和A(丙烯氰)共聚物为壳,就 成了著名的ABS工程塑料。
Company name
影响核壳乳液聚合的因素
壳层物质的加料方法不同, 形成的核壳结构和核壳间结合方式也差别很大。
间歇法:壳单体 一次性加入,在 引发剂存在下引 发聚合,这种方 法也使乳胶粒表 面单体浓度很高。
Company name
影响核壳乳液聚合的因素
影响核壳结构的因素除了两中单体的加料次序外,还 与单体的亲水性有关。 一般乳液聚合都以水为分散介质,亲水性较大的聚合 物易和介质水接近,而疏水性倾向于排斥介质水,因 而形成不同结构形态的胶乳粒子。 正常结构和非正常的结构形态(如翻转形等)乳胶粒。
background
Your site here
LOGO
Introduction
idea
a new concept of "particle design", that is, changing the structure of latex(胶乳) particles through designing the composition of core and shell structures of latex particles
as to improve the properties of emulsion acrylate copolymer(丙烯酸共聚物) emulsion with coreshell structure was prepared using styrene (St) (苯乙烯) as hard monomer and butyl acrylate (BA) (丙烯酸丁酯)as soft monomer.
the optimal conditions
the ratio of SDS to OP-10 was 1:2, total dosage was 8%; the dosage of initiator was 0.25 g, including 0.15g in seeded polymerization process and 0.1g in shell polymerization process; the functional monomer dosage was 7.5 g.
From
4th International Conference on Pulping, Papermaking and Biotechnology
Your site here
LOGO
Contents
1. Abstract 2. Introduction 3. Experienment
4. Results and dite here
LOGO
Abstract
polymerization
butyl acrylate (BA) as soft monomer, styrene (St) as hard monomer sodium dodecyl sulfate (SDS) and dodecyl polyoxy ethylene (OP-10) as emulsifiers under nitrogen 丙烯酸丁酯、苯乙烯、十二烷基硫酸钠、烷基酚聚氧乙烯醚
Company name
什么是核壳乳液聚合
少量单体先形成种子胶乳
少量单体先形成核结构部分