滕东中学七年级数学期中模拟试卷

合集下载

滕州东南协作区第一学期七年级期中诊断性测评数学试卷

滕州东南协作区第一学期七年级期中诊断性测评数学试卷

滕州东南协作区第一学期七年级期中诊断性测评数学试卷一、选择题(每题3分,共36分)下列各小题都给出了四个选项,其中只有一项是符合题目要求的。

注意可以用各种不同的方法来解决你面前的选择题哦! 1.一个正方体的面共有A .2个B .4个C .5个D .6个2.-3的倒数是A .-3B .3C .31-D .31 3.化简)2(--的结果是A .-2B .21-C .21D .24.如下图、数轴上A 点表示的数减去B 点表示的数,结果为A .8B .-8C .2D .-25.一分几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如下图所示,则组成这个几何体的小正方块最多有A .4个B .5个C .6个D .7个6.实数b a 、数轴上的位置如下图所示,则b a 、的大小关系是A .b a >>0B .b a =C .b a <<0D .不能判断7.计算3)21(-的结果是A .61B .61-C .81D .81-8.已知数轴上的点A 到原点O 的距离为2,那么数轴上到点A 的距离是1的点所表示的数有A .1个B .2个C .3个D .4个9.一个两位数,个位数字为a ,十位数字为b ,则这个两位数为A .b a +B .baC .a b +10D .b a +1010.下面判断语句中正确的是A .0不是代数式B .2)(b a +的意义是a 的平方与b 的平方的和 C .a 与b 的平方差是2)(b a - D .b a 、两数的倒数和为ba 11+ 11.已知代数式a 21的值为-2,那么122--a a 的值为 A .-9B .-25C .7D .2312.实际测量一座山的高度时,可在若干个观测点中测量每两个相邻可视观测点的相对高度,然后用这些相对高度计算出山的高度。

下表是某次测量数据的部分记录(用A -C 表示观测点A 相对观测点C 的高度):根据这次测量的数据,可得观测点A 相对观测点B 的高度是 A .210米B .130米C .390米D .-210米二、填空题(每题4分。

2021-2022学年山东省枣庄市滕州市七年级(上)期中数学试卷(解析版)

2021-2022学年山东省枣庄市滕州市七年级(上)期中数学试卷(解析版)
A.﹣14B.﹣12C.﹣8D.﹣6
10.若数轴上点A表示﹣1,且AB=3,则点B表示的数是( )
A.﹣4B.2C.﹣3或3D.﹣4或2
11.如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,若这个几何体最多由m个小正方体组成,最少由n个小正方体组成,则2m﹣n=( )
A.10B.11C.12D.13
(2)x是最大的负整数,将x代入(1)问的结果求值.
25.学校举行运动会,七年级一班需要购买运动鞋和短裤,运动鞋每双定价200元,短裤每条定价50元.某商店开展促销活动,可以同时向客户提供两种优惠方案:
方案一:买一双运动鞋送一条短裤;
方案二:运动鞋和短裤都按定价的90%付款.
现在一班要购买运动鞋20双,短裤x条(x超过20).
A.1个B.2个C.3个D.4个
【分析】利用整式定义可得答案.
解:﹣ mn,x2+2x+6, , 是整式,整式有4个,
故选:D.
7.在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+c<0,则下列式子一定成立的是( )
A.a+c>0B.a+c<0C.abc<0D.|b|<|c|
【分析】由图中数轴上表示的a,b,c得出a<b<c的结论,再根据已知条件ac<0,b+c<0判断字母a,b,c表示的数的正负性即可.
A.1B.2C.4D.8
【分析】根据题意多计算几次输出结果发现规律即可求出第2021次运算的输出结果.
解:根据题意第一次运算结果输出的是3,
第二次运算输出的是8,
第三次运算输出的是4,
第四次运算输出的是2,
第五次运算输出的是1,
第六次运算输出的是6,
第七次运算输出的是3,

山东省滕州市七年级数学上学期期中试题(扫描版) 北师

山东省滕州市七年级数学上学期期中试题(扫描版) 北师

山东省滕州市2015-2016学年七年级数学上学期期中试题2015~2016学年度第一学期期中考试七年级数学试题答案一、选择题:(每小题3分,计45分)二、填空题:(每小题3分,计24分)16.2- 17.33 18. 1 19.320.14 21.-3 22.65-23.347n + 三、解答题(共计51分)24.(本题满分8分,每小题各4分)解:(1)2(10)8(2)(4)(3)-+⨯---⨯- (10)8412=-+⨯- ……………………………………………2分 103212=-+- ………………………………………………3分10= ………………………………………………4分(2)3211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦ ()1112923=--⨯⨯- …………………………………………2分 11(7)6=--⨯- 716=-+ ………………………………………3分 16= ………………………………………………4分 25.(本题满分8分,每小题各4分)解:(1)132(41)(34)2x x x +-+-- 338222x x x =-+-+ 132x =-+ ………………………………………………2分 12x =-当时,原式()11322⎛⎫-⨯-+ ⎪⎝⎭=3122=+2= …………………4分 (2)21(428)(2)4x x y x y -+----21222x x y x y =-+-++ 232x x =-+ ……………………………………………2分 当1,20152x y ==时,原式=2131131222442⎛⎫-+⨯=-+= ⎪⎝⎭ ………4分 26.(本题满分6分,每小题各2分)解:(1)共有4种弥补方法;……………………………………………2分(2)所画图形正确(答案不唯一). ………………………………4分(3)数字填写准确(答案不唯一) ………………………………6分27.(本题满分6分,每小题各2分)解:(1)如图所示: ……………………………………………2分(2)小明家与小刚家相距:()734=--(千米). ………………………4分(3)这辆货车此次送货共耗油:(4+1.5+8.5+3)×1.5=25.5(升). 答:小明家与小刚家相距7千米,这辆货车此次送货共耗油25.5升.……………………………………………6分28.(本题满分7分)解:(1)“囧”的面积为:1202022xy xy ⨯-⨯- 4004002xy xy xy =--=- ……………………………………………3分(2)∵28(4)0x y -+-=,∴8,4x y ==, ………………………5分此时“囧”的面积为33664400482400=-=⨯⨯- …………7分29.(本题满分8分,每小题各2分)解:(1)抽取53--,;15)5()3(=-⨯-.………………………………2分(2)抽取53-,;353)5(-=÷-. ………………………………4分 (3)抽取54-,;625)5(4=-. ………………………………6分(4)答案不唯一:如抽取4,3,5,3--,有[(3)(5)]3424---⨯⨯=.………………………………8分30.(本题满分8分)A 5- 4- 5 63 4 2 0 12- 1- 3- 百货大楼 B解:(1) 蔬菜加工后质量为00(120)x -千克,每千克价格为00(140)y +元.………2分 所以,可卖得0000(120)(140) 1.12x y xy -⨯+=元.……………………………………………4分(2) 当1000, 1.5x y ==时,1.12 1.121000 1.51680xy =⨯⨯=(元),……………………………………………6分不加工直接出售可卖得150010005.1=⨯(元),所以,16801500180-=(元).答:加工后1000千克蔬菜可卖1680元,加工后可比加工前多卖180元.……………………………………………8分。

山东省滕州市实验高级中学2021-2022年七年级上学期期中复习模拟数学试题(二)

山东省滕州市实验高级中学2021-2022年七年级上学期期中复习模拟数学试题(二)

2021-2022年山东省滕州市实验高级中学第一学期期中复习模拟题(二)七年级数学试题一、单选题1.下列各数中数值相等的是()A.和B.和C.和D.和2.有理数|-1|,-,-的大小关系是()A.-<-<|-1| B.|-1|<-<-C.|-1|<-<-D.-<-<|-1|3.如图所示的运算程序中,若开始输入的值为,我们发现第次输出的结果为,第次输出的结果为,,则第次输出的结果是()A.B.C.D.4.有5个不为0的有理数相乘,积为负数,则负数个数为()A.0或2或4 B.1或3或5C.2 D.45.已知a,b在数轴上的位置如图所示,则下列结论不正确的是( )A.a+b0 B.a﹣b0C.ab0 D.|a||b|6.若与是同类项,则的值为()A.2 B.3C.4 D.57.苹果原价是每干克元,按8折优惠出售,用式子表示现价为()A.B.C.D.8.长方形的周长为,一边长为,则另一边长为()A.B.C.D.9.用一个平面去截长方体,截面不可能是()A.七边形B.六边形C.五边形D.矩形10.观察下列一组图形中点的个数,其中第个图中共有个点,第个图中共有个点,第个图中共有个点,按此规律第个图中共有点的个数是()个A.B.C.D.11.下面哪个图形不能折成一个正方体()A.B.C.D.12.当时,代数式的值为,则当时,这个代数式的值为()A.B.C.D.二、填空题13.绝对值不大于5的所有整数的和是______.14.数轴上点表示的数是2,从点出发,沿数轴向左移动3个单位长度到达点,则点表示的数是______.15.若与互为倒数,则的值为_______.16.若关于的多项式与多项式的和不含二次项,则的值为_______.17.如图是一个正方体的侧面展开图,如果将它折叠成一个正方体后相对的面上的数相等,则图中x的值为___________.18.小颖同学做这样一道题“计算”,其中“”是被墨水污染看不清的一个数,她翻开后面的答案,得知该题的计算结果是3,那么“”表示的数是_________.三、解答题19.细心算一算,一定算对哟!(1)(+12)+(-7)-(+15)(2)()×(-48)(3)(4)20.先化简再求值:已知,,当,时,求的值.(1)这20袋样品的总质量比标准总质量多或少?相差多少克?(2)若每袋标准质量为200克,则这20袋样品的总质量为多少克?平均每袋质量比每袋标准质量多还是少?多或少多少克?22.如图所示,几何体是由9个小立方块搭成的几何体,请分别从正面、左面和上面看,试将你所看到的平面图形画出来.23.定义一种新运算:,如.计算下列各式:(1)(2)24.某农户承包荒山若干亩,某季度水果总产量为18000千克,种植总成本为8200元.该农户拉到市场出售,平均每天出售1000千克,每千克可售元,农用车运费及其他各项税费平均每天100元;若在果园出售,每千克售元(),无需农用车运费及其他各项税费.(1)分别用,表示在市场出售和在果园出售水果的获利情况.(2)若元,元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好.。

2022-2023学年山东省枣庄市滕州市七年级(下)期中数学试卷(含解析)

2022-2023学年山东省枣庄市滕州市七年级(下)期中数学试卷(含解析)

2022-2023学年山东省枣庄市滕州市七年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 下列运算正确的是( )A. (−a2)3=−a5B. a3⋅a5=a15C. (−a2b3)2=a4b6D. 3a2−2a2=a2. 若∠A=130°,则它的补角的余角为( )A. 30°B. 35°C. 40°D. 45°3. 成人体内成熟的红细胞的平均直径一般为0.000007245m,数0.000007245用科学记数法表示是( )A. 7.245×10−5B. 7.245×10−6C. 7.245×10−7D. 7.245×10−94.如图,直线a//b,一个三角板的直角顶点在直线a上,两直角边均与直线b相交,∠1=40°,则∠2=( )A. 40°B. 50°C. 60°D. 65°5. 若(x+4)(x−2)=x2+mx+n,则m,n的值分别是( )A. 2,8B. −2,−8C. −2,8D. 2,−86. 如图,已知∠1=90°,为保证两条铁轨平行,添加的下列条件中,正确的是A. ∠2=90°B. ∠3=90°C. ∠4=90°D. ∠5=90°7. 如图,直线AB,CD相交于点O,OE⊥AB.若∠DOE=2∠AOC,则∠BOD的度数为( )A. 25°B. 30°C. 60°D. 75°8. 匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度ℎ随时间t的变化规律如图所示(图中OABC为一折线).这个容器的形状可能是( )A.B.C.D.9. 如图,在边长为a的正方形纸板的一角,剪去一个边长为b的正方形,再将剩余图形沿虚线剪开,拼成一个长方形,依据这一过程可得到的公式是( )A. (a±b)2=a2±2ab+b2B. a2±2ab+b2=(a+b)2C. a(a+b)=a2+abD. a2−b2=(a+b)(a−b)10. 甲、乙两位同学放学后走路回家,他们走过的路程s(千米)与所用的时间t(分)之间的函数关系如图所示.根据图中信息,下列说法正确的是( )A. 前10分钟,甲比乙的速度快B. 甲的平均速度为0.06千米/分钟C. 经过30分钟,甲比乙走过的路程少D. 经过20分钟,甲、乙都走了1.6千米二、填空题(本大题共6小题,共18.0分)11. 计算:(9x2y−6xy2)÷3xy=______12.如图,直线AB、CD被直线EF所截,AB//CD,∠1=120°,则∠2=______.13. 已知代数式a2+(2t−1)ab+4b2是一个完全平方式,则实数t的值为______.14. 如图1是某景区电动升降门,将其抽象为几何图形,如图2所示,BA垂直于地面AE于A,当CD平行于地面AE时,则∠ABC+∠BCD=______ .15. 按图(1)−(3)的方式摆放餐桌和椅子,照这样的方式继续摆放,如果摆放的餐桌为x张,摆放的椅子为y把,则y与x之间的关系式为______ .16. 为了提醒司机不要疲劳驾驶,高速公路上安装了如图1所示的激光灯,图2是激光位于初始位置时的平面示意图,其中P,Q是直线MN上的两个发射点,∠APQ=∠BQP=60°,现激光PA绕点P以每秒3度的速度逆时针旋转,同时激光QB绕点Q以每秒2度的速度顺时针旋转,设旋转时间为t秒(0≤t≤40),当PA//QB时,t的值为______.三、解答题(本大题共8小题,共72.0分。

北师大版山东省枣庄市滕州市七年级(下)期中数学试卷-精编

北师大版山东省枣庄市滕州市七年级(下)期中数学试卷-精编

2019-2020学年山东省枣庄市滕州市七年级(下)期中数学试卷一、选择题(共15小题,每小题3分,满分45分)1.(3分)下列运算中与﹣a3•a4结果相同的是()A.(﹣a3)4B.(﹣a4)3C.(﹣a)2•a5D.(﹣a)•a62.(3分)下列计算正确的是()A.(﹣x﹣y)2=﹣x2﹣2xy﹣y2B.(4x+1)2=16x2+8x+1C.(2x﹣3)2=4x2+12x﹣9 D.(a+2b)2=a2+2ab+4b23.(3分)若(﹣2x+a)(x﹣1)中不含x的一次项,则()A.a=1 B.a=﹣1 C.a=﹣2 D.a=24.(3分)若a x=3,b2x=2,则(a2)x﹣(b3x)2的值为()A.0 B.1 C.3 D.55.(3分)长方形的一边长为2a+b,另一边比它小a﹣b,则长方形面积为()A.2a2+ab﹣b2B.2a2+ab C.4a2+4ab+b2D.2a2+5ab+2b26.(3分)已知x+y=﹣6,x﹣y=5,则下列计算正确的是()A.(x+y)2=36 B.(y﹣x)2=﹣10 C.xy=﹣2.75 D.x2﹣y2=257.(3分)下列算式正确的是()A.x5+x5=x10B.(﹣3pq)2=﹣6p2q2C.(﹣bc)4÷(﹣bc)2=﹣b2c2D.4×2n×2n﹣1=22n+18.(3分)弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下面的关系:下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0cmC.物体质量每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为13.5cm9.(3分)匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()A.B.C.D.10.(3分)下列图形中,由AB∥CD,能使∠1=∠2成立的是()A.B.C.D.11.(3分)如图,下列推理错误的是()A.∵∠1=∠2,∴c∥d B.∵∠3=∠4,∴c∥d C.∵∠1=∠3,∴a∥b D.∵∠1=∠4,∴a∥b12.(3分)如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30° B.25° C.20° D.15°13.(3分)如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn,你认为其中正确的有()A.①② B.③④ C.①②③D.①②③④14.(3分)如图,利用直尺和三角尺过直线外一点画已知直线的平行线,这种画法依据的是()A.同位角相等,两直线平行B.两直线平行,同位角相等C.内错角相等,两直线平行D.两直线平行,内错角相等15.(3分)现定义运算“△”,对于任意有理数a、b,都有a△b=a2﹣ab+b,例如:3△5=32﹣3×5+5=11,由此算出(x﹣1)△(2+x)等于()A.2x﹣5 B.2x﹣3 C.﹣2x+5 D.﹣2x+3二、填空题(共6小题,每小题4分,满分24分)16.(4分)如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠ADE的度数为.17.(4分)如果一个角的补角是130°,那么这个角的余角是°.18.(4分)已知4x2﹣mx+25是完全平方式,则常数m的值为.19.(4分)如图,C岛在A岛的北偏东60°方向,在B岛的北偏西45°方向,则∠ACB= .20.(4分)雾霾(PM2.5)含有有毒有害物质,对健康有很大的危害,被称为大气元凶,雾霾的直径大约是0.0000025m,把数据0.0000025用科学记数法表示为.21.(4分)如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数.例如,(a+b)2=a2+2ab+b2展开式中的系数1、2、1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2+b3展开式中的系数1、3、3、1恰好对应图中第四行的数字.请认真观察此图,写出(a+b)4的展开式,(a+b)4= .三、解答题(共7小题,满分51分)22.(8分)计算:(1)﹣20+4﹣1×(﹣1)2016×(﹣)﹣2(2)(2x3y)2•(﹣2xy)+(﹣2x3y)3÷(2x2)23.(6分)先化简,再求值:2(a+b)2﹣(2a﹣b)(2a+b)+(2a﹣b)(3b﹣a),其中a=,b=﹣2.24.(5分)如图,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,DE∥FB.求证:AB∥DC.请根据条件进行推理,得出结论,并在括号内注明理由.证明:∵BF、DE分别平分∠ABC与∠ADC,∴∠1=∠ABC,∠2=∠ADC.()∵∠ABC=∠ADC,∴.∵DE∥FB∴∠1=∠3,()∴∠2= .(等量代换)∴AB∥CD.()25.(5分)如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.26.(8分)(1)如图1,若大正方形的边长为a,小正方形的边长为b,则阴影部分的面积是.若将图1中的阴影部分裁剪下来,重新拼成如图2的一个矩形,则它的面积是.(2)由(1)可以得到一个公式.(3)利用你得到的公式计算:20162﹣2017×2015.27.(9分)中国联通在某地的资费标准为包月186元时,超出部分国内拨打0.36元/分(不足1分钟按1分钟时间收费).下表是超出部分国内拨打的收费标准:(1)这个表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用x表示超出时间,y表示超出部分的电话费,那么y与x的表达式是什么?(3)由于业务多,小明的爸爸上月打电话已超出了包月费.如果国内拨打电话超出25分钟,他需付多少电话费?(4)某用户某月国内拨打电话的费用超出部分是54元,那么他当月打电话超出几分钟?28.(10分)如图,已知AB∥CD,BE∥FG.(1)如果∠1=53°,求∠2和∠3的度数;(2)本题隐含着一个规律,请你根据(1)的结果进行归纳,使用文字语言表达出来;(3)利用(2)的结论解答:如果两个角的两边分别平行,其中一个角比另一个角的2倍小30°,求这两个角的大小.2019-2020学年山东省枣庄市滕州市七年级(下)期中数学试卷参考答案与试题解析一、选择题(共15小题,每小题3分,满分45分)1.(3分)(2016春•滕州市期中)下列运算中与﹣a3•a4结果相同的是()A.(﹣a3)4B.(﹣a4)3C.(﹣a)2•a5D.(﹣a)•a6【分析】原式各项计算得到结果,与已知结果比较即可.【解答】解:A、原式=a12,不合题意;B、原式=﹣a12,不合题意;C、原式=a7,不合题意;D、原式=﹣a7,符合题意,故选D【点评】此题考查了同底数幂的乘法,熟练掌握运算法则是解本题的关键.2.(3分)(2016春•滕州市期中)下列计算正确的是()A.(﹣x﹣y)2=﹣x2﹣2xy﹣y2B.(4x+1)2=16x2+8x+1C.(2x﹣3)2=4x2+12x﹣9 D.(a+2b)2=a2+2ab+4b2【分析】根据完全平方公式的结构特点:两项平方项的符号相同,另一项是这两数积的2倍.【解答】解:A、(﹣x﹣y)2=x2+2xy+y2,错误;B、(4x+1)2=16x2+8x+1,正确;C、(2x﹣3)2=4x2﹣12x+9,错误;D、(a+2b)2=a2+4ab+4b2,错误;故选B.【点评】本题考查了完全平方公式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.3.(3分)(2016春•滕州市期中)若(﹣2x+a)(x﹣1)中不含x的一次项,则()A.a=1 B.a=﹣1 C.a=﹣2 D.a=2【分析】原式利用多项式乘多项式法则计算,再根据结果中不含x的一次项即可确定出a 的值.【解答】解:(﹣2x+a)(x﹣1)=﹣2x2+(a+2)x﹣a,由结果中不含x的一次项,得到a+2=0,即a=﹣2.故选C.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.4.(3分)(2015春•威海期末)若a x=3,b2x=2,则(a2)x﹣(b3x)2的值为()A.0 B.1 C.3 D.5【分析】根据幂的乘方的法则求解.【解答】解:原式=(a x)2﹣(b2x)3=9﹣8=1.故选B.【点评】本题考查了幂的乘方和积的乘方,掌握幂的乘方的运算法则是解答本题的关键.5.(3分)(2016春•滕州市期中)长方形的一边长为2a+b,另一边比它小a﹣b,则长方形面积为()A.2a2+ab﹣b2B.2a2+ab C.4a2+4ab+b2D.2a2+5ab+2b2【分析】根据题意求出长方形另一边长,根据多项式与多项式相乘的法则计算即可.【解答】解:长方形另一边长为2a+b﹣(a﹣b)=a+2b,则长方形面积为:(2a+b)(a+2b)=2a2+5ab+2b2,故选:D.【点评】本题考查的是多项式乘多项式的运算,掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加是解题的关键.6.(3分)(2016春•滕州市期中)已知x+y=﹣6,x﹣y=5,则下列计算正确的是()A.(x+y)2=36 B.(y﹣x)2=﹣10 C.xy=﹣2.75 D.x2﹣y2=25【分析】结合各选项,把两已知条件直接平方即可判断A、B,平方后相减求出xy的值,两式相乘求出x2﹣y2的值.然后即可选出正确答案.【解答】解:A、(x+y)2=36,正确;B、应为(y﹣x)2=(﹣5)2=25,故本选项错误;C、应为xy=[(x+y)2﹣(y﹣x)2]=(36﹣25)=2.75,故本选项错误;D、应为x2﹣y2=(x+y)(x﹣y)=(﹣6)×5=﹣30,故本选项错误.故选A.【点评】本题考查了完全平方公式,平方差公式,熟记公式结构是解题的关键.7.(3分)(2016春•滕州市期中)下列算式正确的是()A.x5+x5=x10B.(﹣3pq)2=﹣6p2q2C.(﹣bc)4÷(﹣bc)2=﹣b2c2D.4×2n×2n﹣1=22n+1【分析】根据同底数幂相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、应为x5+x5=2x5,故本选项错误;B、应为(﹣3pq)2=9p2q2,故本选项错误;C、应为(﹣bc)4÷(﹣bc)2=(b4c4)÷(b2c2)=b2c2,故本选项错误;D、4×2n×2n﹣1=22×2n×2n﹣1=22n+1,正确.故选D.【点评】主要考查整式的运算和幂的运算法则,要注意区分它们各自的特点,以避免出错,C选项中要把(﹣bc)看作一个整体.8.(3分)(2014春•雅安期末)弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下面的关系:下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0cmC.物体质量每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为13.5cm【分析】由表中的数据进行分析发现:物体质量每增加1kg,弹簧长度y增加0.5cm;当不挂重物时,弹簧的长度为10cm,然后逐个分析四个选项,得出正确答案.【解答】解:A、y随x的增加而增加,x是自变量,y是因变量,故A选项正确;B、弹簧不挂重物时的长度为10cm,故B选项错误;C、物体质量每增加1kg,弹簧长度y增加0.5cm,故C选项正确;D、由C知,y=10+0.5x,则当x=7时,y=13.5,即所挂物体质量为7kg时,弹簧长度为13.5cm,故D选项正确;故选:B.【点评】本题考查了函数的概念,能够根据所给的表进行分析变量的值的变化情况,得出答案.9.(3分)(2015•济宁)匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()A.B.C.D.【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为C.故选C.【点评】此题考查函数图象的应用,需注意容器粗细和水面高度变化的关联.10.(3分)(2013•娄底)下列图形中,由AB∥CD,能使∠1=∠2成立的是()A.B.C.D.【分析】根据平行线的性质对各选项分析判断后利用排除法求解.【解答】解:A、由AB∥CD可得∠1+∠2=180°,故本选项错误;B、∵AB∥CD,∴∠1=∠3,又∵∠2=∠3(对顶角相等),∴∠1=∠2,故本选项正确;C、由AC∥BD得到∠1=∠2,由AB∥CD不能得到,故本选项错误;D、梯形ABCD是等腰梯形才可以有∠1=∠2,故本选项错误.故选B.【点评】本题考查了平行线的性质,等腰梯形的性质,熟记性质并准确识图是解题的关键.11.(3分)(2016春•滕州市期中)如图,下列推理错误的是()A.∵∠1=∠2,∴c∥d B.∵∠3=∠4,∴c∥d C.∵∠1=∠3,∴a∥b D.∵∠1=∠4,∴a∥b【分析】A、根据内错角相等,两直线平行进行判定;B根据同位角相等,两直线平行进行分析;C中∠1,∠3不是同位角,也不是内错角,因此不能判定直线平行;D根据内错角相等,两直线平行进行判定.【解答】解:A、∵∠1=∠2,∴c∥d,正确,不符合题意;B、∵∠3=∠4,∴c∥d,正确,不符合题意;C、∵∠1=∠3,∴a∥b,错误,符合题意;D、∵∠1=∠4,∴a∥b,正确,不符合题意;故选:C.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.12.(3分)(2012•枣庄)如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30° B.25° C.20° D.15°【分析】本题主要利用两直线平行,内错角相等作答.【解答】解:根据题意可知,两直线平行,内错角相等,∴∠1=∠3,∵∠3+∠2=45°,∴∠1+∠2=45°∵∠1=20°,∴∠2=25°.故选:B.【点评】本题主要考查了两直线平行,内错角相等的性质,需要注意隐含条件,直尺的对边平行,等腰直角三角板的锐角是45°的利用.13.(3分)(2015春•黄岛区期末)如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn,你认为其中正确的有()A.①② B.③④ C.①②③D.①②③④【分析】①大长方形的长为2a+b,宽为m+n,利用长方形的面积公式,表示即可;②长方形的面积等于左边,中间及右边的长方形面积之和,表示即可;③长方形的面积等于上下两个长方形面积之和,表示即可;④长方形的面积由6个长方形的面积之和,表示即可.【解答】解:①(2a+b)(m+n),本选项正确;②2a(m+n)+b(m+n),本选项正确;③m(2a+b)+n(2a+b),本选项正确;④2am+2an+bm+bn,本选项正确,则正确的有①②③④.故选D.【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.14.(3分)(2014秋•锦州期末)如图,利用直尺和三角尺过直线外一点画已知直线的平行线,这种画法依据的是()A.同位角相等,两直线平行B.两直线平行,同位角相等C.内错角相等,两直线平行D.两直线平行,内错角相等【分析】根据∠BAC=∠EDC,由同位角相等,两直线平行,即可判定AB∥DE.【解答】解:∵∠BAC=∠EDC,∴AB∥DE.故选A.【点评】本题考查的是平行线的判定定理,即同位角相等,两直线平行.15.(3分)(2016春•滕州市期中)现定义运算“△”,对于任意有理数a、b,都有a△b=a2﹣ab+b,例如:3△5=32﹣3×5+5=11,由此算出(x﹣1)△(2+x)等于()A.2x﹣5 B.2x﹣3 C.﹣2x+5 D.﹣2x+3【分析】原式利用题中的新定义化简,计算即可得到结果.【解答】解:根据题中的新定义得:(x﹣1)△(2+x)=(x﹣1)2﹣(x﹣1)(2+x)+2+x=x2﹣2x+1﹣x2﹣x+2+2+x=﹣2x+5,故选C【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.二、填空题(共6小题,每小题4分,满分24分)16.(4分)(2016春•滕州市期中)如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠ADE的度数为60°.【分析】直接利用平行线的性质以及角平分线的性质得出∠ADB=∠BDE,进而得出答案.【解答】解:∵AD∥BC,∴∠ADB=∠DBC,∵DB平分∠ADE,∴∠ADB=∠ADE,∵∠B=30°,∴∠ADB=∠BDE=30°,则∠ADE的度数为:60°.故答案为:60°.【点评】此题主要考查了平行线的性质,正确得出∠ADB的度数是解题关键.(2014秋•安岳县期末)如果一个角的补角是130°,那么这个角的余角是40 °.17.(4分)【分析】根据同一个角的补角比它的余角大90°可直接得到答案.【解答】解:因为一个角的补角是130°,所以这个角是180°﹣130°=50°,所以这个角的余角是:90°﹣50°=40°.故答案为:40°.【点评】此题主要考查了余角和补角,关键是掌握同一个角的余角和补角的关系.18.(4分)(2016春•滕州市期中)已知4x2﹣mx+25是完全平方式,则常数m的值为20或﹣20 .【分析】利用完全平方公式的结构特征判断即可确定出m的值【解答】解:∵4x2﹣mx+25是完全平方式,∴﹣m=±20,即m=±20.故答案为:20或﹣20.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.19.(4分)(2016春•济宁期末)如图,C岛在A岛的北偏东60°方向,在B岛的北偏西45°方向,则∠ACB= 105°.【分析】过点C作CD∥AE,从而可证明CD∥BF,然后由平行线的性质可知∠DCA=∠CAE,∠DCB=∠CBF,从而可求得∠ACB的度数.【解答】解:过点C作CD∥AE.∵CD∥AE,BF∥AE,∴CD∥BF.∵CD∥AE,∴∠DCA=∠CAE=60°,同理:∠DCB=∠CBF=45°.∴∠ACB=∠ACD+∠BCD=105°.【点评】本题主要考查的是方向角的定义和平行线的性质的应用,掌握此类问题辅助线的作法是解题的关键.20.(4分)(2014•江西模拟)雾霾(PM2.5)含有有毒有害物质,对健康有很大的危害,被称为大气元凶,雾霾的直径大约是0.0000025m,把数据0.0000025用科学记数法表示为 2.5×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6;故答案为:2.5×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.21.(4分)(2015•东营区校级模拟)如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数.例如,(a+b)2=a2+2ab+b2展开式中的系数1、2、1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2+b3展开式中的系数1、3、3、1恰好对应图中第四行的数字.请认真观察此图,写出(a+b)4的展开式,(a+b)4= a4+4a3b+6a2b2+4ab3+b4.【分析】由(a+b)=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3可得(a+b)n的各项展开式的系数除首尾两项都是1外,其余各项系数都等于(a+b)n﹣1的相邻两个系数的和,由此可得(a+b)4的各项系数依次为1、4、6、4、1.【解答】解:根据题意得:(a+b)4=a4+4a3b+6a2b2+4ab3+b4.故答案为:a4+4a3b+6a2b2+4ab3+b4.【点评】此题考查了完全平方公式,学生的观察分析逻辑推理能力,读懂题意并根据所给的式子寻找规律,是快速解题的关键.三、解答题(共7小题,满分51分)22.(8分)(2016春•滕州市期中)计算:(1)﹣20+4﹣1×(﹣1)2016×(﹣)﹣2(2)(2x3y)2•(﹣2xy)+(﹣2x3y)3÷(2x2)【分析】(1)原式利用乘方的意义,零指数幂、负整数指数幂法则计算即可得到结果;(2)原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果.【解答】解:(1)原式=﹣1+×1×4=﹣1+1=0;(2)原式=4x6y2•(﹣2xy)﹣8x9y3÷(2x2)=﹣8x7y3﹣4x7y3=﹣12x7y3.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.23.(6分)(2016春•滕州市期中)先化简,再求值:2(a+b)2﹣(2a﹣b)(2a+b)+(2a ﹣b)(3b﹣a),其中a=,b=﹣2.【分析】先算根据多项式乘以多项式和乘法公式算乘法,再合并同类项,最后代入求出即可.【解答】解:2(a+b)2﹣(2a﹣b)(2a+b)+(2a﹣b)(3b﹣a)=2a2+4ab+2b2﹣4a2+b2+6ab﹣2a2﹣3b2+ab=﹣4a2+11ab当a=,b=﹣2时,原式=﹣4×()2+11××(﹣2)=﹣12.【点评】本题考查了整式的混合运算和求值的应用,主要考查学生运用法则进行计算的能力,难度适中.24.(5分)(2016春•滕州市期中)如图,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,DE∥FB.求证:AB∥DC.请根据条件进行推理,得出结论,并在括号内注明理由.证明:∵BF、DE分别平分∠ABC与∠ADC,∴∠1=∠ABC,∠2=∠ADC.(角平分线定义)∵∠ABC=∠ADC,∴∠1=∠2 .∵DE∥FB∴∠1=∠3,(两直线平行,同位角相等)∴∠2= ∠3 .(等量代换)∴AB∥CD.(内错角相等,两直线平行)【分析】由角平分线的定义得出∠1=∠ABC,∠2=∠ADC,证出∠1=∠2.由平行线的性质得出∠1=∠3,证出∠2=∠3.得出AB∥CD即可.【解答】证明:∵BF、DE分别平分∠ABC与∠ADC,∴∠1=∠ABC,∠2=∠ADC.(角平分线定义)∵∠ABC=∠ADC,∴∠1=∠2.∵DE∥FB∴∠1=∠3,(两直线平行,同位角相等)∴∠2=∠3.(等量代换)∴AB∥CD.(内错角相等,两直线平行)故答案为:角平分线;∠1=∠2;两直线平行,同位角相等;∠3;内错角相等,两直线平行.【点评】本题考查了平行线的判定与性质;熟记平行线的判定与性质是解决问题的关键.25.(5分)(2015春•东城区期末)如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC 的度数.【分析】由角平分线的定义,结合平行线的性质,易求∠EDC的度数.【解答】解:∵DE∥BC,∠AED=80°,∴∠ACB=∠AED=80°(两直线平行,同位角相等),∵CD平分∠ACB,∴∠BCD=∠ACB=40°,∵DE∥BC,∴∠EDC=∠BCD=40°(两直线平行,内错角相等).【点评】这类题首先利用平行线的性质确定内错角相等,然后根据角平分线定义得出所求角与已知角的关系转化求解.26.(8分)(2016春•滕州市期中)(1)如图1,若大正方形的边长为a,小正方形的边长为b,则阴影部分的面积是a2﹣b2.若将图1中的阴影部分裁剪下来,重新拼成如图2的一个矩形,则它的面积是(a+b)(a﹣b).(2)由(1)可以得到一个公式a2﹣b2=(a+b)(a﹣b).(3)利用你得到的公式计算:20162﹣2017×2015.【分析】(1)利用正方形的面积公式,图①阴影部分的面积为大正方形的面积﹣小正方形的面积,图②长方形的长为a+b,宽为a﹣b,利用长方形的面积公式可得结论;(2)由(1)建立等量关系即可;(3)根据平方差公式即可解答.【解答】解:(1)图①阴影部分的面积为:a2﹣b2,图②长方形的长为a+b,宽为a﹣b,所以面积为:(a+b)(a﹣b),故答案为:a2﹣b2,(a+b)(a﹣b);(2)由(1)可得:(a+b)(a﹣b)=a2﹣b2,故答案为:(a+b)(a﹣b)=a2﹣b2;(3)20162﹣2017×2015.=20162﹣(2016+1)(2016﹣1)=20162﹣20162+1=1.【点评】本题主要考查了平方差公式的推导过程,利用面积建立等量关系是解答此题的关键.27.(9分)(2016春•滕州市期中)中国联通在某地的资费标准为包月186元时,超出部分国内拨打0.36元/分(不足1分钟按1分钟时间收费).下表是超出部分国内拨打的收费标准:(1)这个表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用x表示超出时间,y表示超出部分的电话费,那么y与x的表达式是什么?(3)由于业务多,小明的爸爸上月打电话已超出了包月费.如果国内拨打电话超出25分钟,他需付多少电话费?(4)某用户某月国内拨打电话的费用超出部分是54元,那么他当月打电话超出几分钟?【分析】(1)根据图表可以知道:电话费随时间的变化而变化,因而打电话时间是自变量、电话费是因变量;(2)费用=单价×时间,即可写出解析式;(3)把x=25代入解析式即可求得;(4)在解析式中令y=54即可求得x的值.【解答】解:(1)国内拨打时间与电话费之间的关系,打电话时间是自变量、电话费是因变量;(2)由题意可得:y=0.36x;(3)当x=25时,y=0.36×25=9(元),即如果打电话超出25分钟,需付186+9=195(元)的电话费;(4)当y=54时,x==150(分钟).答:小明的爸爸打电话超出150分钟.【点评】本题考查了列函数解析式以及求函数值.(1)当已知函数解析式时,求函数值就是求代数式的值;(2)函数值是唯一的,而对应的自变量可以是多个.28.(10分)(2015春•瑶海区期末)如图,已知AB∥CD,BE∥FG.(1)如果∠1=53°,求∠2和∠3的度数;(2)本题隐含着一个规律,请你根据(1)的结果进行归纳,使用文字语言表达出来;(3)利用(2)的结论解答:如果两个角的两边分别平行,其中一个角比另一个角的2倍小30°,求这两个角的大小.【分析】(1)先根据平行线的性质求出∠4的度数,再由BE∥FG即可得出∠2的度数,根据补角的定义即可得出结论;(2)根据(1)中的规律即可得出结论;(3)设一个角的度数为x,则x+(2x﹣30°)=180°或x=2x﹣30,求出x的值即可.【解答】解:(1)∵AB∥CD,∠1=53°,∴∠4=∠1=53°.∵BE∥FG,∴∠2=∠4=53°,∴∠3=180°﹣53°=127°;(2)由(1)中的规律可知,如果两个角的两边分别平行,那么这两个角相等或互补;(3)设一个角的度数为x,则x+(2x﹣30°)=180°或x=2x﹣30,解得x=70°或30°,∴这两个角的度数分别是70°,110°或30°,30°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.。

2021-2022学年山东省枣庄市滕州市七年级(下)期中数学试卷(解析版)

2021-2022学年山东省枣庄市滕州市七年级(下)期中数学试卷(解析版)

2021-2022学年山东省枣庄市滕州市七年级(下)期中数学试卷考试注意事项:1、考生须诚信考试,遵守考场规则和考试纪律,并自觉服从监考教师和其他考试工作人员管理;2、监考教师发卷后,在试卷指定的地方填写本人准考证号、姓名等信息;考试中途考生不准以任何理由离开考场;3、考生答卷用笔必须使用同一规格同一颜色的笔作答(作图可使用铅笔) ,不准用规定以外的笔答卷,不准在答卷上作任何标记。

考生书写在答题卡规定区域外的答案无效。

4、考试开始信号发出后,考生方可开始作答。

一、选择题(本大题共12小题,共36分)1.下列计算正确的是()A. 2x2⋅3x3=6x6B. 2x2+3x3=5x5C. (−2x3)2=4x6D. 6x6÷3x2=2x32.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.假设一种可入肺的颗粒物的直径约为0.0000018米(即1.8微米),用科学记数法表示该颗粒物的直径为()A. 18×10−5米B. 1.8×10−6米C. 1.8×10−5米D. 0.18×10−5米3.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A. 太阳光强弱B. 水的温度C. 所晒时间D. 热水器4.如图,能够判断DE//BC的条件是()A. ∠1=∠2B. ∠4=∠CC. ∠1+∠3=180°D. ∠3+∠C=180°5.下列各式中,不能用平方差公式计算的是()A. (−x−y)(x−y)B. (−x+y)(−x−y)C. (x+y)(−x+y)D. (x−y)(−x+y)6.已知(m+n)2=36,(m−n)2=16,求mn的值()A. 7B. 6C. 5D. 47.滕州某布店新进了一批花布,卖出的数量x(米)与售价y(元)的关系如表:数量x(米)1234…售价y(元)8+0.316+0.624+0.932+1.2…那么y与x的关系式是()A. y=8x+0.3B. y=(8+0.3)xC. y=8+0.3xD. y=8+0.3+x8.如图,直线a//b,将三角尺的直角顶点放在直线b上,若∠1=35°,则∠2等于()A. 45°B. 55°C. 35°D. 65°9.如图,AB//CD,∠1=∠2,∠3=130°,则∠2等于()A. 30°B. 25°C. 35°D. 40°10.下列说法中正确的是()A. 互为补角的两个角不相等B. 两个相等的角一定是对顶角C. 从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离D. 一个锐角的补角比这个角的余角大90°11.任意给定一个非零数,按下列程序计算,最后输出的结果是()A. mB. m2C. m+1D. m−112.如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A匀速运动.则CP的长度s与时间t之间的函数关系用图象描述大致是()第2页,共17页A. B.C. D.二、填空题(本大题共6小题,共24分)13.已知2m=a,4n=b,m,n为正整数,则23m+4n=________.14.如图,AD//BC,∠D=100°,CA平分∠BCD,则∠DAC=______度.15.如果(x−1)(3x+m)的积中不含x的一次项,则常数m的值为______.16.如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=66°,则∠AED′的度数为______.17.定义一种新运算:a※b=a(a−b),例如5※3=5×(5−3)=10.根据定义给出以下运算结果:①2x※x=2x2;②(3−5x)※(6−5x)=15x−9;③(a※b)−(b※a)=b2−a2;④若a=b,则(a※b)※b=0.其中正确的是______(填写所有正确结果的序号).18.在平面内,若两条直线的最多交点数记为a1,三条直线的最多交点数记为a2,四条直线的最多交点数记为a3,…,依此类推,则1a1+1a2+1a3+⋯+1a10=______.三、解答题(本大题共7小题,共60分)19.计算:(1)(−1)2020+(−2)3+(π−1)0+(−1)−2;4(2)(x−y)(x+2y)−(−x+y)2.,b=−3.20.先化解再求值:(3a−b)2+(a+2−b)(a+2+b)−(a+2)2,其中a=1321.如图,AB//CD,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E,∠B=62°.求∠E的度数.请你在横线上补充其推理过程或理由.解:因为AB//CD(已知)所以∠1=∠CFE(理由:______)因为AE平分∠BAD(已知)所以______=∠2(角平分线的定义)又因为______=∠E(已知)所以∠2=∠E(等量代换)所以______.(内错角相等,两直线平行)所以∠B+______=180°(理由:______)因为∠B=62°(已知)∠BAD=______.所以∠2=12所以______.22.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积(结果不用化简):①方法1:______;方法2:______.②请你写出代数式:(m+n)2,(m−n)2,mn之间的等量关系;(2)根据(1)题中的等量关系,解决问题:若a−b=5,ab=−6,求(a+b)2;(3)实际上有许多代数恒等式可以用图形的面积来表示.如图③,写出它表示的代数恒等式.第4页,共17页23.已知:∠DAC+∠ACB=180°,∠1=∠2,∠3=∠4,∠ACF=24°,∠DAC=4∠5.(1)求证:CE平分BCF;(2)求∠5的大小.24.周末,小明坐公交车到滨海公园游玩,他从家出发0.8小时达到中心书城,逗留一段时间后继续坐公交车到滨海公园,小明离家一段时间后,爸爸驾车沿相同的路线前往海滨公园.如图是他们离家路程s(km)与小明离家时间t(ℎ)的关系图,请根据图回答下列问题:(1)图中自变量是______,因变量是______;(2)小明家到滨海公园的路程为______km,小明在中心书城逗留的时间为______ℎ;(3)小明出发______小时后爸爸驾车出发;(4)图中A点表示______;(5)小明从中心书城到滨海公园的平均速度为______km/ℎ,小明爸爸驾车的平均速度为______km/ℎ;(补充:爸爸驾车经过______追上小明;)(6)小明从家到中心书城时,他离家路程s与坐车时间t之间的关系式为______.25.如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°.(1)请判断AB与CD的位置关系并说明理由;(2)如图2,在(1)的结论下,当∠E=90°保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD是否存在确定的数量关系?答案和解析1.【答案】C解:A、2x2⋅3x3=6x5,故A错误,不符合题意;B、2x2与3x3不是同类项,不能合并,故B错误,不符合题意;C、(−2x3)2=4x6,故C正确,符合题意;D、6x6÷3x2=2x4,故D错误,不符合题意;故选:C.根据单项式乘除法法则,积的乘方与幂的乘方,同类项概念逐个判断.本题考查整式的运算,解题的关键是掌握整式运算的相关法则.2.【答案】B解:0.0000018米的悬浮颗粒物,用科学记数法表示该颗粒物的直径为1.8×10−6米,故选:B.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】B解:根据函数的定义可知,水温是随着所晒时间的长短而变化,可知水温是因变量,所晒时间为自变量.故选:B.函数的定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,那么称y是x的函数,x叫自变量.函数关系式中,某特定的数会随另一个(或另几个)会变动的数的变动而变动,就称为因变量.本题主要考查常量与变量的知识,解题的关键是对函数的定义以及对自变量和因变量的认识和理解,难度不大.4.【答案】C第6页,共17页解:A、∵∠1=∠2,∴EF//AC,故不符合题意;B、∵∠4=∠C,∴EF//AC,故不符合题意;C、∵∠1+∠3=180°,∴DE//BC,故符合题意;D、∵∠3+∠C=180°,∴EF//AC,故不符合题意;故选:C.根据平行线的判定定理即可得到结论.本题考查了平行线的判定,熟练掌握平行线的判定定理是解题的关键.5.【答案】D解:A、含y的项符号相同,含x的项符号相反,能用平方差公式计算;B、含x的项符号相同,含y的项符号相反,能用平方差公式计算;C、含y的项符号相同,含x的项符号相反,能用平方差公式计算;D、含y的项符号相反,含x的项符号相反,不能用平方差公式计算.故选:D.根据平方差公式的特点:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数,对各选项分析判断后利用排除法求解.本题考查了平方差公式,注意两个二项式中有一项完全相同,另一项互为相反数,并且相同的项和互为相反数的项必须同时具有,熟记公式结构是解题的关键.6.【答案】C解:∵(m+n)2=m2+2mn+n2,(m−n)2=m2−2mn+n2,∴(m+n)2−(m−n)2=4mn,将(m+n)2=36,(m−n)2=16代入,得36−16=4mn,∴mn=5.故选:C.根据(m+n)2−(m−n)2=4mn即可求出mn的值.本题考查了完全平方公式,推导出(m+n)2−(m−n)2=4mn是解决本题的关键.7.【答案】B解:∵16+0.6=2(8+0.3);24+0.9=3(8+0.3);32+1.2=4(8+0.3),...∴y=(8+0.3)x;故选:B.根据表格可知布的数量(米)与售价(元)的关系为售价=8.3×数量.本题考查了函数关系式,正确得出数字变化规律是解题的关键.8.【答案】B解:如图,∵∠1=35°,∴∠3=180°−35°−90°=55°,∵a//b,∴∠2=∠3=55°.故选:B.根据平角的定义求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.本题考查了平行线的性质,熟记性质并准确识图是解题的关键.9.【答案】B解:∵AB//CD,∠3=130°,∴∠GAB=∠3=130°,∵∠BAE+∠GAB=180°,∴∠BAE=180°−∠GAB=180°−130°=50°,∵∠1=∠2,∴∠2=12∠BAE=12×50°=25°.故选:B.先根据平行线的性质求出∠GAB的度数,再根据邻补角的定义求出∠BAE的度数,最后根据∠1=∠2求出∠2即可.本题主要考查了平行线的性质.解题的关键是掌握平行线的性质:两直线平行,同位角相等.10.【答案】D第8页,共17页解:A、互为补角的两个角和为180°,但两个角要么不相等,要么相等,都是90°,故本选项不正确;B、对顶角相等,但相等的角不一定是对顶角,故本选项不正确;C、点到直线的距离,是指垂线段的长度,而不是垂线段,故本选项不正确;D、设锐角为x,则余角为90°−x,补角为180°−x,所以一个锐角的补角比这个角的余角大180°−x−(90°−x)=90°,故本选项是正确的.故选:D.A、根据补角的定义来推断即可;B、根据对顶角的定义来判断即可;C、根据垂线段的定义来判断即可;D、根据余角、补角的定义来判断即可.本题考查的是余角、补角、对顶角、垂线段的定义,解题的关键是熟练掌握余角、补角、对顶角、垂线段的定义.11.【答案】C解:根据题意可列出代数式:(m2−m)÷m+2=m−1+2=m+1.故选:C.根据题意可列出代数式:(m2−m)÷m+2=m−1+2=m+1.列代数式时,要注意是前面整个式子除以m,应把前面的式子看成一个整体.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.12.【答案】D【解析】【分析】本题考查了动点问题的函数图象.用图象解决问题时,要理清图象的含义即会识图.该题属于分段函数:点P在边AC上时,s随t的增大而减小;当点P在边BC上时,s随t的增大而增大;当点P在线段BD上时,s随t的增大而减小;当点P在线段AD上时,s随t的增大而增大.【解答】解:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P在边BC上时,s随t的增大而增大;③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s时点P在线段BD上的最小值,但是不等于零.故C错误;④当点P在线段AD上时,s随t的增大而增大.故D正确.故选:D.13.【答案】a3b2【解析】【分析】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键.直接利用幂的乘方运算法则以及同底数幂的乘法运算法则将原式变形得出答案.【解答】解:∵2m=a,4n=b,m,n为正整数,∴22n=b,∴23m+4n=(2m)3×(22n)2=a3b2.故答案为a3b2.14.【答案】40解:∵AD//BC,∴∠BCD=180°−∠D=80°,∠DAC=∠ACB,又∵CA平分∠BCD,∴∠ACB=1∠BCD=40°,2∴∠DAC=∠ACB=40°.故答案为40.利用两直线平行,同旁内角互补以及角平分线的定义进行做题.第10页,共17页本题重点考查了平行线的性质及角平分线的定义,是一道较为简单的题目.15.【答案】3解:∵(x−1)(3x+m)=3x2+mx−3x−m=3x2+(m−3)x−m,∴m−3=0,∴m=3,故答案为:3.利用多项式乘以多项式的法则进行计算,合并同类项后使x的一次项的系数为0,得出关于m的方程,解方程即可得出m的值.本题考查了多项式乘多项式,掌握多项式乘多项式的法则是解决问题的关键.16.【答案】48°解:∵AD//BC,∠EFB=66°,∴∠DEF=66°,又∵∠DEF=∠D′EF,∴∠D′EF=66°,∴∠AED′=180°−2×66°=48°.故答案为:48°.先根据平行线的性质得出∠DEF的度数,再根据翻折变换的性质得出∠D′EF的度数,根据平角的定义即可得出结论.本题考查的是平行线的性质以及折叠的性质,用到的知识点为:两直线平行,内错角相等.17.【答案】①②④解:①2x※x=2x(2x−x)=2x2,故运算结果正确;②(3−5x)※(6−5x)=(3−5x)(3−5x−6+5x)=−3(3−5x)=15x−9,故运算结果正确;③(a※b)−(b※a)=a(a−b)−b(b−a)=a2−ab−b2+ab=a2−b2,故原来的运算结果错误;④若a=b,则(a※b)※b=[a(a−b)]※b=0※b=0×(0−b)=0,故运算结果正确.故答案为:①②④.各项利用题中新定义进行计算判断即可.此题考查了有理数的混合运算,熟练掌握新定义的运算法则是解本题的关键.18.【答案】2011解:∵2条直线最多交点有1个,即3条直线最多交点有(1+2)个,4条直线最多交点有(1+2+3)个,……∴n条直线最多交点有(1+2+3+⋯…+n−1)个,即n(n−1)2个(n为大于等于2的正整数),∴1a1+1a2+1a3+⋯+1a10=12×12+13×22+14×32+⋯+111×102=22×1+23×2+24×3+⋯+211×10=2×(1−12+12−13+13−14+⋯+110−111)=2×1011=2011,故答案为:2011.第12页,共17页利用两条、三条、四条直线最多交点个数,推理出n 条直线最多交点个数即可.本题考查的是相交线的最多交点数,解题的关键是找到直线条数与最多交点个数的规律.19.【答案】解:(1)原式=1−8+1+16=10;(2)原式=(x 2+2xy −xy −2y 2)−(x 2−2xy +y 2)=x 2+xy −2y 2−x 2+2xy −y 2=3xy −3y 2.【解析】(1)根据有理数的乘方、零指数幂和负整数指数幂的性质计算即可;(2)根据多项式的乘法和完全平方公式分别计算,再合并即可.本题考查实数和整式的运算,熟练掌握有理数的乘方、零指数幂和负整数指数幂的性质以及完全平方公式是解题关键.20.【答案】解:原式=9a 2−6ab +b 2+(a +2)2−b 2−(a 2+4a +4)=9a 2−6ab +b 2+a 2+4a +4−b 2−a 2−4a −4=9a 2−6ab ,当a =13,b =−3时,原式=9×(13)2−6×13×(−3)=1+6=7.【解析】直接利用平方差公式以及完全平方公式化简,再合并同类项,把已知代入得出答案.此题主要考查了整式的混合运算—化简求值,正确运用乘法公式化简是解题关键.21.【答案】两直线平行,同位角相等 ∠1 ∠CFE AD//BE ∠BAD 两直线平行,同旁内角互补 59° ∠E =59°解:因为AB//CD(已知),所以∠1=∠CFE(理由:两直线平行,同位角相等),因为AE 平分∠BAD(已知),所以∠1=∠2(角平分线的定义),又因为∠CFE =∠E(已知),所以∠2=∠E(等量代换),所以AD//BE(内错角相等,两直线平行),所以∠B+∠BAD=180°(理由:两直线平行,同旁内角互补),因为∠B=62°(已知),∠BAD=59°,所以∠2=12所以∠E=59°.故答案为:两直线平行,同位角相等;∠1;∠CFE;AD//BE;∠BAD;两直线平行,同旁内角互补;59°;∠E=59°.由平行线的性质可得∠1=∠CFE,再由角平分线的定义得∠1=∠2,从而有∠2=∠E,则可判定AD//BE,从而可求∠E的度数.本题主要考查平行线的判定与性质,解答的关键是结合图形分析清楚角与角之间的关系.22.【答案】(m−n)2(m+n)2−4mn解:(1)根据题意可得,①方法1:阴影部分正方形的边长为m−n,则面积为:(m−n)2,方法2:用边长为m+n的大正方形面积减去4个长为m,宽为n的小长方形面积,(m+n)2−4mn;故答案为:(m−n)2,(m+n)2−4mn;(2)(m+n)2=(m−n)2+4mn;(a+b)2=(a−b)2+4ab=52+4×(−6)=49;(3)根据题意可得;(2m+n)(m+n)=2m2+3mn+n2.(1)①方法1:阴影部分正方形的边长为m−n,根据正方形的面积计算方法进行计算即可得出答案;方法2:用边长为m+n的大正方形面积减去4个长为m,宽为n的小长方形面积,列式计算即可得出答案;(2)根据(1)中两次计算面积相等可得,(m+n)2=(m−n)2+4mn;等量代换即可得出答案;(3)根据题意大长方形的长为2m+n,宽为m+n,应用多项式乘多项式法则进行计算即可得出答案.本题主要考查了完全平方公式的几何背景,熟练掌握完全平方公式的几何背景的计算方第14页,共17页法进行求解是解决本题关键.23.【答案】(1)证明:∵∠DAC+∠ACB=180°,∴AD//BC,∵∠1=∠2,∴AD//EC,∴EF//BC,∴∠3=∠5,∵∠3=∠4,∴∠4=∠5,∴CE平分∠BCF;(2)解:∵∠DAC+∠ACB=180°,∠DAC=4∠5,∠4=∠5,∴4∠5+2∠5+∠ACF=180°,∵∠ACF=24°,∴∠5=26°.【解析】(1)根据平行线的判定与性质、角平分线的定义求解即可;(2)根据角的和差求解即可.此题考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.24.【答案】(1)t,s;(2)30,1.7;(3)2.5;(4)2.5小时后小明继续坐公交车到滨海公园;ℎ;(5)12,30,23(6)s=15t(0≤t≤0.8)解:(1)由图可得,自变量是t,因变量是s,故答案为:t,s;(2)由图可得,小明家到滨海公园的路程为30km,小明在中心书城逗留的时间为2.5−0.8=1.7(ℎ);故答案为:30,1.7;(3)由图可得,小明出发2.5小时后爸爸驾车出发;故答案为:2.5;(4)由图可得,A点表示2.5小时后小明继续坐公交车到滨海公园;故答案为:2.5小时后小明继续坐公交车到滨海公园;(5)小明从中心书城到滨海公园的平均速度为30−124−2.5=12(km/ℎ),小明爸爸驾车的平均速度为303.5−2.5=30(km/ℎ);爸爸驾车经过1230−12=23ℎ追上小明;故答案为:12,30,23ℎ;(6)小明从家到中心书城时,他的速度为120.8=15(km/ℎ),∴他离家路程s与坐车时间t之间的关系式为s=15t(0≤t≤0.8),故答案为:s=15t(0≤t≤0.8).(1)根据图象进行判断,即可得出自变量与因变量;(2)根据图象中数据进行计算,即可得到路程与时间;(3)根据梯形即可得到爸爸驾车出发的时间;(4)根据点A的坐标即可得到点A的实际意义;(5)根据相应的路程除以时间,即可得出速度;(6)根据小明从家到中心书城时的速度,即可得到离家路程s与坐车时间t之间的关系式.本题主要考查了函数图象,以及行程问题的数量关系的运用,解答时理解清楚函数图象的意义是解答此题的关键.25.【答案】解:(1)AB//CD.理由如下:∵CE平分∠ACD,AE平分∠BAC,∴∠BAC=2∠EAC,∠ACD=2∠ACE∵∠EAC+∠ACE=90°,∴∠BAC+∠ACD=180°∴AB//CD;(2)∠BAE与∠MCD存在确定的数量关系:∠BAE+12∠MCD=90°.理由如下:过E作EF//AB,第16页,共17页∵AB//CD,∴EF//AB//CD∴∠BAE=∠AEF,∠FEC=∠DCE∵∠E=90°,∴∠BAE+∠ECD=90°∵∠MCE=∠ECD,∠MCD=90°.∴∠BAE+12【解析】(1)结论是AB//CD.利用同旁内角互补两直线平行进行证明即可;∠MCD=90°.过E作EF//AB,先利(2)∠BAE与∠MCD存在确定的数量关系:∠BAE+12用平行线的传递性得出EF//AB//CD,再利用平行线的性质及已知条件可推得答案.本题考查了平行线的判定与性质,属于基础知识与基本证明方法的考查,难度不大.。

【解析版】枣庄市滕州市2020—2021学年七年级上期中数学试卷

【解析版】枣庄市滕州市2020—2021学年七年级上期中数学试卷

【解析版】枣庄市滕州市2020—2021学年七年级上期中数学试卷一、选择题(每小题3分,共45分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并写在答题纸上)1.去年11月份我市某一天的最高气温是10℃,最低气温是﹣1℃,那么这一天的最高气温比最低气温高( )A.﹣9℃B.﹣11℃C.9℃D.11℃2.的相反数是( )A.B.﹣C.﹣5 D.53.有理数,在数轴上的位置如图所示,下面结论正确的是( )A.b﹣a<0 B.b﹣a>0 C.a﹣b<0 D.|a|>|b|4.用一个平面去截一个圆柱体,不可能的截面是( )A.B.C.D.5.下列图形不能围成正方体的是( )A.B.C.D.6.假如a与b互为相反数,则下列各式不正确的是( )A.a+b=0 B.|a|=|b| C.a﹣b=0 D.a=﹣b7.下列各组的两个数中,运算后结果相等的是( )A.23和32B.﹣33和(﹣3)3C.﹣22和(﹣2)2D.和8.下列说法错误的是( )A.2x2﹣3xy﹣1是二次三项式B.﹣x﹣1不是单项式C.﹣πxy2的系数是﹣πD.﹣22xab2的次数是69.一个多项式加上5x2﹣4x﹣3得﹣x2﹣3x,则那个多项式为( )A.4x2﹣7x﹣3 B.6x2﹣x﹣3 C.﹣6x2+x+3 D.﹣6x2﹣7x﹣310.已知a是两位数,b是一位数,把a接写在b的后面,就成为一个三位数.那个三位数可表示成( )A.10b+a B.ba C.100b+a D.b+10a11.如图,是一个正方体纸盒的展开图,若在其中的三个正方形A,B,C内分别填入适当的数,使得它们折成正方体后相对的面上的两个数互为相反数,则填入正方形内的三个数依次为( )A.1,﹣2,0 B.0,﹣2,1 C.﹣2,0,1 D.﹣2,1,0 12.如图是一数值转换机,若输入的x为﹣5,则输出的结果为( )A.11 B.﹣9 C.﹣17 D.2113.图中表示阴影部分面积的代数式是( )A.ad+bc B.c(b﹣d)+d(a﹣c)C.ad+c(b﹣d)D.ab﹣cd14.某商品进价为a元,商店将其价格提高30%作零售价销售,在销售旺季过后,商店又以8折(即售价的80%)优待开展促销活动,这时一件商品的售价为( )A.a元B.0.8a元C.0.92a元D.1.04a元15.观看下面点阵图和相应的等式,探究其中的规律:①1=12;②1+3=22;③1+3+5=32;④1+3+5+7=42;⑤1+3+5+7+9=52;…按此规律1+3+5+7+…+(2n﹣1)=( )A.2n2B.n2C.(2n﹣1)2D.(n﹣1)2二、填空题(每小题3分,共24分,把答案直截了当填在答题纸对应的位置上)16.已知|a+1|=0,b2=9,则a+b=__________.17.点A在数轴上距离原点3个单位长度,若将点A向右移动4个单位长度,现在点表示的数是__________.18.某地探空气球的气象观测资料说明,高度每增加1千米,气温大约降低6℃.若该地地面温度为21℃,高空某处温度为﹣39℃,则此处的高度是__________千米.19.若﹣3x2m y3与2x4y n是同类项,那么m﹣n=__________.20.当x=1,代数式px3+qx+1的值为2020,则当x=﹣1时,代数式px3+qx+1的值为__________.21.若“ω”是新规定的某种运算符号,设aωb=3a﹣2b,则(x+y)ω(x﹣y)=__________.22.为鼓舞节约用电,某地对用户用电收费标准作如下规定:假如每月每户用电不超过100度,那么每度电价按0.55元收费,假如超过100度,那么超过部分每度按1元收费.某户居民在一个月内用电150度,他那个月应缴纳电费__________元.23.小明在做24点游戏时,抽到的四张牌的数值分别是1、3、4、7,他苦思不得其解,相信聪慧的你一定能关心他解除困难,请写出一个正确的算式:__________.(注:24点游戏要求,选用“加、减、乘、除”进行运算,且每一个数字只能使用一次)三、解答题,本大题共7小题,共51分,解答时应写出文字说明、证明过程或演算步骤)24.(1)运算:﹣20+(﹣14)﹣(﹣18)﹣13(2)运算:﹣1×[2﹣(﹣3)2].25.(1)先化简再求值:﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2,b=3.(2)已知代数式2x2+ax﹣y+6﹣2bx2+3x﹣5y﹣1的值与字母x的取值无关,求a b的值.26.如图是由几个小立方块所搭成几何体的从上面看到的形状图,小正方形中的数字表示在该位置小立方块的个数,请画出那个几何体的从正面、从左面看到的形状图.27.按下列程序运算,把答案填写在表格内,并观看有什么规律,想想什么缘故有如此的规律?(1)填写表内空格:输入x 3 2 ﹣2 ﹣3 …输出答案 1 1 …(2)发觉的规律是:__________.28.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,(1)第1个图中所贴剪纸“○”的个数为__________,第2个图中所贴剪纸“○”的个数为__________,第3个图中所贴剪纸“○”的个数为__________;(2)用代数式表示第n个图中所贴剪纸“○”的个数,并求当n=100时,所贴剪纸“○”的个数.29.为了方便乘坐公交车,王老师办了一张公交IC卡,并存入50元钱,若他乘坐的次数用n表示,则他每次乘车后IC卡内的余额y(元)如下表:乘车次数n 余款y元1 50﹣0.8=49.22 50﹣1.6=48.83 50﹣2.4=47.6……(1)王老师每次用IC卡乘车需用多少钱?(2)王老师乘n次车后IC卡内剩余的钱数y为多少?(3)王老师乘车16次后,IC内还剩下多少钱?王老师用这张卡还能坐多少次车?30.迪雅服装厂生产一种夹克和T恤,夹克每件定价100元,T恤每件定价50元.厂方在开展促销活动期间,向客户提供两种优待方案:①买一件夹克送一件T恤;②夹克和T恤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,T恤x件(x>30).(1)若该客户按方案①购买,夹克需付款__________元,T恤需付款__________元(用含x的式子表示);若该客户按方案②购买,夹克需付款__________元,T恤需付款__________元(用含x的式子表示);(2)若x=40,通过运算说明按方案①、方案②哪种方案购买较为合算?(3)若两种优待方案可同时使用,当x=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并说明理由.山东省枣庄市滕州市2020-2020学年七年级上学期期中数学试卷一、选择题(每小题3分,共45分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并写在答题纸上)1.去年11月份我市某一天的最高气温是10℃,最低气温是﹣1℃,那么这一天的最高气温比最低气温高( )A.﹣9℃B.﹣11℃C.9℃D.11℃考点:有理数的减法.分析:用最高气温减去最低气温,然后依照减去一个数等于加上那个数的相反数进行运算即可得解.解答:解:10﹣(﹣1)=10+1=11℃.故选D.点评:本题考查了有理数的减法运算,熟记减去一个数等于加上那个数的相反数是解题的关键.2.的相反数是( )A.B.﹣C.﹣5 D.5考点:相反数.分析:依照只有符号不同的两个数互为相反数进行解答即可.解答:解:的相反数是﹣.故选:B.点评:本题要紧相反数的意义,只有符号不同的两个数互为相反数,a的相反数是﹣a.3.有理数,在数轴上的位置如图所示,下面结论正确的是( )A.b﹣a<0 B.b﹣a>0 C.a﹣b<0 D.|a|>|b|考点:有理数大小比较;数轴.分析:依照a,b两点在数轴上的位置判定出a,b的符号及绝对值的大小,进而可得出结论.解答:解:∵由图可知,b<0<a,|b|>a,∴b﹣a<0,故A正确,B、C、D错误.点评:本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键4.用一个平面去截一个圆柱体,不可能的截面是( )A.B.C. D.考点:截一个几何体.分析:用一个平面截一个几何体得到的面叫做几何体的截面.解答:解:用一个平面去截一个圆柱体,轴截面是矩形;过平行于上下底面的面去截可得到圆;过侧面且不平行于上下底面的面去截可得到椭圆;不可能的截面是等腰梯形.故选D.点评:截面的形状既与被截的几何体有关,还与截面的角度和方向有关.关于这类题,最好是动手动脑相结合,从中学会分析和归纳的思想方法.5.下列图形不能围成正方体的是( )A.B.C.D.考点:展开图折叠成几何体.分析:当六个正方形显现“田”字,“凹”字状时,不能组成正方体解答:解:所有选项中只有C选项显现“凹”字状,因此不能组成正方体故选:C.点评:能组成正方体的“一,四,一”“三,三”“二,二,二”“一,三,二”的差不多形状要记牢.6.假如a与b互为相反数,则下列各式不正确的是( )A.a+b=0 B.|a|=|b| C.a﹣b=0 D.a=﹣b考点:相反数.专题:运算题.分析:互为相反数的性质:两数互为相反数,它们的和为0.解答:解:由相反数的性质知:a+b=0,a=﹣b;由于相反数是一对符号相反,但绝对值相等的数,因此|a|=|b|;故A、B、D均成立,不符合题意;C中,a与b互为相反数,只有a=b=0时,a﹣b才等于0,故不正确,符合题意.故选C.点评:本题要紧考查的是相反数的相关定义和知识,相反数只是符号相反但绝对值相等的两个数,要专门注意0那个专门的数字,以免造成错解.7.下列各组的两个数中,运算后结果相等的是( )A.23和32B.﹣33和(﹣3)3C.﹣22和(﹣2)2D.和考点:有理数的乘方.分析:本题须依照有理数的乘方法则,分别运算出每一项的结果,即可求出答案.解答:解:A、23=8,32=9,故本选项错误;B、﹣33=﹣27,(﹣3)3=﹣27,故本选项正确;C、﹣22=﹣4,(﹣2)2=4,故本选项错误;D、=﹣,=﹣,故本选项错误.故选B.点评:本题要紧考查了有理数的乘方运算,在运算时要注意结果的符号.8.下列说法错误的是( )A.2x2﹣3xy﹣1是二次三项式B.﹣x﹣1不是单项式C.﹣πxy2的系数是﹣πD.﹣22xab2的次数是6考点:单项式;多项式.分析:分别利用多项式以及单项式的次数与其定义分析得出即可.解答:解:A、2x2﹣3xy﹣1是二次三项式,正确,不合题意;B、﹣x﹣1不是单项式,正确,不合题意;C、﹣πxy2的系数是﹣π,正确,不合题意;D、﹣22xab2的次数是4,故此选项错误,符合题意.故选:D.点评:此题要紧考查了单项式与多项式,正确把握相关定义是解题关键.9.一个多项式加上5x2﹣4x﹣3得﹣x2﹣3x,则那个多项式为( )A.4x2﹣7x﹣3 B.6x2﹣x﹣3 C.﹣6x2+x+3 D.﹣6x2﹣7x﹣3考点:整式的加减.分析:本题涉及添括号和去括号法则、合并同类项两个考点,解答时依照每个考点作出回答.依照已知条件可设此多项式为M建立等式解得即可.解答:解:设那个多项式为M,则M=(﹣x2﹣3x)﹣(5x2﹣4x﹣3)=﹣x2﹣3x﹣5x2+4x+3=﹣6x2+x+3.故选C.点评:解决此类题目的关键是熟记添括号和去括号法则,熟练运用合并同类项的法则.括号前添负号,括号里的各项要变号.合并同类项的时候,字母应平移下来,只对系数相加减.10.已知a是两位数,b是一位数,把a接写在b的后面,就成为一个三位数.那个三位数可表示成( )A.10b+a B.ba C.100b+a D.b+10a考点:列代数式.分析:b原先的最高位是个位,现在的最高位是千位,扩大了100倍;b不变.解答:解:两位数的表示方法:十位数字×10+个位数字;三位数字的表示方法:百位数字×100+十位数字×10+个位数字.a是两位数,b是一位数,依据题意可得b扩大了100倍,因此那个三位数可表示成100b+a.故选C.点评:要紧考查了三位数的表示方法,该题的易错点是表示百位数字b时忘了a是个2位数,错写成(10b+a).11.如图,是一个正方体纸盒的展开图,若在其中的三个正方形A,B,C内分别填入适当的数,使得它们折成正方体后相对的面上的两个数互为相反数,则填入正方形内的三个数依次为( )A.1,﹣2,0 B.0,﹣2,1 C.﹣2,0,1 D.﹣2,1,0考点:专题:正方体相对两个面上的文字.分析:本题可依照图形的折叠性,对图形进行分析,可知A对应﹣1,B对应2,C对应0.两数互为相反数,和为0,据此可解此题.解答:解:由图可知A对应﹣1,B对应2,C对应0.∵﹣1的相反数为1,2的相反数为﹣2,0的相反数为0,∴A=1,B=﹣2,C=0.故选A.点评:本题考查的是相反数的概念,两数互为相反数,和为0,本题假如学生想象不出来图形,可用手边的纸剪出上述图形,再依照纸片折出正方体,然后判定A、B、C所对应的数.12.如图是一数值转换机,若输入的x为﹣5,则输出的结果为( )A.11 B.﹣9 C.﹣17 D.21考点:代数式求值.专题:图表型.分析:按照:(x﹣2)×(﹣3)运算即可.解答:解:由图示可知:结果=(﹣5﹣2)×(﹣3)=7×3=21.故选:D.点评:解答本题的关键确实是弄清晰题图给出的运算程序.13.图中表示阴影部分面积的代数式是( )A.ad+bc B.c(b﹣d)+d(a﹣c)C.ad+c(b﹣d)D.ab﹣cd考点:整式的加减.专题:运算题.分析:把图形补成一个大矩形,则专门容易表达出阴影部分面积.解答:解:把图形补成一个大矩形,则阴影部分面积=ab﹣(a﹣c)(b﹣d)=ab﹣[ab﹣ad ﹣c(b﹣d)]=ab﹣ab+ad+c(b﹣d)=ad+c(b﹣d).故选C.点评:本题考查了整式的加减,解决的关键是把图形补成一个大矩形,从而求出阴影部分的面积.14.某商品进价为a元,商店将其价格提高30%作零售价销售,在销售旺季过后,商店又以8折(即售价的80%)优待开展促销活动,这时一件商品的售价为( )A.a元B.0.8a元C.0.92a元D.1.04a元考点:列代数式.分析:此题的等量关系:进价×(1+提高率)×打折数=售价,代入运算即可.解答:解:依照题意商品的售价是:a(1+30%)×80%=1.04a元.故选D.点评:考查了列代数式的知识,解题关键是要读明白题目的意思,依照题目给出的条件,找出合适的数量关系进行解题.有关销售问题中的提高30%,8折优待等名词要明白得透彻,正确应用.15.观看下面点阵图和相应的等式,探究其中的规律:①1=12;②1+3=22;③1+3+5=32;④1+3+5+7=42;⑤1+3+5+7+9=52;…按此规律1+3+5+7+…+(2n﹣1)=( )A.2n2B.n2C.(2n﹣1)2D.(n﹣1)2考点:规律型:图形的变化类;规律型:数字的变化类.分析:连续奇数个点照此排列,正好构成正方形点阵,其点的总数类比于正方形的面积(把每一个点看做一个单位长度),由此可知1+3+5+7+…+2n﹣1=n2.解答:解:∵①1=12,②1+3=22,③1+3+5=32,④1+3+5+7=42,…∴1+3+5+7+…+2n﹣1=n2.故选:B.点评:本题考查了图形与数字的变化类规律题,做这类题,要注意数形结合.图中有数,数借图形进行解决.二、填空题(每小题3分,共24分,把答案直截了当填在答题纸对应的位置上)16.已知|a+1|=0,b2=9,则a+b=2或﹣4.考点:有理数的乘方;非负数的性质:绝对值.专题:运算题.分析:依照非负数的性质以及平方的性质即可求得a,b的值,然后代入数据即可求解.解答:解:∵|a+1|=0,∴a+1=0,a=﹣1,∵b2=9,∴b=±3,∴当a=﹣1,b=3时,a+b=﹣1+3=2,当a=﹣1,b=﹣3时,a+b=﹣1﹣3=﹣4,故答案为:2或﹣4.点评:本题考查了非负数的性质,平方的性质,正确确定b的值是关键.17.点A在数轴上距离原点3个单位长度,若将点A向右移动4个单位长度,现在点表示的数是1或7.考点:数轴.分析:依照点A在原点的左右两边,分类求平移后点表示的数.解答:解:当点A在原点的左边时,平移后点表示的数为:﹣3+4=1;当点A在原点的右边时,平移后点表示的数为:3+4=7,故答案为:1或7.点评:本题考查了数轴的知识.由于引进了数轴,我们把数和点对应起来,也确实是把“数”和“形”结合起来,二者互相补充,相辅相成,把专门多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.18.某地探空气球的气象观测资料说明,高度每增加1千米,气温大约降低6℃.若该地地面温度为21℃,高空某处温度为﹣39℃,则此处的高度是10千米.考点:有理数的混合运算.专题:应用题.分析:依照题意,此处的高度=×1,利用有理数的除法运算法则运算,求出的值,即为高度.解答:解:×1=10(千米).故此处的高度是10千米.故答案为10.点评:本题考查了有理数的混合运算在实际生活中的应用.依照题意列出关系式是解题的关键.19.若﹣3x2m y3与2x4y n是同类项,那么m﹣n=﹣1.考点:同类项.分析:依照同类项的定义(所含字母相同,相同字母的指数相同)列出方程求出n,m的值,再代入代数式运算即可.解答:解:,解得:,则m﹣n=2﹣3=﹣1.故答案是:﹣1.点评:本题考查了同类项的定义,同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了2020届中考的常考点.20.当x=1,代数式px3+qx+1的值为2020,则当x=﹣1时,代数式px3+qx+1的值为﹣2020.考点:代数式求值.分析:依照代数式的值,可得二元一次方程,等式的性质,可得答案.解答:解;当x=1,代数式px3+qx+1=2020,p+q+1=2020,化简,得p+q=2020.两边都乘以﹣1,得﹣p﹣q=﹣2020.当x=﹣1时,代数式px3+qx+1=﹣p﹣q+1=﹣2020+1=﹣2020,故答案为:﹣2020.点评:本题考查了代数式求值,利用等式的性质得出﹣p﹣q的值是解题关键.21.若“ω”是新规定的某种运算符号,设aωb=3a﹣2b,则(x+y)ω(x﹣y)=x+5y.考点:代数式求值.专题:新定义.分析:依照新运算符号所代表的运算法则,表示出(x+y)ω(x﹣y)=,然后去括号,合并同类项即可.解答:解:由题意得,(x+y)ω(x﹣y)=3(x+y)﹣2(x﹣y)=3x+3y﹣2x+2y=x+5y.故答案为:x+5y.点评:此题考查了代数式求值的知识,解答本题的关键是明白得新运算符号所代表的运算法则,另外要求把握去括号及合并同类项的法则.22.为鼓舞节约用电,某地对用户用电收费标准作如下规定:假如每月每户用电不超过100度,那么每度电价按0.55元收费,假如超过100度,那么超过部分每度按1元收费.某户居民在一个月内用电150度,他那个月应缴纳电费105元.考点:有理数的混合运算.专题:应用题.分析:依照题意列出式子,再依照有理数混合运算的法则进行运算即可.解答:解:100×0.55+(150﹣100)×1=55+50=105(元).故答案为:105.点评:本题考查的是有理数的混合运算,熟知有理数混合运算的顺序是解答此题的关键.23.小明在做24点游戏时,抽到的四张牌的数值分别是1、3、4、7,他苦思不得其解,相信聪慧的你一定能关心他解除困难,请写出一个正确的算式:3×7+(4﹣1)(答案不唯独).(注:24点游戏要求,选用“加、减、乘、除”进行运算,且每一个数字只能使用一次)考点:有理数的混合运算.专题:开放型.分析:24点游戏的关键是加入任何运算符号和括号,使其运算结果为24即可,答案不唯独.解答:解:答案不唯独,如:3×7+(4﹣1)=24.故答案为:3×7+(4﹣1)(答案不唯独).点评:此题考查有理数混合运算的灵活程度,能够提高学生的学习爱好.三、解答题,本大题共7小题,共51分,解答时应写出文字说明、证明过程或演算步骤)24.(1)运算:﹣20+(﹣14)﹣(﹣18)﹣13(2)运算:﹣1×[2﹣(﹣3)2].考点:有理数的混合运算.分析:(1)先去括号,再从左到右依次运算即可;(2)先算括号里面的,再算乘方,乘法,最后算加减即可.解答:解:(1)原式=﹣20+(﹣14)﹣(﹣18)﹣13=﹣20﹣14+18﹣13=﹣34+18﹣13=﹣16﹣13=﹣29;(2)原式=﹣1﹣××[2﹣9]=﹣1﹣×(﹣7)=﹣1+=.点评:本题考查的是有理数的混合运算,熟知有理数混合运算的顺序是解答此题的关键.25.(1)先化简再求值:﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2,b=3.(2)已知代数式2x2+ax﹣y+6﹣2bx2+3x﹣5y﹣1的值与字母x的取值无关,求a b的值.考点:整式的加减—化简求值;整式的加减.专题:运算题.分析:(1)原式去括号合并得到最简结果看,把a与b的值代入运算即可求出值;(2)代数式合并后,依照其值与x取值无关,确定出a与b的值,即可求出所求式子的值.解答:解:(1)原式=﹣3a2+4ab+a2﹣4a﹣4ab=﹣2a2﹣4a,当a=﹣2,b=3时,原式=﹣8+8=0;(2)原式=(2﹣2b)x2+(a+3)x﹣6y+5,由代数式的值与字母x的取值无关,得到2﹣2b=0,a+3=0,解得:a=﹣3,b=1,则原式=﹣3.点评:此题考查了整式的加减﹣化简求值,熟练把握运算法则是解本题的关键.26.如图是由几个小立方块所搭成几何体的从上面看到的形状图,小正方形中的数字表示在该位置小立方块的个数,请画出那个几何体的从正面、从左面看到的形状图.考点:作图-三视图;由三视图判定几何体.分析:由已知条件可知,从正面看有3列,每列小正方数形数目分别为3,1,4;从左面看有3列,每列小正方形数目分别为2,4,2.据此可画出图形.解答:解:如图所示:点评:考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.27.按下列程序运算,把答案填写在表格内,并观看有什么规律,想想什么缘故有如此的规律?(1)填写表内空格:输入x 3 2 ﹣2 ﹣3 …输出答案 1 1 …(2)发觉的规律是:.考点:整式的混合运算.专题:动点型.分析:由题中给出的式子我们可得出(x2+x)÷x﹣x=x+1﹣x=1.因此在填空时,我们能够依照得出的规律进行求解.解答:解:(1)输入x 3 2 ﹣2 ﹣3 …输出答案 1 1 1 1 …(2)发觉的规律是:不论x取任意数输入程序后结果差不多上1,或(x2+x)÷x﹣x=x+1﹣x=1.点评:本题考查了多项式除单项式,关键是要通过整式的运算,将题中给出的规律搞清晰,然后再利用那个规律进行求解.28.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,(1)第1个图中所贴剪纸“○”的个数为5,第2个图中所贴剪纸“○”的个数为8,第3个图中所贴剪纸“○”的个数为11;(2)用代数式表示第n个图中所贴剪纸“○”的个数,并求当n=100时,所贴剪纸“○”的个数.考点:规律型:图形的变化类.分析:(1)第一个图中所贴剪纸“○”的个数为3+2=5;第二个图中所贴剪纸“○”的个数为2×3+2=8;第三个图中所贴剪纸“○”的个数为3×3+2=11;…从而能够得出第n个图中所贴剪纸“○”的个数为(3n+2);(2)利用(1)中的规律代入求得答案即可.解答:解:(1)第一个图中所贴剪纸“○”的个数为3+2=5;第二个图中所贴剪纸“○”的个数为2×3+2=8;第三个图中所贴剪纸“○”的个数为3×3+2=11;…第n个图中所贴剪纸“○”的个数为(3n+2);(2)当n=100时,所贴剪纸“○”的个数为100×3+2=302.点评:此题考查图形的变化规律.关于找规律的题目第一应找出哪些部分发生了变化,是按照什么规律变化的,得出规律解决问题.29.为了方便乘坐公交车,王老师办了一张公交IC卡,并存入50元钱,若他乘坐的次数用n表示,则他每次乘车后IC卡内的余额y(元)如下表:乘车次数n 余款y元1 50﹣0.8=49.22 50﹣1.6=48.83 50﹣2.4=47.6……(1)王老师每次用IC卡乘车需用多少钱?(2)王老师乘n次车后IC卡内剩余的钱数y为多少?(3)王老师乘车16次后,IC内还剩下多少钱?王老师用这张卡还能坐多少次车?考点:列代数式;代数式求值.分析:(1)依照表格中的数据可直截了当得到王老师每次用IC卡乘车需要0.8元;(2)依照表格数据可得:乘车一次扣0.8元,乘车两次扣1.6元,…利用50﹣乘车次数×0.8元即可得到剩余钱数;(3)把n=16代入(2)中的代数式,即可算出余额,在用余额÷0.8即可算出还能乘几次车.解答:解:(1)依照表格数据可得王老师每次用IC卡乘车需要0.8元;(2)由题意得:y=50﹣0.8n;(3)把n=16代入y=50﹣0.8n中:y=50﹣0.8×16=37.2,37.2÷0.8=46.5.答:卡内还剩37.2元,王老师最多还能乘46次车.点评:此题要紧考查了列代数式,以及求代数式的值,关键是正确明白得题意,依照表格中数据得到每次乘车的花费.30.迪雅服装厂生产一种夹克和T恤,夹克每件定价100元,T恤每件定价50元.厂方在开展促销活动期间,向客户提供两种优待方案:①买一件夹克送一件T恤;②夹克和T恤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,T恤x件(x>30).(1)若该客户按方案①购买,夹克需付款3000元,T恤需付款50(x﹣30)元(用含x的式子表示);若该客户按方案②购买,夹克需付款2400元,T恤需付款40x元(用含x 的式子表示);(2)若x=40,通过运算说明按方案①、方案②哪种方案购买较为合算?(3)若两种优待方案可同时使用,当x=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并说明理由.考点:列代数式;代数式求值.专题:运算题.分析:(1)该客户按方案①购买,夹克需付款30×100=3000;T恤需付款50(x﹣30);若该客户按方案②购买,夹克需付款30×100×80%=2400;T恤需付款50×80%×x;(2)把x=40分别代入(1)中的代数式中,再求和得到按方案①购买所需费用=30×100+50(40﹣30)=3000+500=3500(元),按方案②购买所需费用=30×100×80%+50×80%×40=2400+1600=4000(元),然后比较大小;(3)能够先按方案①购买夹克30件,再按方案②只需购买T恤10件,现在总费用为3000+400=3400(元).解答:解:(1)3000;50(x﹣30);2400;40x;(2)当x=40,按方案①购买所需费用=30×100+50(40﹣30)=3000+500=3500(元);按方案②购买所需费用=30×100×80%+50×80%×40=2400+1600=4000(元),因此按方案①购买较为合算;(3)先按方案①购买夹克30件,再按方案②购买T恤10件更为省钱.理由如下:先按方案①购买夹克30件所需费用=3000,按方案②购买T恤10件的费用=50×80%×10=400,因此总费用为3000+400=3400(元),小于3500元,因此此种购买方案更为省钱.点评:本题考查了列代数式:利用代数式表示文字题中的数量之间的关系.也考查了求代数式的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

滕东中学七年级数学期中模拟试卷
(本试卷满分120分,考试时间100分钟)
一、选择题(每题3分,共30分)
1. 2014的相反数是 ( ) A .2014 B .-2014 C .
20141 D .2014
1
- 2.如图,为一个多面体的表面展开图,每个面内都标注了数字.若数字
6的面是底面,朝上一面所标注的数字为(
A.5
B.4
C.3 D.2
3. 在CCTV“开心辞典”栏目中,主持人问这样一道题目:“a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,请问:a ,b ,c 三数之和是 ( ).
A .-1
B .0
C .1
D .2 4. 有理数a ,b 在数轴上的位置如图所示,则b a +是( ) A .正数 B .零 C .负数 D .都有可能 5. 下列计算正确的是 ( )
A. 6
5
)31()21(=---
B. 12)2(6
-=--
C. 7322
=-+-
D. 0)
1()1(100
5
=-+-
6.对于4
)2(-和4
2-,下列说法正确的是( )
A.它们的意义相同
B.它们的结果相同
C.它们的意义不同,结果相同
D.它们的意义不同,结果也不同
7. 温家宝总理有句名言:多么小的问题乘以13亿,都会变得很
大;多么大的经济总量,除以13亿都会变得很小.将1300 000 000
用科学记数法表示为 ( )
A.81310⨯
B. 81.310⨯
C.91.310⨯
D.91.3
8.下列说法正确的是 ( ) A. a 2是代数式,1不是代数式 B. 代数式
a b a
b
除表示--33 C. 当x =4时,代数式
10
4
-x 的值为0
D. 零是最小的整数
9. 若把每千克a 元的m 千克甲糖果与每千克b 元的n 千克乙糖果混合,那么混合的糖果的单价应为 ( ) A.
2
b
a + B.
2
n
m + C.
2
bn
am + D.
n m bn am ++
10. 观察下列算式
31
=3 ,32
=9 ,33
=27 ,34
=81 , 35
=243 , 36
=729 , 37
=2187 , …… 根据上述算式中的规律,你认为3
2014
的末位数字是( )
A.3
B.9
C.7
D.1
二、填空题(每空3分,共33分)
11. 一个四棱柱有_________个面,_________条棱,_________个顶点. 12. 如果节约20元钱,记作“+20”元,那么浪费12元钱,记作 元. 13. 在数轴上,如果点A 表示数3,将点A 向左移动7个单位长度,再
向右移动5个单位长度,那么终点表示的数是___________. 14. -(-2)表示___________________ .
15. 若有理数a 、b 满足0)2(132=-++b a ,则__________=b
a . 16.若
._________1=+-=x x x
x
,则
17. 32
3y x
π的系数是___________,次数是___________.
18.若a,b 互为倒数,m,n 互为相反数,则ab n m 2)2++(=________.
三、解答题(共57分)
19. 计算:(每题4分,共20分)
(1) )7
1
()5()7()2(-⨯+⨯-⨯- (2))11(3)22(11-⨯--+
(3)5
)4()1(324
2⨯---⨯+- (4) ]2)32
[(2
32
--⨯-
(5)
23
23
269221
13)()()(-÷-⨯---
20.(10分)某班10名学生在一次数学测验中的成绩以90分为标准,超过的分数记为正数,不足的分数记为负数,记录如下:
-7,-10,+9,+2,-1,+5,-8,+10,+4,+9.
(1)最高分和最低分各是多少?
(2)求他们的平均成绩.
21. (10分) 为了有效控制酒后驾车,某市城管的汽车在一条东西方向的
公路上巡逻,如果规定向东为正,向西为负,从出发点开始所走的路程为:+2,-3,+2,+1,-2,-1,-2(单位:千米)
(1)此时,这辆城管的汽车司机如何向队长描述他的位置?
(2)如果队长命令他马上返回出发点,这次巡逻(含返回)共耗油多少升?(已知每千米耗油0.2升)
22.(6分)一个几何体由若干个相同的小正方体组成,如图是从上面看得到的图形,其中每个小正方形中的数字代表该位置小正方体的个数,请画
出该几何体从主视图和左视图.
23.(5分)某树种的高度与树生长的年数有关,测得这种树木某棵树的有关数据如下表:(树苗原高200厘米)
(1)生长了11年的这棵树的高度是多少?
(2)用含有字母n的代数式表示生长了n年的这棵树的高度.
24.(6分)同学们,你听说过“高斯求和”吗?育英学校青年志愿者组成数学小组到和平广场举行科普宣传活动。

小明在黑板上写出下列一组等式:
1+2=3
1+2+3=
()
2
1
3
3+
=6
1+2+3+4=
()
2
1
4
4+
=10
1+2+3+4+5=
()
2
1
5
5+
=15
………
1+2+3+4+ … … +n = ________________ (1)请你在横线上写出适当的代数式.
(2)请用上面的规律计算1+2+3+ … +100的值.。

相关文档
最新文档