模电课件第26讲
合集下载
《模拟电路》课件

详细描述
模拟电路是处理模拟信号的电子电路,这些信号在时间和幅 度上都是连续变化的。在模拟电路中,电路元件的参数通常 是连续变化的,这使得模拟电路的分析方法与数字电路有所 不同。
模拟电路的应用
总结词
模拟电路广泛应用于通信、音频处理、图像处理、控制系统等领域。
详细描述
模拟电路在许多领域都有广泛的应用,包括通信、音频处理、图像处理、控制系统等。在通信领域,模拟电路用 于信号的传输和处理;在音频处理领域,模拟电路用于音频信号的放大和处理;在图像处理领域,模拟电路用于 图像信号的处理和传输;在控制系统中,模拟电路用于控制信号的生成和传输。
准备必要的调试工具和测试设备,搭 建调试环境。
功能调试
对电路的功能进行测试和验证,确保 各功能正常工作。
性能优化
根据测试结果,对电路的性能进行优 化,提高各项技术指标。
问题分析与解决
针对调试过程中发现的问题,进行深 入分析并采取有效措施解决。
05
模拟电路实验与实践
实验设备与器材
信号发生器
产生各种频率和幅 度的正弦波、方波 和三角波等信号。
电路的性能也不断提高。
02
模拟电路基础知识
电阻
总结词
电阻是模拟电路中最重要的元件之一 ,用于限制电流的流动。
详细描述
电阻由导电材料制成,其阻值取决于 材料、长度和横截面积。在电路中, 电阻用于控制电流的大小,从而实现 电压的调节和信号的处理。
电容
总结词
电容是存储电荷的元件,具有隔直流通交流的特性。
详细描述
交流分析是模拟电路分析的重要环节,主要 研究电路在交流信号下的响应。通过交流分 析,可以了解电路的动态性能,如增益、带 宽、失真等。交流分析通常采用小信号模型 进行分析,以简化计算过程。
模拟电路是处理模拟信号的电子电路,这些信号在时间和幅 度上都是连续变化的。在模拟电路中,电路元件的参数通常 是连续变化的,这使得模拟电路的分析方法与数字电路有所 不同。
模拟电路的应用
总结词
模拟电路广泛应用于通信、音频处理、图像处理、控制系统等领域。
详细描述
模拟电路在许多领域都有广泛的应用,包括通信、音频处理、图像处理、控制系统等。在通信领域,模拟电路用 于信号的传输和处理;在音频处理领域,模拟电路用于音频信号的放大和处理;在图像处理领域,模拟电路用于 图像信号的处理和传输;在控制系统中,模拟电路用于控制信号的生成和传输。
准备必要的调试工具和测试设备,搭 建调试环境。
功能调试
对电路的功能进行测试和验证,确保 各功能正常工作。
性能优化
根据测试结果,对电路的性能进行优 化,提高各项技术指标。
问题分析与解决
针对调试过程中发现的问题,进行深 入分析并采取有效措施解决。
05
模拟电路实验与实践
实验设备与器材
信号发生器
产生各种频率和幅 度的正弦波、方波 和三角波等信号。
电路的性能也不断提高。
02
模拟电路基础知识
电阻
总结词
电阻是模拟电路中最重要的元件之一 ,用于限制电流的流动。
详细描述
电阻由导电材料制成,其阻值取决于 材料、长度和横截面积。在电路中, 电阻用于控制电流的大小,从而实现 电压的调节和信号的处理。
电容
总结词
电容是存储电荷的元件,具有隔直流通交流的特性。
详细描述
交流分析是模拟电路分析的重要环节,主要 研究电路在交流信号下的响应。通过交流分 析,可以了解电路的动态性能,如增益、带 宽、失真等。交流分析通常采用小信号模型 进行分析,以简化计算过程。
《模拟电路版图》PPT课件

❖ 在整个的设计流程中,都要不断沟通,以保 证所设计的版图不仅功能正确,且性能最优。
❖ 四、完成进度不同
❖ 在数字电路设计中,芯片的绝大部分电路往 往在开始版图工作时,就已经完成。而模拟 电路则不同,电路设计和版图设计可能会同 时进行。
❖ 五、创新要求不同
❖ 与数字电路不同,模拟电路的版图设计重复 性不多,创新很重要。
❖ 并联布线:将上下层金属线重叠起来,形成 叠层结构,实际上是几层金属线的并联,相 当于加宽了导线。
❖ 在高频电路中,寄生电感不可忽略。
❖ 利用寄生参数 ❖ 不能依赖寄生参数作为电路的一个成分,因
为无法很好的控制它们,通常的误差可以是 正负50%。 ❖ 但是在不关心电路参数的大小,例如只想要 一个大电容,可以利用寄生参数来满足。
❖ 一、CMOS晶体管 ❖ 由阱至衬底的电容 ❖ 由栅极至阱的电容 ❖ 这些寄生参数会使得电路的工作速度变慢。
❖ 一种技术:减少多晶硅的串联电阻。可以通 过将多晶硅分成多个“指形”的结构,然后 用导线将它们并联起来以降低电阻。
❖ 通过分成多个器件以及源漏共享可以大大减 小CMOS晶体管上的寄生参数。
❖ 匹配规则之八:用虚设器件围起来。
❖ 将器件围绕一个公共的中心点放置,称为共 心布置。甚至把器件在一条直线上对称放置 也可以看做是共心技术。
❖ 共心技术对减少在集成电路中存在的热或工 艺的线性梯度影响非常有效。
❖ 一、四方交叉
❖ 把一个器件分为两半,然后把他们成对角线 放置。这种特殊的工薪技术称为四方交叉。
❖ 一、规模不同
❖ 二、主要目标不同
❖ 数字电路的目标:优化芯片的尺寸和提高集 成度
❖ 模拟电路的目标:优化电路的性能、匹配程 度、速度和各种功能方面的问题。
❖ 四、完成进度不同
❖ 在数字电路设计中,芯片的绝大部分电路往 往在开始版图工作时,就已经完成。而模拟 电路则不同,电路设计和版图设计可能会同 时进行。
❖ 五、创新要求不同
❖ 与数字电路不同,模拟电路的版图设计重复 性不多,创新很重要。
❖ 并联布线:将上下层金属线重叠起来,形成 叠层结构,实际上是几层金属线的并联,相 当于加宽了导线。
❖ 在高频电路中,寄生电感不可忽略。
❖ 利用寄生参数 ❖ 不能依赖寄生参数作为电路的一个成分,因
为无法很好的控制它们,通常的误差可以是 正负50%。 ❖ 但是在不关心电路参数的大小,例如只想要 一个大电容,可以利用寄生参数来满足。
❖ 一、CMOS晶体管 ❖ 由阱至衬底的电容 ❖ 由栅极至阱的电容 ❖ 这些寄生参数会使得电路的工作速度变慢。
❖ 一种技术:减少多晶硅的串联电阻。可以通 过将多晶硅分成多个“指形”的结构,然后 用导线将它们并联起来以降低电阻。
❖ 通过分成多个器件以及源漏共享可以大大减 小CMOS晶体管上的寄生参数。
❖ 匹配规则之八:用虚设器件围起来。
❖ 将器件围绕一个公共的中心点放置,称为共 心布置。甚至把器件在一条直线上对称放置 也可以看做是共心技术。
❖ 共心技术对减少在集成电路中存在的热或工 艺的线性梯度影响非常有效。
❖ 一、四方交叉
❖ 把一个器件分为两半,然后把他们成对角线 放置。这种特殊的工薪技术称为四方交叉。
❖ 一、规模不同
❖ 二、主要目标不同
❖ 数字电路的目标:优化芯片的尺寸和提高集 成度
❖ 模拟电路的目标:优化电路的性能、匹配程 度、速度和各种功能方面的问题。
数电与模电PPT课件

其励磁绕组由其他电源供电,励磁绕组与电枢绕 组不相连。 2、自励式 发电机 :利用自身发出的电流励磁; 电动机 :励磁绕组和电枢绕组由同一电源供电。 并励式(图3-5b) : 励磁绕组与电枢绕组并联; 串励式(图3-5c) : 励磁绕组与电枢绕组串联; 复励式(图3-5d) : 装有两个励磁绕组,一为与电
精选ppt40图32a线圈电动势的波形精选ppt41图32b电刷间的电动势波形精选ppt42图34国产直流电机的结构精选ppt43精选ppt44精选ppt45图36空载时直流电机的气隙磁场精选ppt46图38发电机精选ppt47图39电动机精选ppt48图310并励电动机的工作特性精选ppt49图311并励电动机的转矩转速特性精选ppt50图312串励电动机的工作特性精选ppt51图313串励电动机的转矩转速特性精选ppt52图314复励电动机的转矩转速特性
电枢绕组AX(一个线圈); 换向器。
定子与转子之间为气隙。
4
2、直流发电机的工作原理 发电机:虽然线圈AX电动势是交流电动势,
但由于换向器的整流作用,电刷间的输出电动势 却是直流电动势。 (图3-2 a,图3-2b)
5
3、直流电动机的工作原理 电动机:在直流电动机中,外加电压并非直接
加于线圈,而是通过电刷 B 1、B 2和换向器再加到线圈 上的。所以,导体中的电流将随其所处磁极极性的改 变而同时改变其方向,从而使电磁转矩的方向始终 保持不变。
得特性曲线(如图3-11) 结论:硬特性
32
二 、串励电动机的运行特性
特点:
1、工作特性
是指
时,
或 转速公式
(图形3-12)
33
式中 为串励绕组的电阻。
上式表明
曲线大致为一双曲线。
精选ppt40图32a线圈电动势的波形精选ppt41图32b电刷间的电动势波形精选ppt42图34国产直流电机的结构精选ppt43精选ppt44精选ppt45图36空载时直流电机的气隙磁场精选ppt46图38发电机精选ppt47图39电动机精选ppt48图310并励电动机的工作特性精选ppt49图311并励电动机的转矩转速特性精选ppt50图312串励电动机的工作特性精选ppt51图313串励电动机的转矩转速特性精选ppt52图314复励电动机的转矩转速特性
电枢绕组AX(一个线圈); 换向器。
定子与转子之间为气隙。
4
2、直流发电机的工作原理 发电机:虽然线圈AX电动势是交流电动势,
但由于换向器的整流作用,电刷间的输出电动势 却是直流电动势。 (图3-2 a,图3-2b)
5
3、直流电动机的工作原理 电动机:在直流电动机中,外加电压并非直接
加于线圈,而是通过电刷 B 1、B 2和换向器再加到线圈 上的。所以,导体中的电流将随其所处磁极极性的改 变而同时改变其方向,从而使电磁转矩的方向始终 保持不变。
得特性曲线(如图3-11) 结论:硬特性
32
二 、串励电动机的运行特性
特点:
1、工作特性
是指
时,
或 转速公式
(图形3-12)
33
式中 为串励绕组的电阻。
上式表明
曲线大致为一双曲线。
模拟电路基础ppt课件可编辑全文

*
1.4.3 三极管的工作状态
1. 放大状态 在上面一部分中分析了三极管的放大原理。为了使三极管有放大能力,在输入回路加基极直流电源VBB,在输出回路加集电极直流电源VCC,且VCC大于VBB,使发射结正向偏置、集电结反向偏置。此时称三极管处于放大状态,条件是发射结正向偏置、集电结反向偏置。 2. 饱和状态 如果输出回路的集电极直流电源VCC小于输入回路的基极直流电源VBB,则发射结和集电结都是正向偏置。由于发射结和集电结都是正向偏置,在开始发射结和集电结上的势垒都变窄,使发射区和集电区的自由电子同时涌入基区,但是由于基区面积很小,且掺杂浓度很低,涌入到基区的电子中只有极少部分与空穴复合,形成基极电流IB,绝大部分扩散到基区的电子堆积在发射结和集电结附近,使发射结和集电结上的势垒加宽,阻止了发射区和集电区的自由电子进一步扩散到基区,由此可见,此时三极管没有放大能力。 此种状态称三极管处于饱和状态,条件是发射结和集电结都是正向偏置。 3. 截止状态 如果在输入回路的基极直流电源VBB小于发射结的开启电压,则发射结处于零偏置或反偏置。由于外加电压没有达到发射结的开启电压,使发射区的自由电子不能越过发射结达到基区,不能形成电流,从而发射极、集电极和基极的电流都很小,也就谈不上放大了。此时称三极管处于截止状态,条件是发射结零偏置或反偏置、集电结反向偏置。
*
1.3.3 二极管的等效电阻
直流等效电阻也称静态等效电阻。如图1-9所示,在二极管的两端加直流电压UQ、产生直流电流IQ,此时直流等效电阻RD定义为 交流等效电阻表示,在二极管直流工作点确定后,交流小信号作用于二极管所产生的交流电流与交流电压的关系。在直流工作点Q一定,在二极管加有交流电压u,产生交流电流i,交流等效电阻r定义为
*
例1-1 图10(a)是由理想二极管D组成的电路,理想二极管是指二极管的导通电压U为0、反向击穿电压U为,设电路的输入电压u如图10(b)所示,试画出输出uo的波形 解:由二极管的单向导电特性,输入信号正半周时二极管导通,负半周截止,故输出uo的波形如右图所示。
1.4.3 三极管的工作状态
1. 放大状态 在上面一部分中分析了三极管的放大原理。为了使三极管有放大能力,在输入回路加基极直流电源VBB,在输出回路加集电极直流电源VCC,且VCC大于VBB,使发射结正向偏置、集电结反向偏置。此时称三极管处于放大状态,条件是发射结正向偏置、集电结反向偏置。 2. 饱和状态 如果输出回路的集电极直流电源VCC小于输入回路的基极直流电源VBB,则发射结和集电结都是正向偏置。由于发射结和集电结都是正向偏置,在开始发射结和集电结上的势垒都变窄,使发射区和集电区的自由电子同时涌入基区,但是由于基区面积很小,且掺杂浓度很低,涌入到基区的电子中只有极少部分与空穴复合,形成基极电流IB,绝大部分扩散到基区的电子堆积在发射结和集电结附近,使发射结和集电结上的势垒加宽,阻止了发射区和集电区的自由电子进一步扩散到基区,由此可见,此时三极管没有放大能力。 此种状态称三极管处于饱和状态,条件是发射结和集电结都是正向偏置。 3. 截止状态 如果在输入回路的基极直流电源VBB小于发射结的开启电压,则发射结处于零偏置或反偏置。由于外加电压没有达到发射结的开启电压,使发射区的自由电子不能越过发射结达到基区,不能形成电流,从而发射极、集电极和基极的电流都很小,也就谈不上放大了。此时称三极管处于截止状态,条件是发射结零偏置或反偏置、集电结反向偏置。
*
1.3.3 二极管的等效电阻
直流等效电阻也称静态等效电阻。如图1-9所示,在二极管的两端加直流电压UQ、产生直流电流IQ,此时直流等效电阻RD定义为 交流等效电阻表示,在二极管直流工作点确定后,交流小信号作用于二极管所产生的交流电流与交流电压的关系。在直流工作点Q一定,在二极管加有交流电压u,产生交流电流i,交流等效电阻r定义为
*
例1-1 图10(a)是由理想二极管D组成的电路,理想二极管是指二极管的导通电压U为0、反向击穿电压U为,设电路的输入电压u如图10(b)所示,试画出输出uo的波形 解:由二极管的单向导电特性,输入信号正半周时二极管导通,负半周截止,故输出uo的波形如右图所示。
《模电课件大全》课件

THANKS
感谢观看
案例二:无线通信系统的实现
总结词
无线通信系统的实现案例探讨了模拟电子技术在无线通信领域的应用,重点介绍了无线发射机和无线 接收机的设计和实现。
详细描述
该案例首先介绍了无线通信系统的基本原理和组成,然后详细阐述了无线发射机和无线接收机的设计 和实现过程。通过电路图、原理分析和测试数据等手段,展示了无线通信系统的关键技术和性能指标 。最后,对无线通信系统的优势和局限性进行了分析和讨论。
模拟电子技术的发展趋势
总结词
随着科技的不断发展,模拟电子技术也在不断进步和 完善,未来将朝着更高精度、更高速度、更低功耗的 方向发展。
详细描述
随着集成电路和微电子技术的不断发展,模拟电子器件 的精度和稳定性得到了显著提高,同时其体积和成本也 在不断降低。此外,随着数字信号处理技术的广泛应用 ,模拟电子技术也与数字电子技术相互融合,形成了混 合信号处理技术。未来,模拟电子技术将继续朝着更高 精度、更高速度、更低功耗的方向发展,为各领域的科 技进步提供更加有力的支持。
02
模拟电子技术基础
电子元件
01
02
03
电子元件的种类
电子元件是构成电子设备 的基本单元,包括电阻、 电容、电感、二极管、晶 体管等。
电子元件的作用
电子元件在模拟电子技术 中起着关键作用,它们可 以用于信号处理、放大、 滤波、振荡等。
电子元件的特性
每种电子元件都有其独特 的电气特性,如电阻的阻 值、电容的容值、电感的 感值等。
音频信号的滤波
通过模拟电子技术,可以 对音频信号进行滤波处理 ,去除噪声和其他干扰。
音频信号的调制
通过模拟电子技术,可以 将音频信号调制到高频载 波上,以便于传输和广播 。
模拟电路基础教程PPT完整全套教学课件全

返回目录 CONTENTS PAGE
透彻掌握器 件特性
1
重视对电路 构成原理的
学习
2
理论与实践 的关系
3
返回目录 CONTENTS PAGE
目前国内使用较多的电路设计仿真软件有PSPICE、Proteus和Multisim 等。就模拟电路仿真来说,Multisim 以其界面友好、功能强大、易于学习 的优点而受到高校电类专业师生和工程技术人员的青睐。Multisim13.0版 本已上市,但目前使用比较稳定、用户数较多的还是10.0版本。对于使用 者来说,只要有一台计算机和Multisim 软件,就相当于拥有了一间设备齐全 的电路实验室,可以调用元器件,搭建电路,利用虚拟仪器进行测量,对电路 进行仿真测试,可以实时修改各类电路参数,实时仿真,从而帮助使用者了解 各种电路变化对电路性能的影响,对电路的测量直观、智能,是进行电路分 析和设计的有效辅助工具。使用者在学习和解题的过程中,可以通过 Multisim 对电路中某个节点的电压波形、某条支路的电流波形、电路结构 变化产生的影响等方方面面问题快速仿真而得到答案。
模拟电路基础教程PPT课件
1.1.4 一般电子系统的构成 1.电子系统的分类
返回目录 CONTENTS PAGE
模拟电子 系统
数字电子 系统
模拟电路基础教程PPT课件
2.电子系统的构成
返回目录 CONTENTS PAGE
模拟电路基础教程PPT课件
返回目录 CONTENTS PAGE
1.1.5 模拟电子技术的发展
在式(1-1-1)中,K 为常数,使u(t)和T(t)之间形成如图1-1-1所示的相 似形关系。如果K 不能保持为常数,则称模拟信号发生了失真。失真问 题是模拟电路中始终需要引起注意和克服的重要问题。
模拟电子技术第26讲
1. 单门限电压比较器
+VCC
vI
+
A -
vO
(1)过零比较器
-VEE
输入为正弦波时,输出为 vI 方波
O
T p 2p
3p 4p wt
vO VOH
O VOL
t
3
第9章 信号处理与信号产生电路
例 电路如图,vI为三角波,其峰值为 6V,设±VCC= ±12V运放为理想的, 试分别画出VREF=0、 +2、 -4V的输出 电压波形
(3) 传输特性
vI
vN
–
vO
当vI=0时: v0=VOH , vp=VT+
VREF
R2
vP
A +
所以,在vI<VT+前:v0=VOH =1V 100
R1
当vI= VT+时,电路内部发生正
v0
VOH
10k
反馈,一旦 vI> VT+:v0=VOL 此时,vp=VT-
VT-
VT+
vI
VOL
37- 14
10k
v0=VOL
VT-
当vI= VT-时,电路内部发生正
反馈,一旦 vI< VT-: v0=VOH
VOL
此时,vp=VT+
VT+
vI
37- 15
第9章 信号处理与信号产生电路
9.8 非正弦信号产生电路
9.8.1 比较器
v0
2. 迟滞比较器(施密特触发器)VOH
(3) 传输特性
VT-
v0
VOH
VOL
Vi 12
vI VREF
+VCC
+
+VCC
vI
+
A -
vO
(1)过零比较器
-VEE
输入为正弦波时,输出为 vI 方波
O
T p 2p
3p 4p wt
vO VOH
O VOL
t
3
第9章 信号处理与信号产生电路
例 电路如图,vI为三角波,其峰值为 6V,设±VCC= ±12V运放为理想的, 试分别画出VREF=0、 +2、 -4V的输出 电压波形
(3) 传输特性
vI
vN
–
vO
当vI=0时: v0=VOH , vp=VT+
VREF
R2
vP
A +
所以,在vI<VT+前:v0=VOH =1V 100
R1
当vI= VT+时,电路内部发生正
v0
VOH
10k
反馈,一旦 vI> VT+:v0=VOL 此时,vp=VT-
VT-
VT+
vI
VOL
37- 14
10k
v0=VOL
VT-
当vI= VT-时,电路内部发生正
反馈,一旦 vI< VT-: v0=VOH
VOL
此时,vp=VT+
VT+
vI
37- 15
第9章 信号处理与信号产生电路
9.8 非正弦信号产生电路
9.8.1 比较器
v0
2. 迟滞比较器(施密特触发器)VOH
(3) 传输特性
VT-
v0
VOH
VOL
Vi 12
vI VREF
+VCC
+
《华中科技大学》模拟电子技术课件_模电复习大纲 ppt课件
如,Vc
、
e
I
等。
b
PPT课件
2
第一章 绪论
电压放大模型
1. 输入电阻
Ri
Vi Ii
+ Vs
–
Rs + Vi –
Ro
+
+
Ri
AVOVi
Vo RL
–
–
反应了放大电Biblioteka 从信号源吸取信号幅值的大小。输入电压信号, Ri 越大,Vi 越大。 输入电流信号, Ri 越小, Ii 越大。
IT
外 加 测 试 信 号VT
Ro
Vo Vo
RL
RL
Ro
VT IT
Vs 0
+ Vs=0
–
PPT课件
放大电路
IT
+ VT
–
Ro
4
3、频率响应
上、下限频率;带宽
频率失真(线性失真) 幅度失真
非正弦信号 相位失真
非线性失真
饱和失真 正弦信号
截止失真
20lg|AV|/dB
60
3dB
40 带宽
20
0
2
20 2 102 2 103 2 104 f/Hz
PPT课件
7
4、熟练掌握PN结
形成——由于浓度差,而出现扩散运动,在中间形成空 间电荷区(耗尽层),又由于空间电荷区的内电场作用,存 在漂移运动,达到动态平衡。 单向导电性 ——
不外加电压,扩散运动=漂移运动,iD=0 加正向电压(耗尽层变窄),扩散运动>漂移运动形成iD 加反向电压(耗尽层变宽),扩散运动为0,只有很小的
其增加、减小的值均与反馈深度(1+AF)有关
模电的课件
理、步骤、数据记录等。
实验实施
03
按照实验方案进行实验操作,注意观察和记录实验数据,及时
处理异常情况。
实验结果分析与讨论
实验结果整理
对实验数据进行整理和分析,确保数据的准确性和可靠性。
结果讨论
根据实验结果,对实验原理、操作过程、数据处理等方面进行讨 论和总结。
改进建议
针对实验中存在的问题和不足,提出改进建议和措施,为今后的 实验教学提供参考。
模拟电路的特点
模拟电路具有连续性、真实性等特点 ,能够实现对模拟信号的放大、滤波 、转换等功能。
模拟电路与数字电路区别
信号形式
模拟电路处理的是连续的模拟信 号,而数字电路处理的是离散的
数字信号。
信号处理方式
模拟电路通过对模拟信号进行放大 、滤波等操作实现信号的处理,而 数字电路则通过逻辑门电路对数字 信号进行运算和处理。
放大电路
01
02
03
电压放大电路
通过电阻和电容等元件, 将输入信号放大,输出电 压幅度远大于输入电压幅 度。
电流放大电路
通过晶体管等元件,将输 入信号放大,输出电流幅 度远大于输入电流幅度。
功率放大电路
通过晶体管等元件,将输 入信号放大,输出功率远 大于输入功率,用于驱动 负载。
滤波电路
低通滤波电路
精度和稳定性
由于数字信号只有高低电平两种状 态,因此数字电路的精度和稳定性 通常比模拟电路更高。
模拟电路应用领域
通信领域
模拟电路在通信领域中有着广 泛的应用,如手机、电话、无 线电等通信设备中都离不开模
拟电路。
音频领域
模拟电路可以实现对音频信号 的放大和处理,因此在音响、 录音设备等音频领域中也有广 泛的应用。
模拟电路整套课件完整版电子教案最全ppt整本书课件全套教学教程
常使用的二极管,是不允许出现这种现象的。
上一页 下一页 返回
第一节 晶体二极管
三、晶体二极管器件的参数及分类
1.二极管的主要参数 (1)最大整流电流IFM 最大整流电流是指二极管长时间使用时,允许流过二极管的
最大正向平均电流。当电流超过这个允许值时,二极管会因 过热而烧坏,使用时务必注意。 (2)最高反向工作电压VRM 指二极管在使用时允许加上的最高反向电压。如果超过此值 二极管可能被击穿。一般是反向击穿电压的1/2或2/3。
上一页 下一页 返回
第一节 晶体二极管
二、PN结合晶体二极管的结构和特性
1.PN结 如果在硅或锗本征半导体中采用掺杂工艺,使半导体的一边
形成P型半导体,另一边形成N型半导体,则在这两种导电性 能相反的半导体交界面上,将形成一个特殊的接触面,称为 PN结。如图1-2 ( a)所示。 将P型半导体与N型半导体制作在同一块硅片上,在无外电场 和其他激发作用下,参与扩散运动的多子数目等于参与漂移 运动的少子数目,从而达到动态平衡
和集电极电流之和。无论是NPN型管还是PNP型管,均符合这
一规律。由于基极电流很小,因而 IE≈IC 在PNP型管中,IE流入三极管,IB IC流出三极管,如图1-19
所示
上一页 下一页 返回
第二节 晶体三极管
(2)三极管的电流放大作用。
在图1-18所示电路中,信号从基极与发射极之间输入,从集电 极和发射极输出,因此发射极是输入、输出回路的公共端,这
上一页 下一页 返回
第二节 晶体三极管
2.极限参数 极限参数是指管子工作时,不允许超过的参数,否则管子性
能下降或损坏。常见的极限参数主要有: (1)集电极最大允许电流ICM :当集电极电流超过此值时,三
上一页 下一页 返回
第一节 晶体二极管
三、晶体二极管器件的参数及分类
1.二极管的主要参数 (1)最大整流电流IFM 最大整流电流是指二极管长时间使用时,允许流过二极管的
最大正向平均电流。当电流超过这个允许值时,二极管会因 过热而烧坏,使用时务必注意。 (2)最高反向工作电压VRM 指二极管在使用时允许加上的最高反向电压。如果超过此值 二极管可能被击穿。一般是反向击穿电压的1/2或2/3。
上一页 下一页 返回
第一节 晶体二极管
二、PN结合晶体二极管的结构和特性
1.PN结 如果在硅或锗本征半导体中采用掺杂工艺,使半导体的一边
形成P型半导体,另一边形成N型半导体,则在这两种导电性 能相反的半导体交界面上,将形成一个特殊的接触面,称为 PN结。如图1-2 ( a)所示。 将P型半导体与N型半导体制作在同一块硅片上,在无外电场 和其他激发作用下,参与扩散运动的多子数目等于参与漂移 运动的少子数目,从而达到动态平衡
和集电极电流之和。无论是NPN型管还是PNP型管,均符合这
一规律。由于基极电流很小,因而 IE≈IC 在PNP型管中,IE流入三极管,IB IC流出三极管,如图1-19
所示
上一页 下一页 返回
第二节 晶体三极管
(2)三极管的电流放大作用。
在图1-18所示电路中,信号从基极与发射极之间输入,从集电 极和发射极输出,因此发射极是输入、输出回路的公共端,这
上一页 下一页 返回
第二节 晶体三极管
2.极限参数 极限参数是指管子工作时,不允许超过的参数,否则管子性
能下降或损坏。常见的极限参数主要有: (1)集电极最大允许电流ICM :当集电极电流超过此值时,三
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为适应负载对电压幅值的要求,输出端加限幅电路。
不可缺少!
UOH=+ UZ1+ UD2 UOL=-( UZ2 + UD1)
UOH= - UOL= UZ
uO=± UZ
电压比较器的分析方法:
(1)写出 uP、uN的表达式,令uP= uN,求解出的 uI即为UT; (2)根据输出端限幅电路决定输出的高、低电平; (3)根据输入电压作用于同相输入端还是反相输入端决定输出
2.电压传输特性的三要素:
(1)输出高电平UOH和输出低电平UOL (2)阈值电压UT (3)输入电压过阈值电压时输出电压跃变的方向
3. 几种常用的电压比较器
单限比较器
滞回比较器
窗口比较器
8.2.2单限比较器 1.过零比较器
集成运放的净输入电压等于输入电压,为保护集成 运放的输入端,需加输入端限幅电路。
讨论:如何改变滞回比较器的电压传输特性
1.若要电压传输特性曲线左右移动,则应如何修改电路?
2.若要电压传输特性曲线上下移动,则应如何修改电路?
3.若要改变输入电压过 阈值电压时输出电压的
Hale Waihona Puke 改变输出 限幅电路跃变方向,则应如何修
改电路?
8.2.4 窗口比较器
uI U RH uI URL
U OM U OM U OM U OM
例8.1.1(P409)应用实例—振荡频率可调的RC正弦波振荡电路,求
f0 的调节范围
解题思路
f0
1
2 RC
f 0 max
1
2 RminCmin
(Rmin R )
f 0 min
1
2 RmaxCmax
( Rmax
R Rw )
5.RC正弦波振荡电路适用的频率范围
f0
1
2 RC
➢ 通常RC正弦波振荡电路的振荡频率一般不超过1MHz ➢ 如果希望产生更高频率的正弦波,可采用LC正弦波振荡电路
❖ 本节介绍常见的RC正弦波振荡电路: RC串并联式正弦波振 荡电路(也称RC桥式正弦波振荡电路或文氏桥振荡电路) ❖ 特点: 采用RC串并联网络作为选频与反馈网络 ❖ 为了分析RC正弦波振荡电路, 我们首先分析RC串并联网络
1. RC串并联选频网络的频率特性(定性分析)
反馈系数的定量分析
F
Uf Uo
电压的跃变方向。
2. 一般单限比较器
uN
R2 R1 R2
U REF
R1 R1 R2
uI
令uN uP 0,得
UT
R2 R1
U REF
(1)若要UT< 0,则应如何修改电路?
(2)若要改变曲线跃变方向,则应如
何修改电路?
(3)若要改变UOL、UOH呢?
例8.2.1: 当输入电压为三角波时, 画输出电压波形
3. RC桥式正弦波振荡电路(文氏桥振荡器) 用同相比例运算电路作放大电路。
Rf 2R1
因同相比例运算电路有非常好的线性度,故R或Rf可 用热敏电阻,或加二极管作为非线性环节。
4.频率可调的文氏桥振荡器
?
改变电容以粗调,改变 电位器滑动端以微调。
加稳压管可以限制输出 电压的峰-峰值。
同轴 电位器
当uI>URH时, uO1=- uO2= UOM, D1导通,D2截止; uO= UZ。
当uI<URL时, uO2=- uO1= UOM, D2导通,D1截止; uO= UZ 。
当URL<uI< URH时, uO1= uO2= -UOM, D1、D2均截止; uO= 0。
解题思路 画出电压传输特性(三要素法)
+6V
+5V
-5V -6V
+6V
-6V +5V -5V
8.2.3滞回比较器
设uI<-UT,则 uN< uP, uO=+UZ。此时uP= +UT,增大 uI,直 至+UT,再增大, uO才从+UZ跃变为-UZ。
设 uI>+UT,则 uN> uP, uO=-UZ。此时uP=-UT,减小 uI,直至 -UT,再减小, uO才从-UZ跃变为+UZ。
R
R∥ 1
j C
1 +R ∥
1
j C
j C
F
1
3 j( RC
1
)
RC
令f0
1 ,则F 2π RC
3
j(
1 f
f0 )
f0 f
2. 电路组成
?
1)是否可用单管共射放大电路? 2)是否可用单管共集放大电路?
应为RC 串并联网路配一个电压放大倍数略大于3、输入电 阻趋于无穷大、输出电阻趋于0的放大电路。
集成运放工作在非线性区的特点 1) 净输入电流为0 2) uP> uN时, uO=+UOM uP< uN时, uO=-UOM
8.2.1 概述
1.电压比较器的功能:比较电压的大小。
广泛用于各种报警电路。 输入电压是连续的模拟信号;输出电压表示比较的 结果,只有高电平和低电平两种情况。 使输出产生跃变的输入电压称为阈值电压。
8.2 电压比较器
❖ 波形发生电路包括正弦波振荡电路与非正弦波形发生电路 ❖ 本节先介绍非正弦波形发生电路的基本单元电路—电压比较器
❖8.2.1 概述 ❖8.2.2 单限比较器 ❖8.2.3 滞回比较器 ❖8.2.4 窗口比较器
准备知识:集成运放的非线性工作区
电路特征:集成运放处于开环或仅引入正反馈