(完整版)3V电池充电器的电路毕业课程设计

(完整版)3V电池充电器的电路毕业课程设计
(完整版)3V电池充电器的电路毕业课程设计

序言

社会信息化进程的加快对电力、信息系统的安全稳定运行提出了更高的要求。在人们的生产、生活中,各种电气、电子设备的应用也越来越广泛,与人们的工作、生活的关系日益密切,越来越多的工业生产、控制、信息等重要数据都要由电子信息系统来处理和存储。而各种用电设备都离不开可靠的电源,如果在工作中间电源中断,人们的生产和生活都将受到不可估量的经济损失。

对于由交流供电的用电设备,为了避免出现上述不利情况,必须设计一种电源系统,它能不间断地为人们的生产和生活提供以安全和操作为目的可靠的备用电源。为此,以安全和操作为目的的备用电源设备上都使用充电电池。这样,即使电力网停电,也可利用由充电电池构成的安全和操作备用电源,从容地采用其他应急手段,避免重大损失的发生。而对于采用充电电池供电的用电设备,从生产、信息、供电安全角度来说,充电电池在系统中处于及其重要的地位。特别是镍氢电池具有良好的充放电性能,可随充随放、快充深放,无记忆效应,不含镉、铅、汞等有害物质,对环境无污染,被称为绿色电池。基于这些特性,所以镍氢电池得到了迅速的发展和广泛的应用。

镍氢电池充电器是为镍氢充电电池补充能源的静止变流装置,其性能的优劣直接关系到整个用电系统的安全性和可靠性指标。

本论文从充电器的结构和要求,充电器的原理,充电器的电路设计,3v镍镉电池充电过程以及充电器保护等方面,多角度地阐述了充电器技术发展和应用。

由于本人水平有限,论文中难免存在疏漏之处,敬请老师批评指正。

第一章充电器的简介

充电器通常指的是一种将交流电转换为低压直流电的设备。充电器在各个领域用途广泛,特别是在生活领域被广泛用于手机、相机等等常见电器。充电器是采用电力电子半导体器件,将电压和频率固定不变的交流电变换为直流电的一种静止变流装置。在以蓄电池为工作电源或备用电源的用电场合,充电器具有广泛的应用前景。

充电器有很多,如铅酸蓄电池充电器、镉镍电池充电器、镍氢电池电器、锂离子电池充电器、便携式电子设备锂离子电池充电器、锂离子电池保护电路多功能充电器、、车充电器等。

1.1充电器的构成及分类

1.1.1充电器的构成

1、外壳

2、输入线、输出线

3、线路板、散热片、各种电子元器件(电容、电阻、单片机、光藕、MOS管、二级管、三级管、开关管

图1-1

1.1.1充电器的分类

1.充电器按能源使用方式分类

普通充电器:用普通家庭用电等通过变压器提供能源。

太阳能充电器:利用太阳能面板收集太阳能。

线充电器:利用电磁耦合等原理。

手摇充电器:利用人力。

2.充电器按使用产品的种类分类

手机充电器、笔记本充电器、电动车充电器、大型充电机等、相机充电器、电动玩具充电器。

3.充电器按使用方式分类

高级商务充:商务旅行充电器,充电速度快而且十分安全,价格较一般充电器稍高。

座式充电器:外型独特、新颖美观、携带方便,适充容量mAH的锂离子(LI-ION)镍氢(NI-Mh)手机电池充电,内置智能识别电路,能自动转换充电器输出极性以适用电池正负极,充电效果极佳,是家居旅行时手机的理想伴侣。

USB充电器:带USB输出接口,保给MP34、数码相机等充电。

线式充电器:一般手机的直充。

车载充电器:以车上通用电源为供电装置的充电器。1.3充电器的结构框图

早期的充电器是没有处理器的,它主要由充电器集成电路及电源部分组成,其内部结构较复杂,引脚也较多。一般的功能较完善的充电器结构框图如图1-2 AA线右边所示。

图1-2充电器结构框图

第二章充电器电路设计

2.1电池充电控制芯片的选择

2.1.1 MAX846A芯片的简单介绍

1.MAX846A的引脚功能

Maxim公司生产的MAX846A是一种低成本、多功能的电池充电控制器,采用16引脚的QSOP封装形式,可对锂电池、镍氢电池、镍镉电池进行充电。MAX846A的引脚排列如图4-1所示,

主要引脚功能如下:

① DCIN :外部直流电源输出端,3.7~20V 。

② VL :3.3V 、20mA 、1%线形调节器输出端。

③ CC1:电流调节环补偿端。

④ CCV :电压调节环补偿端。

⑤ VSET :悬浮电压参考调整输入端。

⑥ ISET :电流设置输入及监控端。

⑦ OFFV :电压调节环禁止端。

⑧ CELL2:编程充电电源数目端。

⑨ BATT :电池输入端。

⑩ CS +:电流源放大器高压输入端。

11 CS -:电流源放大器低压输入端。

图2-1 MAX846A 的引脚排列图

12 DRV:外接三极管基准门控输入端。

2.MAX846A的内部结构

MAX846A多功能电池充电控制器由3.3V高精度、低压差线性稳压电源以及高精度电压基准源、电压电流调节器三部分构成。线性稳压电源输出电压VL为基准电压的两倍,可为外部负载提供20mA的电流。低压差稳压电源有短路保护功能,PWROK(Power-OK)为微控制器提供复位信号并可控制镍氢电池的充电电流。

高精度电压基准源为镍氢电池提供精确的浮充电压,它与一个精度为2%的20k电阻相连接,使浮充电压可以通过一外部电阻进行设置。外部电阻应具有1%的精度,因为外部电阻直接影响浮充电压的精度,而浮充电压的精度直接对镍氢电池的寿命及容量产生影响。

电压电流调节器由高精度衰减器、电压环路、电流环路和电流检测放大器组成。通过对衰减器的设置使输出电压稳定在一节镍氢电池电压或两节镍氢电池电压的水平。电流检测放大器用于检测镍氢电池的高端电流,它实际上是一个跨导放大器,可将外部限流电阻RCS两端的电压转换成电流,并将此电流作用于外部负载电阻RISET的低端电压增大或减小ISET端的电流

调节充电电流。电压和电流环路分别由连接在CCV和CCI端的外部电容进行补偿校正,两个环路的输出通过逻辑“或”后,驱动一只漏极开路的沟道MOS场效应管构成的有源负载。采用MAX846A芯片设计的充电器的外部电路,由P沟道MOS场效应管或PNP晶体管调整器件与零件构成。

2.1.2 MAX712芯片的结构特点与编程方法

MAX712系列是Maxim公司生产的快速充电管理芯片,MAX712在检测到dudt变为零时终止快速充电模式,而MAX713是在检测到dudt变为负值时终止快速充电模式。MAX712和MAX713都通过适当的设置给1~16节镍氢电池充电,具有线性或开关模式功率控制功能。对于线性模式,在镍氢电池充电时能同时给镍氢电池的负载供电。MAX712能根据电压剃度、温度或时间截止快速充电,自动从快速充电方式转到涓流充电方式。不充电时,镍氢电池上的最大漏电流仅为5mA。

1.器件封装及型号选择

图2-2 MAX712MAX713的引脚排列方式表2-1 MAX712MAX713的引脚符号和功能

2.MAX712的结构

图2-3 MAX712的内部结构框图

由图2-3可知,MAX712的内部电路主要包括:定时器、电压斜率检测器(内含AD转换器)、+5V并联稳压器、上电复位电

路(R1、C0和反相器F)、控制逻辑、电流和电压调节器(内含电流比较器和电压比较器)、镍氢电池比较器、温度比较器(过温度比较器、欠温度比较器)、2.0V基准电压源以及N勾道MOS场效应管等。

3.MAX712的主要特点

1)采用零电压斜率检测技术。对1~16节串联的镍氢电池,能以C3~C的速率进行电流快速充电,也能以C16的速率进行涓流充电(镍氢电池的额定电压的额定容量Ah表示,如果某镍氢电池的额定容量为1Ah,以1A电流充电时的充电时间为1h,则称1C速率)。

2)可编程。可以编程设定待定充电镍氢电池的数量(1~16节)、充电时间(22~264min)以及涓流充电电流的大小。只需要改变相应引脚的接法,即可实现编程。

3)利用外部电阻可设定快速充电电流IFAST。

4)内部电压斜率检测器、温度比较器和定时器。根据电压斜率、镍氢电池温度或充电时间检测结果,可判断镍氢电池是否已充好电。一旦充好,就立即从快速充电状态自动切换到涓流充电状态,确保镍氢电池不受损害。

5)静态功耗低,充电效率高,不充电时最大静态电流仅为

5uA。

4.MAX712的编程方法

镍氢电池数的编程方法为:将PGM0、PGM1分别接V+、REF、BATT-端或开路时,即可对充电镍氢电池数(1~16节)进行编程。

快速充电时间及涓流充电电流的编程方法为:将PGM3、PGM4分别接V+、REF、BATT-端或开路的时候,可以在22~264min之间内设定一个充电时间TFAST,见表2-2。

PGM3端还设定了从快速充电切换到涓流充电时涓流充电电流ITR的大小,

(1)镍氢电池数量的设定

在应用中MAX712提供可编程引脚PGM0和PGM1,通过对PGM0和PGM1引脚采取不同的电压连接方式即可设置待充电镍氢电池的数量。1~16节镍氢电池充电的设置参数如表2-2。

表2-2 待充电镍氢电池数量的设置

实际充电镍氢电池的数量也必须与由PGM0和PGM1引脚编程确定的数量一致,否则利用电压剃度检测充电功能将可能失去意义。

(2)充电速率及充电时间的设定

通过对PGM2和PGM3引脚的编程电压设置,可以设定镍氢电池的充电速率和充电时间。采取不同的电压连接方式时最大充电时间的设定见下表2-3。

表2-3 最大充电时间的设定

从上表中可以看出,对于MAX712芯片来说,最大允许快速充电时间为264min ,因此其最小充电速率将不能低于C4。快速充电电流IFAST 可按以下公式计算:

)

()(h mAh I FAST 充电时间充电电池容量

(2-1)

式中:IFAST——快速充电电流

对于MAX712芯片来说,涓流充电速率一般为C16,IRT与IFAST的关系见下表2-4。

表2-4 涓流充电电流IRT与快速充电电流IFAST的关系

此外,鉴于镍氢电池的固有特性,充电速率通常在80%左右,即当以C2速率充电时,理论上充电时间为2h,而实际充电时间通常为2.5h左右。

2.1.3 芯片的选择与比较

从上述两种芯片的介绍可以看出,MAX712可通过简单的引脚电压配置进行编程,实现对充电镍氢电池数量和最大充电时间的控制。MAX712内部集成的电压剃度检测器、温度比较器、定时器等控制电路,根据电压剃度、镍氢电池温度或充电时间的检测结果,自动控制充电状态,从涓流充电转到快速充电(低温时),以确保镍氢电池不受损害。充电状态识别可由输出的LED

指示灯或接口实现,具有自动从快速充电方式转化为涓流充电方式,低功能睡眠等特性。快速充电速率从C4到4C可设定,涓流充电速率为C16。

通过这两种芯片比较可知,MAX846A最典型的应用就是作为一个独立的限压电流源为电池充电,而它大都运用在锂电池中,且多数在浮充充电中用,要实现快速充电相对来说较麻烦。而利用MAX712芯片所设计电路要求采用最简单的控制方式,使得该镍氢电池充电器能进行定时控制、电压控制和温度控制;具有过压、过流、充电电池保护功能和充电时间短的特点。MAX712系列专用集成电路具有多种可编程功能,可实现充电过程自动化,充电时间短,效率高,使用灵活方便。

本论文中设计的镍氢电池快速充电器中所用的芯片选用的是MAX712快速充电管理芯片。利用MAX712芯片设计的充电器外围电路极其简单,非常适合便携式电子产品紧凑设计的需要。

2.2镍氢充电器的原理与原理图

图2-4 由MAX712构成的镍氢电池快速充电电路的原理图(注:图中引脚指引脚)

2.2.1.充电器的原理

充电器依据的原理就是MAX712充电管理芯片的特性,PGM0和PGM1根据电池的不同数目有不同的接法,如果电池数目和PGM0、PGM1的编程数目不符,将使决定快速充电的电压坡度电

路失效。根据BATT+、BATT-间的电压和PGM0、PGM1编程的电池

数目,可以算出每节电池的电压。如果每节电池的电压低于0.4V,只能涓流充电,直到每节电池的端电压大于0.4V,才开始快速充电。温度比较器根据设定的温度上限(THI)、下限(TLO)及当前温度(TEMP),发出冷或热的信号给控制逻辑,控制逻辑决定快速充电还是涓流充电。PGM2和PGM3根据电池的充电时间不同有不同的接法,从而决定了ΔV,并送给控制逻辑ΔV和充电时间。从V+端连接的POWER-ON-RESET电路可以检测到外电源供电的开始,并将该信号送到控制逻辑。控制逻辑根据接收的所有信息,决定是否快速充电,如果快速充电,它还会送出相应信号到第8脚。

外围电路:由于芯片本身就已经具有根据电压坡度、温度或时间三种方式检测并截止快速充电,并自动从快速充电转到涓流充电的功能,所以外围电路只需要给芯片提供温度检测回路、直流电源供电回路、快速充电的指示回路和快速充电电流的控制回路,以及一些其它的简单电路。由MAX712构成的镍氢电池快速充电电路的原理图如图4-4所示。

2.2.2充电器电路分析

根据上述镍氢电池快速充电电路的原理图2-4所示,要利用该电路对3节AA型1Ah镍氢电池充电,选择快速充电时间

模电课程设计—手机充电器

郑州科技学院 《模拟电子技术》课程设计 题目手机充电器 学生姓名X X X ___________________ 专业班级电气工程及其自动化班 学号2012470XX __________________ 院(系)电气工程学院__________________ 指导教师_XX ______________________ 完成时间2014 年月日

刖言 随着科学技术的发展,手机逐渐成为人们交流的主要工具,在人类社会中扮演着重要的角色。但是也有不利的一方面,消费者每当更换一个手机就必须更换原配充电器,或者是原配充电器遗失或损坏后找不到与之相匹配的充电器,所以必须抛弃手机或者寻找原配充电器,但是花很多的钱。手机配件的不完善逐渐成为国产手机被消费者厌恶最多的问题之一,致使国内手机的销量下降。 在2003年,深圳市海陆通电子有限公司研发推出了历史上第一款通用型手机充电器一一万能充,让海陆通公司始料不及的是,这个看似简单但外观独特的充电器却获得市场的热销。“第一次推出的几十万批量试单,三天内全部售完,完全出乎在我们的预料。”没有想不到只有做不到,至此万能充电器逐渐成为人们充手机的主要工具,方便快捷。 以前一个手机要对一个原装充电器,因为手机的更新换代速度很快,有的人半年就换一台手机,一个老百姓平均使用的充电器十个八个,对社会的有限资源是极大的浪费。但是万能充发明出来后,一个充电器基本可以满足全家人使用。所以说对节约社会资源,减少资源浪费做出了一定的贡献,在这个行业来说也是一个创新性的里程碑式的产品,有效地推动了充电器标准化的进程。一个小小充电器不仅改变了海陆通公司的命运,也改变了数以千万中国手机用户换手机一定要换充电器的束缚,给手机用户带来了极大的便利。

LT8490锂电池充电器电路设计详解

LT8490 锂电池充电器电路设计详解 标签:LT8490(3) 低功耗(190)电源管理(505) LT8490( $12.5700)是降压升压开关稳压电池充电器,实 现恒流恒压( CCCV )充电模式,适用于大多数电池,包括密封铅酸电池( SLA )、溢流电池、胶体电池和锂电池。片上 逻辑在太阳能应用时提供自动最大功率点跟踪( MPPT),并 具有自动温度补偿功能。主要用在太阳能电池充电器、多种类型铅酸电池充电、锂电池充电器以及电池供电的工业或手持军用设备。 状态和故障引脚含有充电器的信息可以被用来驱动 LED指示灯。该器件采用扁平(高度仅0.75mm)7mm x 11mm 64 引脚QFN 封装。 图1 LT8490 框图 LT8490 主要特性

-VIN 范围:6V?80V - VBAT 范围:1.3V?80V ?单 电感器允许VIN高于,低于或等于VBAT ?自动MPPT,用于太阳能充电?自动温度补偿?无需任何软件或固件开发?从 太阳能电池板或直流电源供电?输入和输出电流监视器销弓 脚?四位一体的反馈回路?同步固定频率: 100kHz?400kHz 的-64 引脚(7mm X 11mm x 0.75mm 高度)QFN 封装LT8490 应用?太阳能电池充电器?多种铅酸蓄电池充电?锂离子电池充电器?电池供电工业产品或便携式军用设备 图2 LT8490 27.4V 锂电池充电器电路图 DC2069A( $195.9800)-LT8490 演示板高效率MPPT 电池充电器控制器17V?54V ,最高200W 太阳能电池板的输入电压。12V SLA 电池,最高16.6A 充电电流。演示电路2069A采用了LTR8490 (高性能降压-升压型转换器),实现了最大功率点跟踪功能和灵活的充电特性,适用于大多数类型的电池,如水淹电池,密封铅酸电池和锂离子电池,可在输入电压高于、低于或等于电池电压的情况下工作。 该演示板配置为17V~54V 的输入电压范围,电源可以 是太阳能电池板36?72单元(最高200W),或直流电压源。 提供两种输入接口。LTC4359($2.5500)理想的二极管控制器可以保护直流电源的输出(不受太阳能电池板回流的影响)这使得,例如在 24VDC 电源接通的同时,又可以使具有更高的电压的太阳能电池板,被用于对电路供电。

数字电路课程设计题目选编

数字电路课程设计题目选编 1、基于DC4011水箱水位自动控制器的设计与实现 简介及要求:水箱水位自动控制器,电路采用CD4011 四与非门作为处理芯片。要求能够实现如下功能:水 箱中的水位低于预定的水位时,自动启动水泵抽水; 而当水箱中的水位达到预定的高水位时,使水泵停止 抽水,始终保持水箱中有一定的水,既不会干,也不 会溢,非常的实用而且方便。 2、基于CD4011声控、光控延时开关的设计与实现 简介及要求:要求电路以CD4011作为中心元件,结合外围 电路,实现以下功能:在白天或光线较亮时,节电开关呈关闭 状态,灯不亮;夜间或光线较暗时,节电开关呈预备工作状态, 当有人经过该开关附近时,脚步声、说话声、拍手声等都能开 启节电开关。灯亮后经过40秒左右的延时节电开关自动关闭, 灯灭。 3、基于CD4011红外感应开关的设计与实现 在一些公共场所里,诸如自动干手机、自动取票机等,只要人手在机器前面一晃,机器便被启动,延时一段时间后自动关闭,使用起来非常方便。要求用CD4011设计有此功能的红外线感应开关。 4、基于CD4011红外线对射报警器的设计与实现 设计一款利用红 外线进行布防的防盗 报警系统,利用多谐振 荡器作为红外线发射 器的驱动电路,驱动红 外发射管,向布防区内 发射红外线,接收端利用专用的红外线接收器件对发射的 红外线信号进行接收,经放大电路进行信号放大及整形, 以CD4011作为逻辑处理器,控制报警电路及复位电路,电

路中设有报警信号锁定功能,即使现场的入侵人员走开,报警电路也将一直报警,直到人为解除后方能取消报警。 5、基于CD4069无线音乐门铃的设计与实现 音乐门铃已为人们所熟知,在一些住宅楼中都 装有音乐门铃,当有客人来访时,只要按下门铃按 钮,就会发出“叮咚”的声音或是播放一首乐曲, 然而在一些已装修好的室内,若是装上有线门铃, 由于必须布线,从而破坏装修,让人感到非常麻烦。 采用CD4069设计一款无线音乐门铃,发射按键与接 收机间采用了无线方式传输信息。 6、基于时基电路555“叮咚”门铃的设计与实现 用NE555集成电路设计、制作一个“叮咚”门铃,使该装置能够 发出音色比较动听的“叮咚”声。 7、基于CD4511数显八路抢答器的设计与实现 CD4511是一块含BCD-7段锁存、译码、驱动电路于一体的集成 电路。设计一款基于CD4511八路抢答器,该电路包括抢答,编 码,优先,锁存,数显和复位。 8、基于NE555+CD4017流水彩灯的设计与实现 以NE555和CD4017为核心,设计制作一个流水彩灯,使之通 过调节电位器旋钮,可调整彩灯的流动速度。 9、基于用CD4067、CD4013、 NE555跑马灯的设计与实 现

实验三--单相交流调压电路实验

信息科技大学 电力电子技术实验报告 实验项目:单相交流调压电路实验 学院:自动化 专业:自动化(信息与控制系统) /学号:贾鑫玉/2012010541 班级:自控1205班 指导老师:白雪峰 学期: 2014-2015学年第一学期

实验三单相交流调压电路实验 一.实验目的 1.加深理解单相交流调压电路的工作原理。 2.加深理解交流调压感性负载时对移相围要求。 二.实验容 1.单相交流调压器带电阻性负载。 2.单相交流调压器带电阻—电感性负载。 三.实验线路及原理 本实验采用了锯齿波移相触发器。该触发器适用于双向晶闸管或两只反并联晶闸管电路的交流相位控制,具有控制方式简单的优点。 晶闸管交流调压器的主电路由两只反向晶闸管组成。 四.实验设备及仪器 1.教学实验台主控制屏 2.NMCL—33组件 3.NMEL—03组件 4.NMCL-05(A)组件或NMCL—36组件 5.二踪示波器 6.万用表 五.注意事项 在电阻电感负载时,当α

基于单片机智能充电器的设计课程设计报告

《单片机原理及应用》课程设计报告书 课题名称基于单片机智能充电器的设计 姓名 学号 专业 指导教师 机电与控制工程学院 年月日

任务书 一、设计题目:基于单片机智能充电器的设计 二、设计要求:(1)在单片机的控制系,具有充电保护的功能。 (2)能够自动断电和充电完成报警提示功能。 (3)能够实现充电器的智能化控制。 (4)能够方便快捷地答道正常充电的标准。

目录 一、绪论 (1) 二、程序系统流程图 (8) 三、硬件设计 (9) 四、单片机选择 (17) 五、充电过程 (28) 六、总结 (29) 七、附录 (30)

一、绪论 1.1概述 如今,随着越来越多的手持式电器的出现,对高性能、小尺寸、重量轻的电池充电器的需求也越来越大。电池技术的持续进步也要求更复杂的充电算法以实现快速、安全的充电。因此需要对充电过程进行更精确的监控,以缩短充电时间、达到最大的电池容量,并防止电池损坏。与此同时,对充电电池的性能和工作寿命的要求也不断地提高。 电池充电是通过逆向化学反应将能量存储到化学系统里实现的。由于使用的化学物质的不同,电池有自己的特性。设计充电器时要仔细了解这些特性以防止过度充电而损坏电。 目前,市场上卖得最多的是旅行充电器,但是严格从充电电路上分析,只有很少部分充电器才能真正意义上被称为智能充电器,随着越来越多的手持式电器的出现,对高性能、小尺寸、轻重量的电池充电器的需求也越来越大。 电池技术的持续进步也要求更复杂的充电算法以实现快速、安全地充电,因此,需要对充电过程进行更精确地监控(例如对充、放电电流、充电电压、温度等的监控),以缩短充电时间,达到最大的电池容量,并防止电池损坏。因此,智能型充电电路通常包括了恒流/恒压控制环路、电池电压监测电路、电池温度检测电路、外部显示电路(LED或LCD显示)等基本单元。其框图如下:

《数字电路课程设计》

实验三旋转灯光电路与追逐闪光灯电路 一、实验目的 1.熟悉集成电路CD4029、CD4017、74LS138的逻辑功能。 2.学会用74LS04、CD4029、74LS138组装旋转灯光电路。 3. 学会用CD4069、CD4017组装追逐闪光灯电路。 二、实验电路与原理 1.旋转灯光电路: 图3-1 旋转灯光电路 将16只发光二极管排成一个圆形图案,按照顺序每次点亮一只发光二极管,形成旋转灯光。实现旋转灯光的电路如图3-1所示,图中IC1、R1、C1组成时钟脉冲发生器。IC2为16进制计数器,输出为4位二进制数,在每一个时钟脉冲作用下输出的二进制数加“1”。计数器计满后自动回“0”,重新开始计数,如此不断重复。 输入数据的低三位同时接到两个译码器的数据输入端,但是否能有译码器输出取决于使能端的状态。输入数据的第四位“D”接到IC3的低有效使能端G2和IC4的高有效使能端G1,当4位二进制数的高位D为“0”时,IC4的G1为“0”,IC4的使能端无效,IC4无译码输出,而IC3的G2为“0”,IC3使能端全部有效,低3位的CBA数据由IC3译码,输出D=0时的8个输出,即低8位输出(Y0~Y7)。当D为“1”时IC3的使能端处于无效状态,IC3无译码输出;IC4的使能端有效,低3位CBA数据由IC4译码,输出D=1时的8个输出,即高8位输出(Y8~Y15)。 由于输入二进制数不断加“1”,被点亮的发光二极管也不断地改变位置,形成灯光地“移动”。改变振荡器的振荡频率,就能改变灯光的“移动速度”。

注意:74LS138驱动灌电流的能力为8mA,只能直接驱动工作电流为5mA的超高亮发光二极管。若需驱动其他发光二极管或其他显示器件则需要增加驱动电路。 2. 追逐闪光灯电路 图 3-2 追 逐 闪 光 灯 电 路 ( 1) . CD 401 7 的 管 脚功能 CD4017集成电路是十进制计数/时序译码器,又称十进制计数/脉冲分频器。它是4000系列CMOS数字集成电路中应用最广泛的电路之一,其结构简单,造价低廉,性能稳定可靠,工艺成熟,使用方便。它与时基集成电路555一样,深受广大电子科技工作者和电子爱好者的喜爱。目前世界各大通用数字集成电路厂家都生产40171C,在国外的产品典型型号为CD4017,在我国,早期产品的型号为C217、C187、CC4017等。 (2)CD4017C管脚功能 CMOSCD40171C采用标准的双列直插式16脚塑封,它的引脚排列如图3-3(a)所示。 CC4017是国标型号,它与国外同类产品CD4017在逻辑功能、引出端和电参数等方面完全相同,可以直接互换。本书均以CD40171C为例进行介绍,其引脚功能如下: ①脚(Y5),第5输出端;②脚(Y1),第1输出端,⑧脚(Yo),第0输出端,电路清零 时,该端为高电平,④脚(Y2),第2输出端;⑤脚(Y6),第6输出端;⑥脚(Y7),第7输出端;⑦脚(Y3),第3输出端;⑧脚(Vss),电源负端;⑨脚(Y8),第8输出端,⑩脚(Y4),第4输出端;11脚(Y9),第9输出端,12脚(Qco),级联进位输出端,每输入10个时钟脉冲,就可得一个进位输出脉冲,因此进位输出信号可作为下一级计数器的时钟信号。13脚(EN),时钟输入端,脉冲下降沿有效;14脚(CP),时钟输入

手机充电器课程设计报告

目录 1课题名称 (1) 2设计主体要求及内容 (1) 3 课题分析与方案论证 (1) 方案一........................................................................................... 错误!未定义书签。 方案二 (3) 4 各局部电路设计 (4) 整流滤波电路 (4) 恒压电路 (5) 恒流电路 (5) 充电提示电路 (7) 5组装调试 (10) 6元器件的选择 (10) 7 设计总结及改进意见 (10) 本方案特点及存在的问题 (11) 改进意见及其他设想 (11) 8 设计心得 (12) 参考文献

1 课题名称 手机充电器的制作。 2 设计主体要求及内容 通信技术的高速发展促使手机种类众多,也导致手机充电器也是多种多样,本设计设计并制作一套手机通用锂电池的充电器。 充电器的简单工作过程如下:交流输入电压经电容降压,二极管整流桥整流后变成直流电,经隔离二极管和滤波电容对手机充电,随着充电时间的增长,电池两端的电压也升高,通过分压器将此电压引入基准电压比较器,其中三个比较器带三个指示灯,分别指示充电的状态,当三个灯全亮时,表示充电已满。通过以上的工作过程描述结合生活经验设计手机实用充电器电路。 技术要求:能够顺利为锂电池充电,有必要的显示、保护功能,充电电压,充电限制电压。 工作要求:独立设计充电器方案,根据本人的方案,购买所需要的元器件和电路板,独立设计并调试正常,要求总投资不得高于20元。 3 课题分析与方案论证 从课题上可以看出设计的主体要求是将市电变换为符合要求的直流电源,整体上应该有降压、整流、滤波、恒压电路。 降压电路可以用最简单的变压器完成,将220V电压变为10V左右的低压,为了让优化波形使其更加稳定可采用滤波电容去除高频干扰。 手机通用的锂电池充电电压为,因此需要设计一个恒压源电路。充电电流在一定程度上影响了充电的时间,过高的电流会缩短电池的使用寿命,所以我们还需要一个可靠地恒流源来保证充电的时间和手机的使用寿命。 当上述条件都具备时对于不同容量的手机电池充电时间是不一样的,因此需要一个不以时间为参考的充电完成信号,我们可以根据电池两端的电压是否达到标准电压来判断是

数字电路课程设计报告

课程设计任务书 学生姓名:吴培力专业班级:信息SY1201 指导教师:刘可文工作单位:信息工程学院 题目: 数字式电子锁的设计与实现 初始条件: 本设计既可以使用集成电路和必要的元器件等,也可以使用单 片机系统构建数字密码电子锁。自行设计所需工作电源。电路组成 原理框图如图1,数字密码锁的实际锁体一般由电磁线圈、锁栓、 弹簧和锁柜构成。当线圈有电流时,产生磁力,吸动锁栓,即可开 锁。反之则不开锁。 图1 数字式电子锁原理框图要求完成的主要任务:(包括课程设计工作量及技术要求,以及说明书撰写等具体要求) 1、课程设计工作量:1周。 2、技术要求: 1)课程设计中,锁体用LED代替(如“绿灯亮”表示开锁,“红灯亮”表示闭锁)。 2)其密码为4位二进制代码,密码可以通过密码设定电路自行设定。 3)开锁指令为串行输入码,当开锁密码与存储密码一致时,锁被打开。当开锁密码与存储密码不一致时,可重复进行,若连续三次未将锁打开,电路则报警并实现自锁。(报警动作为响1分钟,停10秒) 4)选择电路方案,完成对确定方案电路的设计。计算电路元件参数与元件选择、并画出总体电路原理图,阐述基本原理。安装调试设计电路。 3、查阅至少5篇参考文献。按《武汉理工大学课程设计工作规范》要求撰写设计报告书。全文用A4纸打印,图纸应符合绘图规范。 时间安排: 1、年月日,布置作课设具体实施计划与课程设计报告格式的要求说明。 2、年月日至年月日,方案选择和电路设计。 3、年月日至年月日,电路调试和设计说明书撰写。 4、年月日,上交课程设计成果及报告,同时进行答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

直流斩波电路给蓄电池充电设计-电力电子课程设计[优秀]

直流斩波电路给蓄电池充电设计 一、设计目的 1、直流斩波电路的选择 2、主电路的设计 3、晶闸管电流、电压额定的选择 4、驱动电路的设计 5、保护电路的设计 6、画出完整的主电路原理图和控制电路原理图 7、掌握两种基本斩波电路的工作状态 8、了解电路图的波形情况 二、设计方案 1主电路的设计 图1主电路图 图 1 为直接接电网的直流斩波电路的结构图.开关器件 V 采用 IGBT,驱动电路采用EXB841,PW米脉宽调制电路采用 494 芯片 ,负载为蓄电池和滤波电抗器L2.LE米微电流传感器. PW米电路的输出u 为频率恒定脉宽可调的脉冲列信号.脉宽受 u 控制 ,u 最大为15V,最小值为零伏.随 u 的减小 ,u 的脉宽增加.u 经驱动电路中的光电隔离后变换成波形与 u 相同的驱动信号u .但u 的高电平为 +15V ,低电平为 -15V.

图四驱动电路3.供电电路设计 图五供电电路

沈 阳 大 学 课程设计说明书 N O.4 4.IGBT 的保护措施 4.1 过电压保护 (1)设置过电压洗手电路,针对直接接电网的斩波电路.可在电解电容器两端并联无感电容座位高频下的过电压吸收电路. (2) 主电路各元件之间的连线应尽量短.因为在高速开关状态,过长的连线会导致因存在较大的线路电感而产生感应过电压.经验表明,将滤波电解电容C.开关管V 和续流二极管VD 三个元件做在一块印刷电路板上是明智的选择. 4.2 过电流保护 (1)在驱动电路中已含有过载检测电路,过载时发出过载信号,通过PW 米电路封锁脉冲、 (2)在IGBT 回路中设置电流检测元件LE 米,将检出的电流信号U0经过一个高速比较器得到一个过载信号.此信号送给PW 米电路,以便发出封锁脉冲指令.实践表明,此方法有效. 其中,保护电路设计如下: 图六保护电路 三、 设计结果与分析 在 u 为高电平时 ,IGBT 导通 ,斩波器输出电源电压 U .在 u 为低电平时 ,斩波器输出电压为零.于是在负载两端得到脉冲电压u ,u 波形如图 2 所示. 为 IGBT 导通时间 , 为 IGBT 关断时间.输出的电压u 的平均值为 s on U T t U 0 式中:

数字电路课程设计弹道设计

淮海工学院 课程设计报告书 课程名称:电子技术课程设计(二)题目:弹道计时器设计 系(院): ////// 学期: 2010-2011-1 专业班级: 88 姓名: 999999 学号: 555555

一、所选课题: 弹道计时器的设计 二、任务与要求 设计一个用来测量手枪子弹等发射物速度的便携式电池供电计时器,这种计时器可用来测定子弹或其他发射物的速度。竞赛射手通常用这种设备来测定装备的性能。 基本操作要求是:射手在两个分别产生起始测量脉冲和终止测量脉冲的光敏传感器上方射出一个发射物,两个光传感器(本例中假定为阴影传感器)分开放置,两者之间的距离已知。发射物在两个传感器之间的飞行时间直接与发射物的速度成正比。如下图所示,当子弹等发射物从上方经过起始传感器产生ST 信号,经过终止传感器时产生SP 信号。传感器之间的距离是固定的。通过测量子弹等发射物经过传感器之间的时间T 就可计算出子弹的速度V=S/t 。 图1 三、方案制定 使用中规模集成电路设计弹道计时器。此方案中主要用到555定时器、十进制计数器、译码器、七段数码管以及一些小型门电路和触发器等。 四、弹道计时器的原理 运用中规模集成电路设计本课题要分为一下几点: (1)传感器对计数器的控制。 在传感器的选择上,要注意传感器的输出信号能否直接控制下一级电路。此论文中采用天幕靶控制计数器的工作与停止。天幕靶是一种光电传感器,它能将光信号转变成电信号,在子弹遮蔽第一个天幕靶时,即会产生一个脉冲,此脉冲带动计数器工作,在子弹遮蔽下一个天幕靶时又产生一个脉冲,让计数器停止工作。若将此脉冲作为使能信号, 就必须使其从子弹到达第一个天幕靶一直维持到 起始传感器 终止传感器 阳光 弹道

单相交流调功电路正文

1概述 1.1晶闸管交流调功器 交流调功器:是一种以晶闸管为基础,以智能数字控制电路为核心的电源功率控制电器,简称晶闸管调功器,又称可控硅调功器,可控硅调整器,可控硅调压器,晶闸管调整器,晶闸管调压器,电力调整器,电力调压器,功率控制器。具有效率高、无机械噪声和磨损、响应速度快、体积小、重量轻等诸多优点。 1.2 交流调压与调功 交流调功电路的主电路和交流调压电路的形式基本相同,只是控制的方式不同,它不是采用移相控制而采用通断控制方式。交流调压是在交流电源的半个周期内作移相控制,交流调功是以交流电的周期为单位控制晶闸管的通断,即负载与交流电源接通几个周波,再断开几个周波,通过改变接通周波数和断开周波数的比值来调节负载所消耗的平均功率。如图3-21所示,这种电路常用于电炉的温度控制,因为像电炉这样的控制对象,其时间常数往往很大,没有必要对交流电源的各个周期进行频繁的控制。只要大致以周波数为单位控制负载所消耗的平均功率,故称之为交流调功电路。 1.3 过零触发和移相触发 过零触发是在设定时间间隔内,改变晶闸管导通的周波数来实现电压或功率的控制。过零触发的主要缺点是当通断比太小时会出现低频干扰,当电网容量不够大时会出现照明闪烁、电表指针抖动等现象,通常只适用于热惯性较大的电热负载。 移相触发是早期触发可控硅的触发器。它是通过调速电阻值来改变电容的充放电时间再来改变单结晶管的振荡频率,实际改变控制可控硅的触发角。早期可控可是依靠这样改变阻容移相线路来控制。所为移相就是改变可控硅的触发角大小,也叫改变可控硅的初相角。故称移相触发线路。

2系统总体方案 2.1交流调功电路工作原理 单相交流调功电路方框图如图2.1.1所示。 图2.1.1 交流调功电路的主电路和交流调压电路的形式基本相同,只是控制的方式不同,它不是采用移相控制而采用通断控制方式。交流调压是在交流电源的半个周期内作移相控制,交流调功是以交流电的周期为单位控制晶闸管的通断,即负载与交流电源接通几个周波,再断开几个周波,通过改变接通周波数和断开周波数的比值来调节负载所消耗的平均功率。如图2.1.2所示,这种电路常用于电炉的温度控制,因为像电炉这样的控制对象,其时间常数往往很大,没有必要对交流电源的各个周期进行频繁的控制。只要大致以周波数为单位控制负载所消耗的平均功率,故称之为交流调功电路。 图2.1.2 LO AD BCR TLC336A1 A2 g u 脉宽可调矩形波信号发生器

电力电子课程设计直流直流升压电路分析与设计电动汽车蓄电池充电器设计

题目 1 —直流/ 直流升压电路分析 与设计 电动汽车蓄电池充电器设计 一、技术指标 输入电压:12-24V,输出电压42V,输出电压纹波<200mV,负载电阻10 Q,开关频率50kHz。 二、设计要求 1). 选择主电路的类型和相应的功率器件,并对功率器件进行设计; 2). 设计电压单闭环反馈补偿器; 3). 给出输出电压的仿真结果来验证你的设计: a)电阻由10Q跳变到5Q; b)输入电压由12V跳变到24V。 三、设计方案分析 、DC-DC 升压变换器的工作原理 DC-DC 功率变换器的种类很多。按照输入/输出电路是否隔离来分,可分为非隔离型和隔离型两大类。非隔离型的DC-DC 变换器又可分为降压式、升压式、极性反转式等几种;隔离型的DC-DC 变换器又可分为单端正激式、单端反激式、双端半桥、双端全桥等几种。下面主要讨论非隔离型升压式DC-DC 变换器的工作原理。 图1 (a)是升压式DC-DC变换器的主电路,它主要由功率开关管VT、 储能电感L、滤波电容C和续流二极管VD组成。电路的工作原理是,当控制

信号Vi 为高电平时,开关管VT 导通,能量从输入电源流入,储存于

电感L 中,由于VT 导通时其饱和压降很小,所以二极管 D 反偏而截止, 此时存储在滤波电容C 中的能量释放给负载。当控制信号Vi 为低电平时, 开关管VT 截止,由于电感L 中的电流不能突变,它所产生的感应电势将 阻止电流的减小,感应电势的极性是左负右正,使二极管 D 导通,此时存 储在电感L 中的能量经二极管D 对滤波电容C 充电,同时提供给负载。 电路各点的工作波形如图1 (b )。 图1DC-DC 升压式变换器电路及工作波形 、DC-DC 升压变换器输入、输出电压的关系 假定储能电感L 充电回路的电阻很小,即时间常数很大,当开关管 忽略管子的导通压降,通过电感 L 的电流近似是线性增加的。 其中ILV 是流过储能电感电流的最小值。在开关管VT I I ^T b T LP LV ON ON 导通结束时,流过电感L 的电流为: L ,iL 的增量为L 。 在开关管VT 关断时,续流二极管D 导通,储能电感L 两端的电压为 UL U0 Ul L dT ,所以流过储能电感L 的电流为:" ILP L t ,当 i L I LV I LP 开 关管VT 截止结束时,流过电感L 的电流为 关管导通期间的增量应等于在开关管截止期间的减量,即 T T 1 T O FF ,所以:U 。“ U T T ON U 1 1 q ^,其中 VT 导通时, i L 1 LV 即: U 。 U I I OFF L U o U I iL 的减少量为 L T OFF 。 在电路进入稳态后,储能电感 L 中的电流在开 U L T L I ON u 。U I L

锂电池充电电路详解

锂电池充电电路图 锂电池是继镍镉、镍氢电池之后,可充电电池家族中的佼佼者.锂离子电池以其优良的特性,被广泛应用于: 手机、摄录像机、笔记本电脑、无绳电话、电动工具、遥控或电动玩具、照相机等便携式电子设备中。 一、锂电池与镍镉、镍氢可充电池: 锂离子电池的负极为石墨晶体,正极通常为二氧化锂。充电时锂离子由正极向负极运动而嵌入石墨层中。放电时,锂离子从石墨晶体内负极表面脱离移向正极。所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。因而这种电池叫做锂离子电池,简称锂电池。 锂电池具有:体积小、容量大、重量轻、无污染、单节电压高、自放电率低、电池循环次数多等优点,但价格较贵。镍镉电池因容量低,自放电严重,且对环境有污染,正逐步被淘汰。镍氢电池具有较高的性能价格比,且不污染环境,但单体电压只有1.2V,因而在使用范围上受到限制。 二、锂电池的特点: 1、具有更高的重量能量比、体积能量比; 2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压; 3、自放电小可长时间存放,这是该电池最突出的优越性; 4、无记忆效应。锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电; 5、寿命长。正常工作条件下,锂电池充/放电循环次数远大于500次; 6、可以快速充电。锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时; 7、可以随意并联使用; 8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池; 9、成本高。与其它可充电池相比,锂电池价格较贵。 三、锂电池的内部结构: 锂电池通常有两种外型:圆柱型和长方型。 电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。正极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。负极由片状碳材料组成的锂离子收集极和铜薄膜组成的电流收集极组成。电池内充有有机电解质溶液。另外还装有安全阀和PTC元件,以便电池在不正常状态及输出短路时保护电池不受损坏。 单节锂电池的电压为3.6V,容量也不可能无限大,因此,常常将单节锂电池进行串、并联处理,以满足不同场合的要求。字串5 四、锂电池的充放电要求; 1、锂电池的充电:根据锂电池的结构特性,最高充电终止电压应为4.2V,不能过充,否则会因正极的锂离子拿走太多,而使电池报废。其充放电要求较高,可采用专用的恒流、恒压充电器进行充电。通常恒流充电至4.2V/节后转入恒压充电,当恒压充电电流降至100mA 以内时,应停止充电。 充电电流(mA)=0.1~1.5倍电池容量(如1350mAh的电池,其充电电流可控制在135~2025mA之间)。常规充电电流可选择在0.5倍电池容量左右,充电时间约为2~3小时。 2、锂电池的放电:因锂电池的内部结构所致,放电时锂离子不能全部移向正极,必须保留一部分锂离子在负极,以保证在下次充电时锂离子能够畅通地嵌入通道。否则,电池寿命就相应缩短。为了保证石墨层中放电后留有部分锂离子,就要严格限制放电终止最低电压,也就是说锂电池不能过放电。放电终止电压通常为3.0V/节,最低不能低于2.5V/节。电池放

数字电路课程设计

数字电路课程设计 一、概述 任务:通过解决一两个实际问题,巩固和加深在课程教学中所学到的知识和实验技能,基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力,为今后从事生产和科研工作打下一定的基础。为毕业设计和今后从事电子技术方面的工作打下基础。 设计环节:根据题目拟定性能指标,电路的预设计,实验,修改设计。 衡量设计的标准:工作稳定可靠,能达到所要求的性能指标,并留有适当的裕量;电路简单、成本低;功耗低;所采用的元器件的品种少、体积小并且货源充足;便于生产、测试和维修。 二、常用的电子电路的一般设计方法 常用的电子电路的一般设计方法是:选择总体方案,设计单元电路,选择元器件,计算参数,审图,实验(包括修改测试性能),画出总体电路图。 1.总体方案的选择 设计电路的第一步就是选择总体方案。所谓总体方案是根据所提出的任务、要求和性能指标,用具有一定功能的若干单元电路组成一个整体,来实现各项功能,满足设计题目提出的要求和技术指标。 由于符合要求的总体方案往往不止一个,应当针对任务、要求和条件,查阅有关资料,以广开思路,提出若干不同的方案,然后仔细分析每个方案的可行性和优缺点,加以比较,从中取优。在选择过程中,常用框图表示各种方案的基本原理。框图一般不必画得太详细,只要说明基本原理就可以了,但有些关键部分一定要画清楚,必要时尚需画出具体电路来加以分析。 2.单元电路的设计 在确定了总体方案、画出详细框图之后,便可进行单元电路设计。 (1)根据设计要求和已选定的总体方案的原理框图,确定对各单元电路的设计要求,必要时应详细拟定主要单元电路的性能指标,应注意各单元电路的相互配合,要尽量少用或不用电平转换之类的接口电路,以简化电路结构、降低成本。

实验3三相交流调压电路实验

实验3 三相交流调压电路实验 一、实验目的 (1) 了解三相交流调压触发电路的工作原理。 (2) 加深理解三相交流调压电路的工作原理。 (3) 了解三相交流调压电路带不同负载时的工作特性。 二、实验所需挂件及附件 三、实验线路及原理 交流调压器应采用宽脉冲或双窄脉冲进行触发。实验装置中使用双窄脉冲。实验线路如图3-1所示。

图中晶闸管均在DJK02上,用其正桥,将D42三相可调电阻接成三相负载,其所用的交流表均在DJK01控制屏的面板上。 四、实验内容 (1)三相交流调压器触发电路的调试。 (2)三相交流调压电路带电阻性负载。 (3)三相交流调压电路带电阻电感性负载(选做)。 图3-1三相交流调压实验线路图 五、预习要求 (1)阅读电力电子技术教材中有关交流调压的内容,掌握三相交流调压的工作原理。 (2)如何使三相可控整流的触发电路用于三相交流调压电路。 六、实验方法 (1)DJK02和DJK02-1上的“触发电路”调试

①打开DJK01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。 ②将DJK01“电源控制屏”上“调速电源选择开关”拨至“直流调速”侧。 ③用10芯的扁平电缆,将DJK02的“三相同步信号输出”端和DJK02-1“三相同步信号输入”端相连,打开DJK02-1电源开关,拨动“触发脉冲指示”钮子开关,使“窄”的发光管亮。 ④观察A、B、C三相的锯齿波,并调节A、B、C三相锯齿波斜率调节电位器(在各观测孔左侧),使三相锯齿波斜率尽可能一致。 ⑤将DJK06上的“给定”输出U g直接与DJK02-1上的移相控制电压U ct 相接,将给定开关S2拨到接地位置(即U ct=0),调节DJK02-1上的偏移电压电位器,用双踪示波器观察A相同步电压信号和“双脉冲观察孔”VT1的输出波形,使α=180°。 ⑥适当增加给定U g的正电压输出,观测DJK02-1上“脉冲观察孔”的波形,此时应观测到单窄脉冲和双窄脉冲。 ⑦将DJK02-1面板上的U 端接地,用20芯的扁平电缆,将DJK02-1的 lf “正桥触发脉冲输出”端和DJK02“正桥触发脉冲输入”端相连,并将DJK02“正桥触发脉冲”的六个开关拨至“通”,观察正桥VT1~VT6晶闸管门极和阴极之间的触发脉冲是否正常。 (2)三相交流调压器带电阻性负载 使用正桥晶闸管VT1~VT6,按图3-21连成三相交流调压主电路,其触发脉冲己通过内部连线接好,只要将正桥脉冲的6个开关拨至“接通”,“U lf”端接地即可。接上三相平衡电阻负载,接通电源,用示波器观察并记录α=30°、60°、90°、120°、150°时的输出电压波形,并记录相应的输出电压有效值,填入下表:

电力电子课程设计直流直流升压电路分析与设计电动汽车蓄电池充电器设计

题目1—直流/直流升压电路分析与设计 电动汽车蓄电池充电器设计 一、技术指标 输入电压:12-24V,输出电压42V,输出电压纹波<200mV,负载电阻10Ω,开关频率50kHz。 二、设计要求 1). 选择主电路的类型和相应的功率器件,并对功率器件进行设计; 2). 设计电压单闭环反馈补偿器; 3). 给出输出电压的仿真结果来验证你的设计: a)电阻由10Ω跳变到5Ω; b)输入电压由12V跳变到24V。 三、设计方案分析 3.1、DC-DC升压变换器的工作原理 DC-DC功率变换器的种类很多。按照输入/输出电路是否隔离来分,可分为非隔离型和隔离型两大类。非隔离型的DC-DC变换器又可分为降压式、升压式、极性反转式等几种;隔离型的DC-DC变换器又可分为单端正激式、单端反激式、双端半桥、双端全桥等几种。下面主要讨论非隔离型升压式DC-DC变换器的工作原理。 图1(a)是升压式DC-DC变换器的主电路,它主要由功率开关管VT、储能电感L、滤波电容C和续流二极管VD组成。电路的工作原理是,当控制信号Vi为高电平时,开关管VT导通,能量从输入电源流入,储存于

电感L 中,由于VT 导通时其饱和压降很小,所以二极管D 反偏而截止,此时存储在滤波电容C 中的能量释放给负载。当控制信号Vi 为低电平时,开关管VT 截止,由于电感L 中的电流不能突变,它所产生的感应电势将阻止电流的减小,感应电势的极性是左负右正,使二极管D 导通,此时存储在电感L 中的能量经二极管D 对滤波电容C 充电,同时提供给负载。电路各点的工作波形如图1(b )。 图1DC-DC 升压式变换器电路及工作波形 3.2、DC-DC 升压变换器输入、输出电压的关系 假定储能电感L 充电回路的电阻很小,即时间常数很大,当开关管VT 导通时,忽略管子的导通压降,通过电感L 的电流近似是线性增加的。即:t L U I i I ?+=LV L ,其中ILV 是流过储能电感电流的最小值。在开关管VT 导通结束时,流过电感L 的电流为: ON LV LP T L U I I I ?+=,iL 的增量为ON I T L U ?。在开关管VT 关断时,续流二极管D 导通,储能电感L 两端的电压为dt di L U U u L I L =-=0,所以流过储能电感L 的电流为:t L U U I i I LP L ?--=0,当开关管VT 截止结束时,流过电感L 的电流为OFF I LP LV L T L U U I I i ?--==0, iL 的减少量为OFF I T L U U ?-0。在电路进入稳态后,储能电感L 中的电流在开关管导通期间的增量应等于在开关管截止期间的减量,即 OFF I ON I T L U U T L U ?-=?0,所以:I I ON I OFF U q U T T T U T T U ?-=?-=?=110,其中

各种锂电池充电电路设计

六、简易充电电路: 现在有不少商家出售不带充电板的单节锂电池。其性能优越,价格低廉,可用于自制产品及锂电池组的维修代换,因而深受广大电子爱好者喜爱。有兴趣的读者可参照图二制作一块充电板。其原理是:采用恒定电压给电池充电,确保不会过充。输入直流电压高于所充电池电压3伏即可。R1、Q1、W1、TL431组成精密可调稳压电路,Q2、W2、R2构成可调恒流电路,Q3、R3、R4、R5、LED为充电指示电路。随着被充电池电压的上升,充电电流将逐渐减小,待电池充满后R4上的压降将降低,从而使Q3截止, LED将熄灭,为保证电池能够充足,请在指示灯熄灭后继续充1—2小时。使用时请给Q2、Q3装上合适的散热器。本电路的优点是:制作简单,元器件易购,充电安全,显示直观,并且不会损坏电池.通过改变W1可以对多节串联锂电池充电,改变W2可以对充电电流进行大范围调节。缺点是:无过放电控制电路。图三是该充电板的印制板图(从元件面看的透视图)。

概述 PT6102 是一款高度集成的单节锂离子电池充电器,较少的外部元件数目使得它非常适合于便携式应用。内部集成功率管,不需要外部检测电阻和防倒灌二极管。充电电流通过外部电阻进行设置,充电结束电压固定在4.2V。热反馈可以自动调节充电电流,可以在大功率或高环境温度下对芯片加以保护PT6102 分三个阶段对电流进行充电:当电池电压低于2.9V 时是涓流充电,当电池电压大于2.9V 时是恒流充电,并且涓流充电电流是恒流充电电流的1/10,当电池电压到4.2V 时进行恒压充电,在恒压充电过程中,充电电流逐渐减少,当减少到恒流充电电流的1/10 时,结束充电过程。 特点 可以用 USB 端口直接对单节电池进行充电. 充电电流最大可以到 800mA 不需要外部功率管,检测电阻和防倒灌二极管 涓流、恒流、恒压三阶段,并有热调节功能,可以在无过热的情况下最大化充电电流 精度达±1%的4.2V 充电电压 SOT23-5 和ESOP8 封装

数字电路课程设计

数字电路课程设计 姓名:李志波 专业:电子信息工程 年级:2012级

数字闹钟计时器 一.实验目的 1.通过这个实验进一步了解掌握各种功能芯片的功能,并能够在电路系统中正确应用。 2.强化巩固专业课课程内容,学会对电路的系统分析。 3.初步了解基础的电路设计思路和方法,锻炼自己的动手能力,巩固电子焊接技术。 二.实验原理 1.显示译码器 74LS248(74LS48)是BCD码到七段码的显示译码器,它可以直接驱动共阴极数码管。它的引脚图及功能如下: (a)要求输入数字0~15时“灭灯输入端”BI必须开路或保持高电平,如果不要灭十进制的0,则“动态灭灯 输入”RBI必须开路或者为高电平。 (b)当灭灯输入端BI接低电平时,不管其他输入端为何种电平,所有各端输出均为低电平。 (c)BI/RBO是线与关系,既是“灭灯输入端”BI又是“动态灭灯输出端”RBO。 2.数码显示器 LC5011-11就是一种共阴极数码显示器,它的管脚图如图1,X为共阴极,DP为小数点。其内部是八段发光二极管的负极连在一起的电路。当在a.b.c.d.e.f.g.DP加上正向电压时,各段

二极管就会被点亮,例如,利用74LS48和数码管组合成的显 示译码电路。 ABCD 四个引脚接上一级输出 LT,RBO/BI ,RBI 接高电平,或悬空。 3,十进制集成计数电路74LS90 74LS90时异步二-五-十进制计数器。其管脚图如图 U1 74LS90D Q A 12Q B 9Q D 11 Q C 8I N B 1 R 916 R 927R 012I N A 14R 02 3 G N D 10 V C C 5它的内部由两个计数电路组成,一个为二 进制,计数电路,计数脉冲输入端为CP1,输出端为QA QB QC QD.这两个计数器可独立使用,当QA 连到CP2时,可构成十进制计数器。 它具有复零输入端ROA,ROB 和复9输入端R9A R9B 。如果复零输入端ROA,ROB 皆为高电平时,计数器复零;如果复9输入端R9A,R9B 皆为高电平时,计数器复9。计数时ROA,ROB 其中之一接高电平或者二者都接高电平,并要求复9输入端R9A,R9B 其一接低电平或者同时接低电平。用74LS90接成的24 进 制 计 数 器 电 路 如 图

电力电子课程设计手机充电器

1.课程设计题目 手机充电器。 2.设计内容及要求 电子设备一般都需要直流电源供电。这些直流供电除了少数直接利用干电池和直流发电机外,大多数是采用把交流电(市电)转变为直流电的直流稳压电源。通信技术的高速发展促使手机种类众多,也导致手机充电器也是多种多样,本设计设计并制作一套手机通用锂电池的充电器。 充电器的简单工作过程如下:交流输入电压经电容降压,二极管整流桥整流后变成直流电,经隔离二极管和滤波电容对手机充电,随着充电时间的增长,电池两端的电压也升高,通过分压器将此电压引入基准电压比较器,其中三个比较器带三个指示灯,分别指示充电的状态,当三个灯全亮时,表示充电已满。通过以上的工作过程描述结合生活经验设计手机实用充电器电路。 技术要求:能够顺利为锂电池充电,有必要的显示、保护功能,充电电压4.2V,充电限制电压4.5V。 工作要求:独立设计充电器方案,根据个人的方案,购买所需要的元器件和电路板,独立设计并调试正常,要求总投资不得高于15元。 3.设计题目分析 从设计题目上可以看出设计的主体要求是将市电变换为符合要求的直流电源,整体上应该有降压、整流、滤波、恒压电路四部分组成。 降压电路可以用最简单的变压器完成,将220V电压变为10V左右的低压,为了让优化波形使其更加稳定可采用滤波电容去除高频干扰。 手机通用的锂电池充电电压为4.2V,因此需要设计一个恒压源电路。充电电流在一定程度上影响了充电的时间,过高的电流会缩短电池的使用寿命,所以我们还需要一个可靠地恒流源来保证充电的时间和手机的使用寿命。 当上述条件都具备时对于不同容量的手机电池充电时间是不一样的,因此需要一个不以时间为参考的充电完成信号,我们可以根据电池两端的电压是否达到标准电压来判断是否充满电。

相关文档
最新文档