螺栓连接地有限元分析报告

合集下载

Abaqus螺栓有限元的分析报告

Abaqus螺栓有限元的分析报告

1.分析过程1.1.理论分析1.2.简化过程如果将Pro/E中的3D造型直接导入Abaqus中进展计算,如此会出现裂纹缝隙无法修补,给后期的有限元分析过程造成不必要的麻烦,因此,在Abaqs中进展计算之前,对原来的零件模型进展一些简化和修整.A.法兰局部不是分析研究的重点,因此将其简化掉;B.经计算,M24×3的螺纹的升角很小,在度,因此可以假设螺旋升角为0;C.忽略螺栓和螺母的圆角等细节;1.3.Abaqus中建模查阅机械设计手册,得到牙型如如下图所示,在Abaqus中按照如下图所示创建出3D模型,如图11所示.同样的方式,我们建立螺母的3D模型nut,如图12所示.图11图12建立材料属性并将其赋予模型.在Abaqus的Property模块中,选择Material->Manager->Create,创建一个名为Bolt&Nut的新材料,首先设置其弹性系数.在Mechanical->Elastic中设置其杨氏模量为193000Mpa,设置其泊松比为0.3,如图14所示.建立截面.点击Section->Manager->Creat,建立Solid,Homogeneous的各向同性的截面,选择材料为Bolt&Nut,如图15所示.将截面属性赋予模型.选择Assign->Section,选择Bolt模型,然后将刚刚建立的截面属性赋予它.如图13所示.同样,给螺母nut赋予截面属性.图13图14图15然后,我们对建立的3D模型进展装配,在Abaqus中的Assembly模块中,我们同时调入两个模型,然后使用Constraint->Coaxial命令和Translate和Instance命令对模型进展移动,最终的装配结果如图16所示.第四步,对模型进展网格划分.进入Abaqus中的Mesh模块,然后选择Bolt零件,使用按边布种的方式对其进展布种,布种结果如图17所示.在菜单Mesh->Control中进展如图18所示的设置使用自由网格划分,其余设置使用默认.在菜单Mesh->Element type中选用如图19所示的设置.按下Mesh图标,对工件进展网格划分,最终的结果如图110所示.同样的方式对螺母模型nut进展网格划分,最终结果见图111所示.图17图18图19图110图111第五步,创建分析步.在Step模块中,点击Step->Manager图标,创建新的分析步,类型为Static,General,名称为Step-Load,其余使用默认设置即可.第六步,添加约束条件和载荷.在Interaction模块中,选择Tools->Surface-Manager,创建如图112所示的外表为集合Load_shang和Load_xia,分别用作加载载荷和约束.选择Load模块,在BC->Manager->Creat中创建约束BC-ENCASTED,选择刚刚定义的Load_xia集合,将6个自由度全部约束,如图113所示.下面我们为模型添加约束,选择Load->Create,进入约束创建界面,选择约束施加的外表为我们之前设定的Load_shang,施加的载荷的类型为Pressure,大小为372.835Mpa,具体设置如图114所示.图112图113图114第六步,定义接触面.接触面是Abaqus分析中非常重要的一环.进入Abaqus中的Interaction模块,先在Tools->Surface菜单中设置我们要定义的两个相互接触的面.如图115所示,螺栓上的接触面主要是螺纹的下外表,按着Shift键依次将其选中.如图116所示,螺母上的接触面主要是螺纹的上外表,同样按着Shift键依次将其选中.设置接触面的属性.选择Interaction->Manager->Creat中创建接触面,类型选择面和面接触,选择Mechanical->Tangential Behavior,输入摩擦系数为0.14,选择Mechanical->Normal Behavior,承受默认设置,最终设置如图117所示.选择Interaction->Creat,创建螺栓和螺母之间的接触,接触,类型选择刚刚定义的接触类型,设置结果如图118所示.图115图116图118最后,创建任务,承受默认设置,并提交计算.1.4.仿真结果将任务提交计算之后,得到的3维应力云图如图119所示.为了观察更为方便,我们将云图剖开,如图120所示.从云图中我们可以看出,螺栓头部与螺杆相接触的地方的应力较大,螺栓的螺纹处,由于截面发生变化也聚集着较大的应力.由于在仿真过程中,将压力施加在螺母的下外表,因此螺母的下方的变形较大,螺母的下方的几条螺纹的受力较大,顶层的两层螺纹几乎不受力.使用Abaqus中的工具对题目要求的节点的应力进展测量,结果如表1所示.图119图120表1。

螺栓连接实验报告体会

螺栓连接实验报告体会

螺栓连接实验报告体会实验目的本次实验的目的是研究螺栓连接在不同工况下的力学性能,了解螺栓连接在实际工程中的应用情况。

通过实验结果,分析螺栓连接的可靠性和安全性,为工程设计和实际应用提供参考依据。

实验方法在实验过程中,我们首先准备了不同直径和不同材料的螺栓样品,采用力学实验仪器进行了拉伸和剪切试验。

实验过程中,我们控制加载速度,记录下直径、材料、加载力以及变形情况等数据。

实验结果经过实验,我们得到了一系列的数据,并对数据进行了处理和分析。

通过对实验数据的统计,我们发现不同直径的螺栓在拉伸和剪切试验中,其破坏强度和变形情况存在明显的差异。

同时,我们还发现不同材料的螺栓在相同工况下的力学性能也存在差异,部分材料的螺栓连接更加可靠和安全。

实验体会通过本次实验,我对螺栓连接的力学性能和使用方法有了更深入的理解。

螺栓连接是一种常用的连接方式,在工程设计和实际应用中广泛使用。

通过对不同直径和不同材料的螺栓进行拉伸和剪切试验,我们了解到不同工况下螺栓的破坏强度和变形情况。

同时我们还发现,螺栓连接的可靠性和安全性与螺栓的直径和材料有关。

直径较大的螺栓连接更加牢固,能够承受更大的加载力。

同时,材料的选择也对螺栓连接的可靠性起到重要作用。

不同材料的螺栓在相同工况下的破坏强度和变形情况存在明显差异,部分材料的螺栓连接更加可靠和安全。

在实验过程中,我们还发现螺栓连接的设计和安装也对其性能起到重要影响。

合理的设计和正确的安装方法能够提高螺栓连接的可靠性和安全性。

因此,在工程设计和实际应用中,我们应该根据具体情况选择合适的螺栓直径和材料,并正确设计和安装螺栓连接。

本次实验使我对螺栓连接有了更深入的理解,我认识到螺栓连接在实际工程中的重要性。

合理选择螺栓直径和材料、正确设计和安装螺栓连接,对于保证工程的可靠性和安全性具有重要意义。

同时,我们还应该不断探索和研究螺栓连接的其他性能和影响因素,为工程设计和实际应用提供更多参考和依据。

外伸式端板螺栓连接节点的有限元分析

外伸式端板螺栓连接节点的有限元分析
— —
mi l l
端板
1 2
1 2
× t ” × t f  ̄
h b x t × t l x 6 ,
直径叱 厚度
上的节点连接形式称为端板螺栓 连接 , 当端板伸 出梁 高范 围之外 时称为外伸式端板 螺栓 连接 _ 2 J 。端 板螺 栓连 接属 于抗 弯连 接的
外 伸 式 端 板 螺 栓 连 接 节 点 的 有 限 元 分 析★



高磊磊
4 5 1 1 9 1 )
( 河 南工程学院土木工程 系, 河南 郑州
要: 利 用有 限元 A N S Y S对外伸式端板螺栓连 接节点受 力性能进 行 了分析 , 从 改变端板 厚度和 螺栓 直径方 面进行 了节点 受力
H 3 0 0 ×1 6 O ×8× 1 2 H3 0 0×2 5 0× 8 ×1 2 l 8
0 引言
梁柱节点连接是 门式 刚架结 构 和多层 钢框 架结 构研 究设 计 组号 编号 中重要 内容之一 , 节点连接 的可靠性 和有效性对 结构 整体性 能影 第 B 0I | T l B OI I 2 响重大… 。在梁端焊上端板 , 用高强螺栓将 端板再 连接于柱 翼缘

组 第

B 0I
2 2 1 8
H 3 0 0 ×l 6 o ×8× 1 2 H3 o o×2 5 0 ×8×1 2 1 8
1 2 1 2
1 6
E EP l
E EP 2
类, 在 门式刚架结构 和 多层轻 型钢框 架结 构 中 , 该 连接 形式 在
第3 9卷 第 1 5期 2 0 1 3 年 5 月
S HAN XI ARCHI T E C T URE

有限元分析试验报告

有限元分析试验报告

有限元分析试验报告
一、试验目的
本次试验的目的是采用有限元分析方法对某零部件进行应力分析,为零部件的优化和设计提供参考。

二、试验原理
有限元分析是采用数学方法对工程结构进行分析,以预测其在外载作用下的变形和应力,从而确定结构的强度和刚度。

分析时将结构划分为有限数量的小单元,利用元件所具有的基本物理特性和相应的数学方程式,计算出每个单元或整个结构的位移、变形、应力等基本的力学量。

三、试验步骤
1.了解零部件的结构和使用环境,建立有限元模型。

2.导入有限元软件,对建立的有限元模型进行网格划分。

3.分配材料性质和加载条件。

4.运行分析,得出计算结果。

5.对计算结果进行分析和评估,对零部件的设计进行改进。

四、试验结果
通过有限元分析,我们得出了零部件在不同工况下的应力云图和变形云图,可以清晰地看到零部件的应力集中区域和变形程度。

同时,我们对零部件的设计进行了改进,使其在承受外力时具有更好的强度和刚度。

五、结论
通过这次试验,我们了解了有限元分析在工程设计中的应用,掌握了分析流程和技术方法。

在实际工程设计中,有限元分析是一种非常重要的工具,有助于提高设计质量和降低成本,值得工程师们广泛运用。

Q460高强钢螺栓抗剪连接承载性能有限元分析

Q460高强钢螺栓抗剪连接承载性能有限元分析

Q460高强钢螺栓抗剪连接承载性能有限元分析郭宏超;皇垚华;李炎隆;刘云贺;简政【摘要】为了更好地发挥高强度钢材的承载性能,保证高强度钢材连接节点的性能和质量至关重要,本文对螺栓预拉力、连接板表面状态、钢材等级及连接板厚度等因素进行了参数分析,并与GB50017、ANSI、EC 3规范理论计算值进行了对比,讨论了不同规范的适用性.结果表明:螺栓预拉力对连接抗剪强度和变形没有影响;抗滑移系数从0.35增加到0.50,连接的变形值减小15.5%,承载力几乎没有提高;钢材屈服强度从345 MPa增加到690 MPa,承载力提高了1.58倍,而变形能力明显降低,延性变差;增加钢板厚度能显著提高连接承载能力,连接的破坏模式由钢板横向撕裂破坏发展为栓杆剪切破坏.%The performance and quality of high strength steel connection node are essential for the better application of the bearing capacity of high strength steel.In order to make a discussion of the application of different standards,the parameter analysis is made to bolt pretension force,the surface state of connecting plate,steel grade and thickness of connecting plate,compared with theoretical calculating value of standard GB500017,ANSI,EC3.The result shows that the bolt pretension force has no effect on shear strength and deformation;if the anti-slip factor increases from 0.35 to 0.50,the deformation value will decrease by15.5%,and the bearing capacity almost has no improvement.If the steel yield strength increases from 345 MPa to 690 MPa,the bearing capacity increases by 1.58 times,but the deformation capacity obviously decreases and the ductility weakens;the connection bearing capacity can beobviously improved by the increase of steel thickness,with the failure in connection caused by crosswise tear of steel plate caused by bolt shear.【期刊名称】《西安理工大学学报》【年(卷),期】2017(033)002【总页数】7页(P180-186)【关键词】高强度钢材;螺栓预拉力;摩擦系数;抗剪性能;折减系数【作者】郭宏超;皇垚华;李炎隆;刘云贺;简政【作者单位】西安理工大学土木建筑工程学院,陕西西安710048;西安理工大学土木建筑工程学院,陕西西安710048;陕西省建筑科学研究院,陕西西安710082;西安理工大学土木建筑工程学院,陕西西安710048;西安理工大学土木建筑工程学院,陕西西安710048;西安理工大学土木建筑工程学院,陕西西安710048【正文语种】中文【中图分类】TU392与普通强度钢材相比,高强度钢材具有材质均匀、刚度大、塑性和韧性好、可靠性高等优点。

高强螺栓群不同厚度连接板的有限元分析

高强螺栓群不同厚度连接板的有限元分析
工程情 况 ,以该 钢桁 梁斜 拉桥 主桁 上 弦杆整 体节 点
—一
图2 有 限兀 模 型
板 的高强 螺栓 群 为研 究对 象 ,选 取 的M3 高 强 螺栓 0
排 列 为 7 × 个 ,设 计 轴 力 为 3 5 N;连 接 板 为 个 8 5k
2 计 算 结果分 析
表2 不 同板厚 在 2 0 a 载下 芯 板及 拼接 板 为 0 MP 荷 的相对 位 移 的 比较 。由 表2 可知 ,两 种板 厚 方式 计 算 的芯 板 和 连 接 盖 板 相 对 位 移 几 乎 一 致 。都 小 于
栓拼接 性 能进行 了研究 。总结 出了连 接板 厚度对 于 地震 中框架 结构 受 力 的影 响 ;王 斌华 [ 利 用 大型 6 1 等 通用有 限元 软件AN Y 。利 用约 束方 程法 对螺 栓群 SS 进 行 了 简化 计 算 ,提 出 了更 加 合 理 的螺 栓 布 置 方
调查 中四.不 难发 现 ,对 于大跨 度 钢 杵 桥 ,节 点破 坏是 其 主要 的破坏 形式之 一l 3 l 。 对 于高强 螺栓 的设计 计算 ,中国 的各 类 规范 都
西 西 比河上 的I 5 一2 W钢 桁 桥 的倒 塌 等众 多 事 故 的
通 过 对 I 3 桥 倒 塌 事 故 中 的有 限元 分 析 ,指 出连 一 5 接 板厚 度偏 小 、应 力储 备不 足是 引起事 故 的关键 因
素 ;李启 才 [ 5 1 连 接板 厚度 对 框 架 中钢 梁 高强 螺 等对
厚 度 的连 接 板 在拉 力荷 载 作 用 下 的板 件 相 对 位 移 、板 件 应 力等 进 行 了模 拟 , 并 对 比分 析 了不 同厚 度 连 接 板 的 应 力 状 态。 结 果

高强度螺栓螺纹根部应力集中的有限元分析

高强度螺栓螺纹根部应力集中的有限元分析

因此, 不建议用增大螺栓螺距的方法来缓解螺纹 根部的应力集中。
%# 结论
(&) 在螺栓与螺母的联接组合中, 离支承面 越近, 螺栓螺纹根部的应力越大, 其最大应力出现 在螺栓与螺母啮合第一扣的螺栓螺纹根部, 因此 此处最容易发生断裂, 这与螺栓的实际断裂位置 是一致的, 说明本文建立的有限元接触分析模型 是正确的, 分析结果是可靠的。 (’ ) 对于标准 ($) 粗牙螺栓, 增大螺纹根部 圆角半径可以显著降低螺栓螺纹根部的应力, 从 而缓 解 应 力 集 中, 当 半 径 从 *" )+,, 增 大 到 &" *$,,时, 应力值降低超过 &!- , 但是当半径增 大到一定程度后, 继续增大半径对螺纹根部应力 的影响较小。 (! ) 减小 ($) 螺栓的螺纹深度, 使得螺纹根 部圆角半径进一步增大, 可以进一步降低螺栓螺 纹根部的应力。而且在半径相同的情况下, 螺纹 深度越小, 螺纹根部的应力也越小。 (% ) 依靠增大螺距来降低 ($) 螺栓螺纹根部 的应力, 效果不明显。 参考文献:
) ) 普通三角形螺纹根部应力集中系数大, 使得 现在使用的高强度螺栓存在严重的安全隐患, 而 且也严重影响了螺栓向更高强度发展。某 /%0 高强度螺栓从螺栓与螺母啮合的第一扣处螺纹根 部发生断裂, 严重影响了结构的安全可靠性。因 此, 有必要研究 /%0 高强度螺栓螺纹根部的应力 集中情况, 寻求减少螺纹根部应力集中、 改善螺纹 处应力分布的途径, 从而确保 /%0 高强度螺栓的 安全使用。 减少螺栓螺纹根部应力集中、 改善应力分布一 般可以通过以下方法实现: 一是增大螺纹根部的圆 角半径; 二是增大螺栓螺纹根部直径 ( 即减小螺纹 深度) ; 三是改变螺栓与螺母联接的结构

Abaqus螺栓有限元分析(汇编)

Abaqus螺栓有限元分析(汇编)
建立截面。点击Section->Manager->Creat,建立Solid,Homogeneous的各向同性的截面,选择材料为Bolt&Nut,如图15所示。
将截面属性赋予模型。选择Assign->Section,选择Bolt模型,然后将刚刚建立的截面属性赋予它。如图13所示。同样,给螺母nut赋予截面属性。
1.
1.1.
1.2.
如果将Pro/E中的3D造型直接导入Abaqus中进行计算,则会出现裂纹缝隙无法修补,给后期的有限元分析过程造成不必要的麻烦,因此,在Abaqs中进行计算之前,对原来的零件模型进行一些简化和修整。
A.法兰部分不是分析研究的重点,因此将其简化掉;
B.经计算,M24×3的螺纹的升角很小,在度,因此可以假设螺旋升角为0;
图112
图113
图114
第六步,定义接触面。接触面是Abaqus分析中非常重要的一环。进入Abaqus中的Interaction模块,先在Tools->Surface菜单中设置我们要定义的两个相互接触的面。如图115所示,螺栓上的接触面主要是螺纹的下表面,按着Shift键依次将其选中。如图116所示,螺母上的接触面主要是螺纹的上表面,同样按着Shift键依次将其选中。设置接触面的属性。选择Interaction->Manager->Creat中创建接触面,类型选择面和面接触,选择Mechanical->TangentialBehavior,输入摩擦系数为0.14,选择Mechanical->NormalBehavior,接受默认设置,最终设置如图117所示。选择Interaction->Creat,创建螺栓和螺母之间的接触,接触,类型选择刚刚定义的接触类型,设置结果如图118所示。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 概述
螺栓是机载设备设计中常用的联接件之一。

其具有结构简单,拆装方便,调整容易等优点,被广泛应用于航空、航天、汽车以及各种工程结构之中。

在航空机载环境下,由于振动冲击的影响,设备往往产生较大的过载,对作为紧固件的螺栓带来强度高要求。

螺栓是否满足强度要求,关系到机载设备的稳定性和安全性。

传统力学的解析方法对螺栓进行强度校核,主要是运用力的分解和平移原理,解力学平衡方程,借助理论和经验公式,理想化和公式化。

没有考虑到连接部件整体性、力的传递途径、部件的局部细节(如应力集中、应力分布)等等。

通过有限元法,整体建模,局部细化,可以弥补传统力学解析的缺陷。

用有限元分析软件MSC.Patran/MSC.Nastran提供的特殊单元来模拟螺栓连接,过程更方便,计算更精确,结果更可靠。

因此,有限元在螺栓强度校核中的应用越来越广泛。

2 有限元模型的建立
对于螺栓的模拟,有多种模拟方法,如多点约束单元法和梁元法等。

多点约束单元法(MPC)即采用特殊单元RBE2来模拟螺栓连接。

在螺栓连接处,设置其中一节点为从节点(Dependent),另外一个节点为主节点(Independent)。

主从节点之间位移约束关系使得从节点跟随主节点位移变化。

比例因子选为1,使从节点和主节点位移变化协调一致,从而模拟实际工作状态下,螺栓对法兰的连接紧固作用。

梁元法模拟即采用两节点梁单元Beam,其能承受拉伸、剪切、扭转。

通过参数设置,使梁元与螺栓几何属性一致。

本文分别用算例来说明这两种方法的可行性。

2.1 几何模型
如图1所示组合装配体,底部约束。

两圆筒连接法兰通过8颗螺栓固定。

端面受联合载荷作用。

图1 三维几何模型
2.2 单元及网格
抽取圆筒壁中性面建模,采用四节点壳元(shell),设置壳元厚度等于实际壁厚。

法兰处的过渡圆弧处网格节点设置密一些,其它可以相对稀疏。

在法兰上下两节点之间建立多点约束单元(RBE2,算例1,图3)或梁元(Beam, 算例2,图4)来模拟该位置处的螺栓连接。

图3 算例1(多点约束单元法)连接网格
图4 算例2(梁元法)连接网格
在圆筒端面中心建立不属于结构模型的参考节点,通过加权平均约束单元RBE3,建立端面节点与参考点的主从约束关系。

外加载荷施加在参考点上,然后被均匀分配到端面节点。

这里,对于多个面的网格划分,应当注意在各几何连接面法矢量的一致性。

这样划分网格时,才能保证shell单元法矢量的一致性。

图2显示了各面的法矢量方向是一致的。

图2 面法向量方向图
对于复杂曲面模型,还应当注意连接面接缝处网格协调;网格划分结束,必须用Equivalence合并相同节点。

图5 整体模型有限元网格
2.3材料属性、边界约束及载荷
计算中所使用的材料参数如下:
圆筒:E=70 GPa,μ=0.3
螺栓:E=184GPa,μ=0.3
底部法兰在8处螺栓处约束,在独立节点处施加联合载荷。

3 有限元结果
3.1 应力云图
从图6、图7看出,两种模拟方法,结构整体应力分布相当。

图6 算例1(多点约束单元法)应力云图
图7 算例2(梁元法)应力云图
3.2 螺栓强度核算
在两算例中,可以在F06结果文件中得到螺栓对应的节点编号和节点载荷。

从结果文件可以看出,模拟螺栓的两对应节点载荷大小相等、方向相反。

所以,只需取其中一个节点分析即可。

下表1、表2以8个上法兰节点为例,各节点载荷分量即为单个螺栓所受的载荷,载荷单位N。

表1 算例1(多点约束单元法)螺栓连接处节点载荷
表2 算例2(梁元法)螺栓连接处节点载荷
由表可以看出,Fy为连接螺栓的轴向载荷,正值表示螺栓受拉,负值表示螺栓受压缩载荷。

而实际工作状况下,连接螺栓是不会受压。

表中负值的出现,是由构成单元的两节点之间位移约束特性所决定,这里应当舍负取正。

表1、2中各对应节点Fy值近似相等,Fx和Fz值有所差异。

为了计算方便,以表1(算例1多点约束单元法)为例,分别选取螺栓最大拉伸载荷和螺栓最大剪切载荷计算其相关强度,计算结果偏保守。

螺栓材料1Cr18Ni9Ti,M6
螺栓拉伸载荷:Fy=4194 N
螺栓剪切载荷:
螺栓拉伸:
螺栓剪切:
根据第4强度理论:
螺栓剩余强度系数:
说明螺栓强度满足要求。

4 分析与结论
由上分析可知,在有限元分析时,多点约束单元法和梁元法均可以对装配体中的螺栓进行模拟。

细节处的节点载荷有差异,但不影响整体结果正确性。

两种方法求得的相应节点载荷可用第四强度理论对螺栓进行校核。

相对来说,多点约束单元模拟事先不需要知道螺栓直径大小,只关心螺栓连接位置,操作上要方便;梁元法则需要设置许多相关几何参数,如直径,向量等,在几何外形上与螺栓更为相象,但操作上要复杂一些。

对于机载设备装配体中螺栓连接,均可以做上述近似处理。

具体采用何种模拟方法,由分析人员根据实际情况而定。

相关文档
最新文档