第二章-水热法与溶剂法-乔英杰
水热溶剂热合成学习材料-(2)-水热溶剂热合成基础详解

氢氧化物到金属氧化物的转变一般为脱水反应
7. 水热分解反应: 水热条件下物质分解而形成新化合物
如: FeTiO3 FeO + TiO2 8. 水热提取反应: 在水热或溶剂热条件下从化合物(一般 为矿物)中提取金属的过程
9. 氧化反应: 水热或溶剂热条件下金属单质转变成化合 物的反应
10. 烧结反应: 水热或溶剂热条件下,达到烧结目的的反 应. 如某些陶瓷材料的水热制备
群
增加而升高。但在一般情况下,温度的影响是主要的
成 合
热
剂
溶
热
水
大
科
(7) 压强与温度、填充度关系密切(自生压力)
群 成 合 热 剂 溶 热 水 大 科
水热条件下水的作用 (1)溶剂作用,提高物质的溶解度 (2)传递压力的作用 (3)促进反应的作用 (4)有时作为反应物参与反应 但某些时候会腐蚀反应容器
成核特征:
(1) 成核速率随过冷程度或过饱和程度的增加而增加,
但同时温度下降, 体系黏度下降, 反应物扩散速度减小,
成核速率降低
群
成
因此随温度变化成核速率曲线为抛物线,存在一极大值
合 热
剂
溶
热
水
大
科
(2) 存在一个诱导期, 在此期间检测不到晶核的存在
成核发生在溶液与某种组分的界面上----即形成一个结 晶中心。当条件适宜时, 成核速率随溶液过饱和程度增 加迅速加快。
目前的溶剂热反应多用于二六族化合物的合成
国内钱逸泰课题组利用溶剂热反应合成了大量的硫化
群 成
物、硒化物,徐如人课题组利用溶剂热合成了系列低
合 热
维(如一维链状、二维层状)化合物
剂 溶
水热法—溶剂热法合成一维纳米材料

3.1.1 本文研究意义
氯化磷酸锶在结构上和磷酸锶、锶羟磷灰石相似,磷酸锶类似 于磷酸钙,有很好的生物相容性,在外科,骨骼治疗和临床方面有 潜在的应用价值。而一维纳米材料又优异的机械性能和生物活性, 因此有广阔的应用前景。 本实验研究的是含锶的骨骼粘合剂,具有低毒性,低凝固温度, 刺激骨骼接缝处生长的作用。 目前,氯化磷酸锶已由:微乳液法、模板法、各向异性法合成。 模板法和微乳液法分别受铝和表面活性剂的污染;各向异性法产率 低。 本实验研究了一种新奇的方法合成氯化磷酸锶,并探究了1,4— 二氧己环对合成高深宽比纳米线的影响。对大规模生产骨高纯度骼 粘合剂有重要意义。
拉曼光谱分析
20% 0% 50%
3.4 结论
1. 本文通过控制1,4-二氧己环的加入量合成了高深宽比的纳 米线,并研究了氯化磷酸锶行核和长大的条件。 2. 在 PH=7.5 时,在热力学驱动力的作用下,亚稳相向稳相 转化,氯化物、磷酸盐、锶离子聚集形成氯化磷酸锶。 3. 本文提供了一种合成大深宽比的氯化磷酸锶纳米线的方法, 它有纳米复合材料的高生物活性,好的机械性能,作为骨粘 合剂和荧光材料有广泛的应用。
3.1.3
结 果 与 讨 论
三相:氯化磷酸锶 相,锶磷磷灰石相, 磷酸氢锶相
a.20% 1,4-二氧六环;b.未添加二氧六环
3.1.3结果与讨论
氯化磷酸锶纳米线长 约1.4370.6 mm 直径 约31712nm 长宽比 52.28729.41.
加入20%的1,4-二氧己环制备纳米线的TEM分析
3.1.3结果与讨论
3.1.2 实验步骤
实 验 步 骤
1. 合成(Sr6H3(PO4)5·2H2O):在pH 7.5混合Sr(NO3)2
溶液和(NH4)2HPO4溶液在制得。 2. 将 Sr(NO3)2 (0.395 g) 和 0.5 g NH4Cl 溶 解 在 22.5mL 蒸馏水中;0.162 g Na3P3O10 溶解在 22mL 蒸馏水中。 3. 三聚磷酸锶胶体通过混合硝酸锶和三聚磷酸钠制得。 4. 把1g 科林盐纳米晶和15mL 1,4-二氧己环加入胶体 中。加入 (0.5mL) 乙二胺作为缓冲剂维持胶体 PH 在 910之间,抑制微米晶须的生长。
纳米材料与制备05

1.3 水热与溶剂热法(hydrothermal andsolvothermal)l h l)水热法:是指在密闭体系中,以水做溶剂,在一定温度水热法中以做溶剂在定(100-1000℃)和压强(1-100MPa)条件下,利用溶液中物质化学反应所进行的合成。
溶剂热法:是在水热法的基础上发展起来的一种新方法,将水热法中的水换成有机溶剂(如:醇类、有机胺、四氯化碳如醇类有机胺四氯化碳或苯等)。
用以制备在水溶液中难以生长、易氧化、易水解或对水敏感的材料,如碳化物、硼化物、氟化物等。
水热与溶剂热合成与固相合成的差别在于“反应性”不同。
机理主要以界面扩散为其特点而水热与溶剂热反应主要机理主要以界面扩散为其特点,而水热与溶剂热反应主要以液相反应为其特点。
或物种,或者使反应在相对温和的溶剂热条件下进行。
或物种或者使反应在相对温和的溶剂热条件下进行①由于在水热与溶剂热条件下反应物反应性能的改变、活性的提高,水并产生一系列新的合成方法。
因此能合成与开发一系列特种介稳结构、特种凝聚态的新合成产物。
解相在水热与溶剂热低温条件下晶化生成。
⑤由于易于调节水热与溶剂热条件下的环境气氛,因而有利于低价态、⑤由于易于调节水热与溶剂热条件下的环境气氛因而有利于低价态中间价态与特殊价态化台物的生成,并能均匀地进行掺杂。
水热与溶剂热条件下典型的反应类型如下水热与溶剂热合成的反应类型水热与溶剂热条件下典型的反应类型如下:(1) 水热氧化:Fe + H 2O FeO n + H 2(2) 水热沉淀:KF +CoCl 2KCoF 2(2)水热还原C O +H C +H O (2) 水热还原:CuO + H 2 Cu + H 2O (3) 水热合成:Nd 2O 3+ H 3PO 4NdP 5O 14(4) 水热分解:FeTiO 3FeO + TiO 2(5)(5) 水热结晶:Al(OH)3Al 2O 3•H 2O在常温常压下一些从热力学看可以进行的反应,往往因热条件下可以使反应发生,与该条件下溶剂的物化性质密切相关。
高校无机化学(高教版)水热和溶剂热合成课件

• 矿化剂通常是一类在反应介质中的溶解度随温度的升高而持续 增大的化合物,如一些低熔点的盐、酸或碱。
• 加入矿化剂不仅可以提高溶质在水(溶剂)热溶液里的溶解度, 而且可改变其溶解度温度系数。
高温高压水的作用
• ①有时作为化学组分起化学反应; • ②反应和重排的促进剂; • ③起压力传递介质的作用; • ④起溶剂作用; • ⑤起低熔点物质的作用; • ⑥提高物质的溶解度; • ⑦有时与容器反应; • ⑧无毒。
二、各类化合物在介质中的溶 解度
• 其溶解度可用一定的温度、压力下化合物在溶液中平衡度来表 示。
第一节 引言
水热和溶剂热合成
第二节 基本理论 第三节 基本应用 第四节 技术手段
第一节 引言
• 1982年以来,每年召开一次国际水热反应研讨 会。——成为新的学科 • 水(溶剂)热合成化学与溶液化学不同,它是研 究物质在高温和密闭或高压条件下溶液中的化学 行为与规律的化学分支。 • 水热与溶剂热合成是指在一定温度(100-1000℃) 和压强1~100MPa)条件下利用溶液中物质化学 反应所进行的合成。水热合成化学侧重于研究水 热合成条件下物质的反应性、合成规律以及合成 产物的结构与性质。
• 水热法是在特制的密闭反应容器(高压釜)采 用水溶液作为反应介质,通过对反应容器加热, 创造一个高温、高压反应环境,使得通常难溶 或不溶的物质溶解并且重结晶! • 水热法可分为水热晶体生长、水热合成、水热 反应、水热处理、水热烧结等。 • 水热法又可分为“普通水热法”和“特殊水热 法”. • 所谓“特殊水热法”指在水热条件反应体系上 再添加其他作用力场,如直流电场、磁场(采 用非供电材料制作的高压釜)、微波场等。
2-水热与溶剂热法介绍

3
材料合成技术与方法
材料合成技术与方法
影响溶液过饱和度的因素
• 饱和曲线是固定的 • 不饱和曲线受搅拌、搅拌强度、 晶种、晶种大小和多少、冷却速 度的快慢等因素的影响
过饱和度的表示方法
∆c = c − c * S = c / c*
σ = ∆c / c* = S −1
c —过饱和浓度; c * —饱和浓度; ∆c —浓度推动力; S —过饱和度比;
结晶过程的两个步骤:
晶浆(悬浮体):由溶液结 晶出来的晶体与预留下来 的溶液构成的混合物 母液:晶浆去除了悬浮 于其中的晶体后所余留的 晶体后所余留的溶液。
2
材料合成技术与方法
材料合成技术与方法
3、反应原理
1)溶解度 2)过饱和度
定义 影响因素 溶解度曲线 溶解度关系
1)溶解度 定义:在一定条件下平衡时的最大浓度。通 常规定在一定温度下某物质在100克溶剂中所 能溶解的克数。 影响因素:
2)溶解-结晶
3)原位结晶
材料合成技术与方法
材料合成技术与方法
3、反应原理 实质:结晶过程
成核 产生微观的晶粒 作为结晶的核心, 称晶核,过程称成 核 晶体生长 晶核长大,成为宏观 的晶体。
• 结晶过程的基础是相平衡或溶解度。 • 推动力:溶液的过饱和度 • 分为两步: 成核理论 晶体生长理论 1)溶解度 2)过饱和度 3)形核和形核速率 4)生长理论
溶解度关系
•固液相平衡的条件: 溶解度与粒度的关系:
2M σ c ( r ) = c* exp ν RT ρ r
c(r ) —粒径为r的溶质的溶解度,kg/kg(溶剂); c* —正常平衡溶解度,kg/kg(溶剂);
µ L = µiS
水热法过程机理分析-课件

水热生长体系中的晶粒形成可分为三种类型: “均匀溶液饱和析出”机制 ”溶解-结晶”机制 “原位结晶”机制
“均匀溶液饱和析出”机制
• 由于水热反应温度和体系压力的升高,溶质在 溶液中溶解度降低并达到饱和,以某种化合物结 晶态形式从溶液中析出。当采用金属盐溶液为前 驱物,随着水热反应温度和体系压力的增大,溶 质(金属阳离子的水合物)通过水解和缩聚反应, 生成相应的配位聚集体(可以是单聚体,也可以 是多聚体)当其浓度达到过饱和时就开始析出晶 核,最终长大成晶粒
水热合成法的概念
• 水热法(Hydrothermal Synthesis),是指在特制的 密闭反应器(高压釜)中,采用水溶液作为反应体 系,通过对反应体系加热、加压,创造一个相对高 温、高压的反应环境,使得通常难溶或不溶的物质 溶解,并且重结晶而进行无机合成与材料处理的一 种有效方法。
• 在水热条件下,水既作为溶剂又作为矿化剂,在 液态或气态还是传递压力的媒介,同时由于在高压 下绝大多数反应物均能部分溶解于水,从而促使反 应在液相或气相中进行。
2.微波水热合成
微波水热法是美国宾州大学的Roy R提出的。微波 水热的显著特点是可以将反应时间大大降低,反 应温度也有所下降,从而在水热过程中能以更低 的温度和更短的时间进行晶核的形成和生长,反 应温度和时间的降低,限制了产物微晶粒的进一步 长大,有利于制备超细粉体材料。
水热法制备出的粉体
• 简单的氧化物: ZrO2、Al2O3、SiO2、CrO2、 Fe2O3、MnO2等;
在高温高压下水的作用可归纳如下:
• 有时作为化学组分起化学反应; • 反应和重排的促进剂; • 起压力传递介质的作用; • 起溶剂作用; • 起低熔点物质的作用; • 提高物质的溶解度; • 有时与容器反应。
第二章-水热法与溶剂法-乔英杰

页面 4 2018/12/8
水热法制备出的粉体
• 简单的氧化物: ZrO2 、 Al2O3 、 SiO2 、 CrO2 、
Fe2O3 、 MnO2 、 MoO3 、 TiO2 、 HfO2 、 UO2 、 Nb2O5、CeO2等;
• 混 合 氧 化 物 : ZrO2-SiO2 、 ZrO2-HfO2 、 UO2-
页面 13
2018/12/8
1.超临界水热合成
超临界流体(SCF)是指温度及压力都处于临界
温度和临界压力之上的流体。
在超临界状态下,物质有近于液体的溶解特性以 及气体的传递特性:
粘度约为普通液体的0.1~0.01; 扩散系数约为普通液体的10~100倍; 密度比常压气体大102~103倍。
页面 14 2018/12/8
页面 15
2018/12/8
P 固 A 气 O
B 液
超临界 流体
C
T
图 2.2 超临界流体相图
页面 16
2018/12/8
超临界水(SCW)是指温度和压力分别高于其临界
温度(647K)和临界压力(22.1MPa),而密度高于
其临界密度(0.32g/cm3)的水。
在一般情况下,水是极性溶剂,可以很好的 溶解包括盐在内的大多数电解质,对气体和大多 数有机物则微溶或不溶。但是到达超临界状态 时,这些性质都发生极大的变化:
页面 23 2018/12/8
一般情况下,气体的粘度随温度的升高 而增大,液体的粘度随温度的升高而减小。 标准条件下水的粘度系数是1.05×10-3Pa· s, 而在超临界状态下,例如在 450℃ 与 27MPa 时 , 水 的 粘 度 系 数 为 2.98×10-3Pa· s,在 1000℃时,即使水的密度为 1.0g/cm3时,水 的粘度系数也只有约 45×10-5Pa· s ,与普通 条件下空气的粘度系数 (1.795×10-5Pa· s) 接 近。
二、水热与溶剂热

动到固-液生长界面并被吸附,在界面上迁移运动。
(3)生长基元在界面上的结晶或脱附:
在界面上吸附的生长基元,经过一定距离的运动,可能在界面
某一适当位置结晶并长入晶相,使得晶相不断向环境相推移,
或者脱附而重新回到环境相中。
3.晶体生长的特点-非自发成核晶化动力学
(1)在籽晶或稳定的核上的沉积速率随着过饱和或过冷的程 度的增加,搅拌常会加速沉积。 (2)在同样条件下,晶体的各个面常常以不同速率生长,高 指数晶面生长更快并倾向于消失。晶体的习性依赖这种效应并 为被优先吸附在确定晶面上的杂质如染料所影响,从而降低这 些面上的生长速率。 (3)由于晶化反应速率整体上是增加的,在各面上的不同增 长速率倾向于消失。 (4)缺陷表面的生长比无缺陷的光滑平面快。 (5)在特定表面上无缺陷生长的最大速率随着表面积的增加 而降低,此种性质对在适当时间内无缺陷单晶的生长大小提 出来限制。
硫键和氢键,时间久了肽键也会断裂,经过高温后肉变得 易消化和吸收。
15
16
(一)水热与溶剂热反应介质的性质
1、水或有机溶剂的作用 (1)作为化学组分起化学反应; (2)溶剂为反应提供场所,起压力传递介质的作用; (3)使反应物溶解,生成溶剂合物;
(4) 促进反应和重排;
(5)影响化学反应速率。
2、高温高压下水热反应具有三个特征: (1)使重要离子间的反应加速; (2)使水解反应加速; (3)使其氧化还原电势发生明显变化。 3、高温高压水热体系中,水的性质将产生哪些变化? 是如何影响反应进行的? (1)离子积变高 (2)粘度、密度、表面张力变低
均一体系,溶质过饱和,析出晶核然后长大。
29
“溶解-结晶”机制
所谓“溶解”是指水热反应初期,前驱物微粒之间的团聚和
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主要内容
• 2.1 水热与溶剂热合成方法的发展
• 2.2 水热与溶剂热合成方法原理 • 2.3 水热与溶剂热合成工艺
• 2.4 水热与溶剂热合成方法应用实例
页面 2
2018/12/8
水热合成方法的发展
最 早 采 用 水 热 法 制 备 材 料 的 是 1845 年 K.F.
超临界流体拥有一般溶剂所不具备的很多重要
特性。SCF的密度、溶剂化能力、粘度、介电常
数、扩散系数等物理化学性质随温度和压力的变
化十分敏感,即在不改变化学组成的情况下,其
性质可由压力来连续调节。能被用作SCF溶剂的 物质很多,如二氧化碳、水、一氧化氮、乙烷、 庚烷、氨等。超临界流体相图,如图2.2。
Eschafhautl 以硅酸为原料在水热条件下制备石 英晶体 一些地质学家采用水热法制备得到了许多矿 物,到1900年已制备出约80种矿物,其中经鉴 定确定有石英,长石,硅灰石等 1900年以后,G.W. Morey和他的同事在华盛顿 地球物理实验室开始进行相平衡研究,建立了 水热合成理论,并研究了众多矿物系统。
页面 10 2018/12/8
由于有机溶剂的低沸点,在同样的条件下,
它们可以达到比水热合成更高的气压,从而 有利于产物的结晶;
由于较低的反应温度,反应物中结构单元可
以保留到产物中,且不受破坏,同时,有机 溶剂官能团和反应物或产物作用,生成某些 新型在催化和储能方面有潜在应用的材料;
页面 11 2018/12/8
与水热法相比,溶剂热法具有以下优点:
在有机溶剂中进行的反应能够有效地抑制产
物的氧化过程或水中氧的污染;
非水溶剂的采用使得溶剂热法可选择原料的
范围大大扩大,比如氟化物,氮化物,硫化 合物等均可作为溶剂热反应的原材料;同 时,非水溶剂在亚临界或超临界状态下独特 的物理化学性质极大地扩大了所能制备的目 标产物的范围;
非水溶剂的种类繁多,其本身的一些特
性,如极性与非极性、配位络合作用、 热稳定性等,为我们从反应热力学和动 力学的角度去认识化学反应的实质与晶 体生长的特性,提供了研究线索。
页面 12
2018/12/8
尽管水热合成的技术优势很显著,国 内外也取得了很多研究成果,但它的缺陷 也比较明显的,其中最为突出的是反应周 期长。故近年来在水热合成技术上发展了 几种新技术。 超临界水热合成法 微波水热法
C、TiO2-Al2O3等。
• 某些种类的粉体的水热法制备已实现工业化生
产 :日本 Showa Denko K.K 生产的Al2O3粉, Chichibu Cement Co. Ltd 生产的 ZrO2 粉体和 Sakai Chemical Co.Ltd 生产的 BaTiO3 粉体,美 国Cabot Corp生产的介电陶瓷粉体,日本Sakai Chem.Corp和NEC生产的PZT粉体等。
页面 6 2018/12/8
溶剂热合成方法的发展
1985 年, Bindy 首次在“ Nature” 杂志上发表文
章报道了高压釜中利用非水溶剂合成沸石的方 法,拉开了溶剂热合成的序幕。
到目前为止,溶剂热合成法已得到很快的发
展,并在纳米材料制备中具有越来越重要的作 用。在溶剂热条件下,溶剂的物理化学性质如 密度、介电常数、粘度、分散作用等相互影 响,与通常条件下相差很大。
ThO2 等;
• 复 合 氧化 物 : BaFe12O19 、 BaZrO3 、 CaSiO3 、
PbTiO3、LaFeO3、LaCrO3、NaZrP3O12等;
页面 5 2018/12/8
• 羟基化合物、羟基金属粉: Ca10(PO4)6(OH)2 、
羟Hale Waihona Puke 铁、羟基镍;• 复合材料粉体: ZrO2-C 、 ZrO2-CaSiO3 、 TiO2-
页面 3 2018/12/8
水热法一直主要用于地球科学研究,二战以后 才逐渐用于单晶生长等材料的制备领域,此后,随 着材料科学技术的发展,水热法在制备超细颗粒, 无机薄膜,微孔材料等方面都得到了广泛应用。
1944~1960年间,
化 学 家致 力 于低 温 水 热合 成 ,美 国 联 合碳 化 物林 德 分 公司 开 发了 林德A型沸石 (图2.1)。
页面 15
2018/12/8
P 固 A 气 O
B 液
超临界 流体
C
T
图 2.2 超临界流体相图
页面 16
2018/12/8
超临界水(SCW)是指温度和压力分别高于其临界
温度(647K)和临界压力(22.1MPa),而密度高于
页面 8
2018/12/8
另外,物相的形成,粒径的大小、形态也能够
有效控制,而且产物的分散性好。
更重要的是通过溶剂热合成出的纳米粉末,能
够有效的避免表面羟基的存在,使得产物能稳 定存在。
作为反应物的盐的结晶水和反应生成的水,相
对于大大过量的有机溶剂,水的量小得可以忽 略。
页面 9 2018/12/8
页面 7 2018/12/8
相应的,它不但使反应物(通常是固体)的溶
解、分散过程及化学反应活性大大增强,使得 反应能够在较低的温度下发生,而且由于体系 化学环境的特殊性,可能形成以前在常规条件 下无法得到的亚稳相。
该过程相对简单、易于控制,并且在密闭体系
中可以有效地防止有毒物质的挥发和制备对空 气敏感的前驱体和目标产物;
页面 13
2018/12/8
1.超临界水热合成
超临界流体(SCF)是指温度及压力都处于临界
温度和临界压力之上的流体。
在超临界状态下,物质有近于液体的溶解特性以 及气体的传递特性:
粘度约为普通液体的0.1~0.01; 扩散系数约为普通液体的10~100倍; 密度比常压气体大102~103倍。
页面 14 2018/12/8
图2.1 林德A型沸石的结构
页面 4 2018/12/8
水热法制备出的粉体
• 简单的氧化物: ZrO2 、 Al2O3 、 SiO2 、 CrO2 、
Fe2O3 、 MnO2 、 MoO3 、 TiO2 、 HfO2 、 UO2 、 Nb2O5、CeO2等;
• 混 合 氧 化 物 : ZrO2-SiO2 、 ZrO2-HfO2 、 UO2-