超高温气冷堆介绍
高温气冷堆的特点

高温气冷堆的特点高温气冷堆(High Temperature Gas-cooled Reactor,HTGR)是一种利用气体作为冷却剂和工质的核电反应堆。
它具有许多独特的特点,使其成为目前研究和开发的热点。
首先,高温气冷堆具有高温工质。
其出口温度可达到800℃以上,远高于传统水冷反应堆的温度。
这种高温工质使得高温气冷堆具有更高的热效率,从而提高了能源利用率。
此外,高温工质还具有一定的热储存能力,可以在需求峰值时释放储存的热能,满足热能需求。
其次,高温气冷堆具有固态燃料。
与传统的液态燃料相比,固态燃料具有更高的热效率和更低的安全风险。
固态燃料不易泄漏,且燃料粒子更易于密封和控制。
此外,固态燃料具有更高的燃烧温度和更低的熔点,使其更加适合高温气冷堆的运行。
第三,高温气冷堆具有气冷循环系统。
传统的水冷反应堆依赖于水冷却剂来带走核反应堆产生的热量。
而在高温气冷堆中,气体是冷却剂和工质,不但可以有效地冷却反应堆,还可以通过燃气涡轮机转换热能为电能。
这种气冷循环系统不仅避免了水蒸汽泄漏和腐蚀等问题,还提高了能量转换效率。
第四,高温气冷堆具有更高的安全性。
由于高温气冷堆采用了固态燃料和气冷循环系统,不存在水蒸汽爆炸和核泄漏等传统核电反应堆常见的事故风险。
此外,高温气冷堆还具有自动衰变热分散和机械停堆等安全特性,可以有效地降低事故风险。
高温气冷堆也是一种固定床反应堆,核燃料颗粒被完全包裹在球状燃料颗粒堆中,有利于减少放射性物质的扩散和释放。
第五,高温气冷堆具有多能级应用优势。
由于其高温工质和固态燃料的特点,高温气冷堆可以广泛应用于电力、石化、冶金、化工和航天等领域。
例如,高温气冷堆可以用来产生高温高压的蒸汽,用于发电和工业生产;还可以通过高温换热器提供工业或城市的热水和蒸汽供应。
最后,高温气冷堆具有较长的运行寿命。
由于固态燃料和气冷循环系统的采用,高温气冷堆的燃料更易于密封和控制,反应堆更易于维护和远程管理。
这使得高温气冷堆具有更长的运行寿命和更低的维护成本。
高温气冷堆技术

高温气冷堆技术高温气冷堆技术是一种新兴的核能技术,它能够解决传统核能技术中存在的安全和环境问题。
本文将介绍高温气冷堆技术的原理、特点、应用以及未来的发展前景。
高温气冷堆技术是一种以气体为冷却剂、使用固体燃料的核能系统。
相比于传统的水冷堆技术,高温气冷堆技术具有多项优势。
首先,由于采用气体作为冷却剂,不需要大量的水资源,可以解决传统核电厂面临的水资源短缺问题。
其次,高温气冷堆技术具有较高的热效率,能够将燃料的能量更充分地转化为电能,提高能源利用效率。
此外,高温气冷堆技术还具有更好的安全性能,因为气体冷却剂的温度较高,不易在事故情况下发生蒸汽爆炸等问题。
高温气冷堆技术的核心是燃料元件和冷却剂。
燃料元件采用固体燃料,一般是含有铀-铀化合物的球形燃料颗粒。
冷却剂则采用氦或者二氧化碳等惰性气体,通过循环冷却剂,将堆芯中产生的热量转移出去。
而后,冷却剂在高温下通过换热器将热量转化为蒸汽并驱动涡轮,最终产生电能。
由于气体冷却剂的温度较高,可达到900摄氏度以上,所以称之为高温气冷堆技术。
高温气冷堆技术具有广泛的应用前景。
首先,高温气冷堆技术可以用于电力产生,提供清洁、高效的电能。
其次,高温气冷堆技术还可以用于石油炼化和化工行业,利用其高温气体可以进行高效的反应过程。
此外,高温气冷堆技术还可以用于热力供暖等领域,提供可靠的高温热能。
高温气冷堆技术在全球范围内得到了广泛的关注和研究。
许多国家已经开始了高温气冷堆技术的研发和建设。
例如,中国的“华龙一号”核电技术就采用了高温气冷堆技术。
高温气冷堆技术还与其他新兴能源技术相结合,例如核聚变技术,可以实现更稳定、安全、高效的能源供应。
然而,高温气冷堆技术在实际应用中还存在一些挑战和问题。
首先,高温气冷堆技术的燃料元件和冷却剂的选择和研发,仍然需要进一步的研究。
其次,高温气冷堆技术的建设和运行成本相对较高,需要进一步降低成本,提高经济效益。
此外,高温气冷堆技术在废物处理和核安全等方面也需要进一步研究和完善。
高温气冷堆的特点与应用

高温气冷堆的特点与应用高温气冷堆(High Temperature Gas-cooled Reactor,HTGR)是一种新型的核能发电技术,具有许多独特的特点和广泛的应用前景。
本文将介绍高温气冷堆的特点以及其在能源领域的应用。
一、高温气冷堆的特点1. 高温工作温度:高温气冷堆的工作温度通常在700℃以上,甚至可以达到1000℃。
相比传统的水冷堆,高温气冷堆的工作温度更高,能够提供更高的热效率。
2. 气冷散热:高温气冷堆采用气体作为冷却剂,通过直接循环冷却剂与燃料颗粒之间的热交换,实现散热。
相比水冷堆的间接循环冷却方式,气冷堆的散热效果更好,能够更高效地将热能转化为电能。
3. 燃料颗粒堆芯:高温气冷堆的燃料采用微米级的球形燃料颗粒,这些颗粒由包裹燃料核心的多层包覆层组成。
这种设计可以有效地防止燃料核心的泄漏和扩散,提高燃料的利用率和安全性。
4. 高安全性:高温气冷堆采用固体燃料和气体冷却剂,不存在液体冷却剂的蒸汽压力和蒸汽爆炸的风险。
同时,燃料颗粒堆芯的设计也能够有效地防止燃料泄漏和核裂变产物的扩散,提高了堆芯的安全性。
5. 多种燃料适应性:高温气冷堆可以使用多种燃料,包括天然气、石油、煤炭等化石燃料,以及铀、钍等核燃料。
这种多种燃料适应性使得高温气冷堆在能源转型和资源利用方面具有广阔的应用前景。
二、高温气冷堆的应用1. 核能发电:高温气冷堆作为一种新型的核能发电技术,具有高效率、高安全性和多燃料适应性的特点,被广泛应用于核能发电领域。
高温气冷堆可以提供稳定可靠的电力供应,同时还可以与其他能源形式相结合,实现能源的多元化利用。
2. 工业热能供应:高温气冷堆的高温工作温度使其可以提供高温热能,广泛应用于工业领域的热能供应。
高温气冷堆可以为工业生产提供稳定的高温热源,满足工业生产过程中的热能需求,提高能源利用效率。
3. 氢能生产:高温气冷堆可以通过核热解水的方式产生氢气,为氢能产业的发展提供可靠的能源支持。
超高温气冷堆介绍

超高温气冷堆(VHTR)调研报告目录0.引言 (3)1.发展历史 (3)1.1 高温气冷堆—实验堆 (3)1.2 高温气冷堆—原型堆 (3)1.3 高温气冷堆-模块式 (4)2.目前各个国家的发展状况 (4)3.VHTR反应堆结构 (5)4.VHTR堆型的优缺点 (8)5.VHTR发展趋势 (9)5.1 前景展望 (9)5.2 VHTR需要填补的技术缺口 (10)6.总结 (11)参考文献 (12)0.引言未来十几年,全世界都需要能源和优化能源基础建设来满足日益增长的电力和运输用燃料的需要。
第四代国际核能论坛(GIF)确定的6种核能系统概念具有满足良好的经济性、安全性、可持续性、防核扩散和防恐怖袭击等目标的绝对优势。
在第四代核能系统概念中,超高温气冷反应堆VHTR(Very High Temperature Reactor)作为高温气冷反应堆渐进式开发过程中下一阶段的重点对象,第四代国际核能论坛(GIF)已将VHTR列入研发计划。
VHTR将反应堆出口温度比HTGR提高100℃,达到1000℃或以上,对所用燃料和材料提出了更高要求,实现制氢的工艺设计也需要研发创新。
目前,多个国家和组织投入力量,正给予重点研发。
我国也将高温气玲堆电站列入中长期科学和技术发展重大专项规划,希望近期取得重大技术突破。
1.发展历史VHTR(Very High Temperature Reactor)是高温气冷反应堆渐进式开发过程中下一阶段的重点对象,而高温气冷堆的发展主要经历了以下阶段[1]。
1.1 高温气冷堆—实验堆英国1960年建造20MW实验堆“龙堆”(Dragon)。
美国1967年建成40MW的桃花谷(Peach Bottom)实验堆。
德国1967年建成15MW的球床高温气冷堆(A VR),并发展了具有自己特色的球形燃料元件和球床高温堆。
这三座实验堆的成功运行,证明了高温气冷堆在技术上是可行的。
1.2 高温气冷堆—原型堆美国1968年建造330MW圣·符伦堡(Fort Stvrain)电站,1976年并网发电。
高温气冷堆的工作原理

高温气冷堆的工作原理高温气冷堆的工作原理高温气冷堆(High-Temperature Gas-Cooled Reactor,简称HTGR)是一种基于气冷技术的新型核反应堆。
相比传统的水冷堆,高温气冷堆具有更高的温度和更高的燃烧效率,同时还具备较高的安全性和可靠性。
本文将详细介绍高温气冷堆的工作原理。
高温气冷堆的核燃料是以富集铀或钚等核材料制成的小型球体,被称为“球形颗粒堆”,这些颗粒由包层材料包围,形成可在高温下工作的燃料元件。
燃料元件堆叠在一起形成一个燃料堆芯。
在堆芯外部,布置有气体冷却剂,通常使用大气中常见的氦气作为冷却剂。
由于氦气无毒、无腐蚀性、低密度等特点,使得高温气冷堆具备了较高的安全性和可靠性。
高温气冷堆的工作过程包括燃料核裂变产生热能、热能转化为动能、动能转化为电能等多个步骤。
首先,燃料堆芯中的核燃料颗粒发生裂变反应,产生大量的热能。
这些裂变反应会持续引发新的核裂变反应,使得燃料堆芯内的温度升高。
然后,燃料堆芯内的热能会传导到燃料元件表面的包层材料中。
包层材料具有较低的热导率,能够有效地阻止热能向外传递,使得燃料堆芯温度不断上升。
接下来,燃料堆芯外的氦气冷却剂会通过管道进入堆芯内,吸收燃料元件表面的热能。
在这个过程中,氦气会被加热,温度逐渐升高。
随后,加热后的氦气会流出堆芯,通过热交换器与其他工质进行热交换。
热交换器中的工质(通常是水)会受热变成蒸汽,然后推动涡轮发电机转动,将热能转化为动能。
最后,动能通过涡轮发电机转化为电能。
这样,从核裂变产生的热能最终转化为了实用的电能。
高温气冷堆的这一工作过程具备多重安全性措施。
首先,堆芯材料和冷却剂均为无毒无腐蚀性材料,避免了放射性物质泄漏和腐蚀问题。
其次,高温气冷堆具有自动关闭和冷却功能,一旦超温或故障发生,系统会自动停止工作并冷却下来。
此外,高温气冷堆还具备较高的热效率,能够更好地利用燃料资源,减少对环境的影响。
综上所述,高温气冷堆是一种基于气冷技术的新型核反应堆。
高温气冷堆的优点

高温气冷堆的优点高温气冷堆的优点高温气冷堆(High Temperature Gas-Cooled Reactor, HTGR)是一种新型的核电技术,其核心特点是使用气体作为冷却剂,达到高温状态下发电。
相比传统的水冷堆,高温气冷堆具有诸多优点。
首先,高温气冷堆具有出色的安全性。
传统的水冷堆在冷却剂失效时有可能发生严重的核泄漏事故,而在高温气冷堆中,核燃料颗粒被固定在石墨基质中,即使出现冷却剂丢失,燃料依然能够在核反应区域内保持冷却,防止过热引起严重事故。
此外,高温气冷堆利用了更高的冷却温度,提高了核反应的稳定性,降低了燃料棒突变的风险,从而大大减少了核事故的发生概率。
其次,高温气冷堆具有更高的热效率。
高温气冷堆工作温度一般在700°C以上,远高于传统水冷堆的300°C左右。
这种高温使得高温气冷堆能够利用更高效的热交换器,将核能转化为电能的效率提高。
另外,高温气冷堆可以利用高温废热进行热功率工程,如化学工业生产中的蒸汽热交换、水解、催化剂活化等,进一步提高了能源的利用效率,降低了生产成本。
第三,高温气冷堆具有卓越的用途灵活性。
高温气冷堆能够满足不同需求的核能应用,如发电、石化、制氧和海水淡化等领域,可以灵活调整功率输出。
这使得高温气冷堆可以更好地适应不同地区的能源需求和经济发展水平,提高能源供应的可靠性和稳定性。
第四,高温气冷堆具有较小的用地需求。
传统的水冷堆需要大量的水源供冷,因此在选择建设地点时需要考虑水资源的充足性和污染控制。
而高温气冷堆无需大量水资源,只需利用大气作为冷却介质,因此在选址上更加灵活,并且减少了对水资源的污染风险,降低了核电站运营的环境风险。
第五,高温气冷堆具有较长的燃料寿命。
高温气冷堆使用的核燃料一般为球形或棒状的颗粒状燃料,具有很强的耐高温和抗辐照性能。
燃料颗粒在高温气冷堆中的停留时间较长,使得能源的利用效率更高、燃料更加充分利用,从而延长了燃料更换周期,降低了燃料管理的成本。
高温气冷堆的优缺点

高温气冷堆的优缺点高温气冷堆是一种独特的核能技术,与传统的水冷堆不同,高温气冷堆将燃料元件中产生的热量通过气体而不是水进行传递和冷却。
高温气冷堆具有许多优点,但也存在一些缺点。
首先,高温气冷堆具有较高的热效率。
由于高温气冷堆运行时的工质是气体,相对于水,气体可以容纳更多的热量,因此可以更高效地转化为电能。
这使得高温气冷堆能够提供更高的电力输出,提高了核能的利用效率。
其次,高温气冷堆可以更好地适应变化的负载需求。
传统的水冷堆的运行速度和功率输出相对较慢,需要较长的启动和停机时间。
而高温气冷堆的启动和停机时间较短,能够更快地响应负载需求的变化,并且可以通过调整反应堆的功率输出来满足不同的电力需求。
这使得高温气冷堆在应对电网上的负荷波动和需求峰值方面更具灵活性和适应性。
第三,高温气冷堆具有较高的安全性和可靠性。
传统的水冷堆需要水冷剂的循环和压力控制系统,容易发生泄漏和爆炸等安全问题。
而高温气冷堆采用的气体工质能够在高温下稳定工作,不容易引起爆炸和泄漏等问题,降低了安全风险。
另外,高温气冷堆还具有自稳定和自动关机的特性,一旦出现异常情况,高温气冷堆能够及时停机,减少进一步的危险。
然而,高温气冷堆也存在一些缺点。
首先,高温气冷堆的建设和运营成本相对较高。
由于高温气冷堆需要采用特殊的材料和技术来应对高温和压力环境,建设和维护成本较高,这导致其在商业应用上的成本较高。
其次,高温气冷堆的核废料处理和存储问题仍然存在挑战。
高温气冷堆虽然对核燃料的利用率更高,但在运行过程中仍然会产生大量的核废料。
这些核废料的处理和储存需要采取安全可靠的措施,以确保对环境和人身安全的保护。
最后,高温气冷堆的建设和使用可能会引发公众对核能的担忧和反对。
由于核能与核武器以及核事故等风险关联密切,高温气冷堆的建设和使用可能会引发公众对核能的担忧,并产生反对的声音。
因此,高温气冷堆的推广和应用也需要积极引导公众的理性认知和参与。
综上所述,高温气冷堆作为一种新型的核能技术,具有较高的热效率、适应性、安全性和可靠性等优点,但也存在建设和运营成本较高、核废料处理和储存问题以及公众担忧等一些缺点。
超高温气体反应堆动态特性分析

超高温气体反应堆动态特性分析超高温气体反应堆(High Temperature Gas-cooled Reactor,HTGR)作为一种第四代先进核能系统,具有核安全、可持续发展及经济性等优点,被广泛认为是未来核电发展的主要方向之一。
其中,HTGR的动态特性是影响其控制性能和安全性的重要因素。
本文将对HTGR的动态特性进行分析探讨。
一、HTGR动态特性简介HTGR是一种采用高温气体冷却、球形燃料元件、石墨作为反应堆芯部分的核反应堆,其设计目标温度可达1000℃以上。
由于高温气体冷却剂对燃料温差有很好的抑制作用,并能够在反应堆出现故障时自动停机,因此HTGR相比传统反应堆更加安全可靠。
HTGR的动态特性主要涉及反应堆的热学、动力学和控制等方面。
其中,热学包括燃料球和燃料堆的温度分布、壳体和管束的温度等;动力学包括反应堆功率和温度的变化、燃料元件的膨胀等;控制包括反应堆功率控制、温度控制和核燃料运输等。
HTGR的热学、动力学和控制特性直接关系到其稳定性和安全性,因此需要进行全面、深入的分析。
二、HTGR动力学特性分析1. 反应堆功率和温度的变化HTGR的核反应堆功率主要由燃料温度和反射器反射能量的变化、浓缩度的变化以及中子吸收等因素影响。
另一方面,燃料球的膨胀和缩小、冷却气体流量和排放等也会直接影响反应堆的输出功率。
反应堆温度的变化受到高温冷却气体流量、燃料温度和热泵能量等多方面因素的共同影响。
由于HTGR采用的是气体直接与燃料接触传热,热惯性小,因此对用户抗扰性能的要求较高。
2. 燃料元件的膨胀变化HTGR的燃料球由球形沥青结合剂石墨(ACGC)包裹的燃料颗粒堆积而成,燃料球的膨胀和缩小是HTGR动力学特性的重要表现形式。
随着燃料球温度的升高,球内核燃料被加热,燃料球内部的气体被加热膨胀,从而导致燃料球直径的变化。
此外,燃料球材料的结构和形状也会影响燃料球的膨胀变化。
3. 控制参数的影响HTGR的控制参数包括反应堆功率、冷却气流量、燃料运输速度等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超高温气冷堆(VHTR)调研报告目录0.引言 (3)1.发展历史 (3)1.1 高温气冷堆—实验堆 (3)1.2 高温气冷堆—原型堆 (3)1.3 高温气冷堆-模块式 (4)2.目前各个国家的发展状况 (4)3.VHTR反应堆结构 (5)4.VHTR堆型的优缺点 (8)5.VHTR发展趋势 (9)5.1 前景展望 (9)5.2 VHTR需要填补的技术缺口 (10)6.总结 (11)参考文献 (12)0.引言未来十几年,全世界都需要能源和优化能源基础建设来满足日益增长的电力和运输用燃料的需要。
第四代国际核能论坛(GIF)确定的6种核能系统概念具有满足良好的经济性、安全性、可持续性、防核扩散和防恐怖袭击等目标的绝对优势。
在第四代核能系统概念中,超高温气冷反应堆VHTR(Very High Temperature Reactor)作为高温气冷反应堆渐进式开发过程中下一阶段的重点对象,第四代国际核能论坛(GIF)已将VHTR列入研发计划。
VHTR将反应堆出口温度比HTGR提高100℃,达到1000℃或以上,对所用燃料和材料提出了更高要求,实现制氢的工艺设计也需要研发创新。
目前,多个国家和组织投入力量,正给予重点研发。
我国也将高温气玲堆电站列入中长期科学和技术发展重大专项规划,希望近期取得重大技术突破。
1.发展历史VHTR(Very High Temperature Reactor)是高温气冷反应堆渐进式开发过程中下一阶段的重点对象,而高温气冷堆的发展主要经历了以下阶段[1]。
1.1 高温气冷堆—实验堆英国1960年建造20MW实验堆“龙堆”(Dragon)。
美国1967年建成40MW的桃花谷(Peach Bottom)实验堆。
德国1967年建成15MW的球床高温气冷堆(A VR),并发展了具有自己特色的球形燃料元件和球床高温堆。
这三座实验堆的成功运行,证明了高温气冷堆在技术上是可行的。
1.2 高温气冷堆—原型堆美国1968年建造330MW圣·符伦堡(Fort Stvrain)电站,1976年并网发电。
德国1971年建造300MW钍高温球床堆THTR-300,1985年并网发电。
高温气冷堆在设计、燃料和材料的发展、建造和运行方面都积累了成功的经验,开始进入发电应用的商用化阶段。
1.3 高温气冷堆-模块式客观要求:美国三里岛事故发生后,人们设法实现反应堆的“绝对安全”。
希望在任何事故情况下都不会发生大的核泄漏,不会危及公众与周围环境的安全,也就是人们常说的实现反应堆的固有安全性。
概念提出:模块式高温气冷堆就是在这样的背景下发展起来的一种新堆型。
1981年德国电站联盟(KWU)首先提出球床模块式高温气冷堆的概念。
2.目前各个国家的发展状况高温气冷堆电站,经过长时期的研发,在结构、材料以及反应堆、气透平发电机组的技术性能及核能工艺热应用方面,都有了突破性进展。
革新型高温气冷堆电站,实现了反应堆固有安全特性的设计创新,确保了三大安全功能的完整性:即反应性控制、堆芯热量排出、放射性物质包容。
目前,VHTR的基础技术已在以前的HTGR核电站(如Dragon、桃花谷、A VR、THTR 和圣弗伦堡核电站等)建设和运行中已得到了充分的开发和验证,并且是GT-MHR和PBMR 等概念设计的更进一步发展[2]。
革新型高温气冷堆(HTGR)电站,设计比较成熟的是美、法、日、俄联合设计的燃气轮机模块式氦冷反应堆(GT-MHR),目前正在研制,准备用于俄罗斯的钚处置,亦作为较小型的动力堆。
由南非电力公司借鉴德国技术设计研发的球床模块式反应堆(PBMR),已分别进入示范电站的建设阶段。
日本原子能研究所(Jaeri)已经建成30MWth级高温工程试验堆(HTTR),研究的主要目标是,验证连接工艺系统供热的反应堆堆芯出口温度达到950的可行性。
欧盟也在积极研发高温气冷堆电站,组织了欧洲工业界和科研机构的近20多家单位在EURA TOM框架内开展了下一代高温气冷堆HTR/VHTR的研究项目,作为世界著名核供应商的阿海珐(AREV A)集团也正在以往参与GT-MHR设计中获得的经验的基础上开发甚高温反应堆VHTR。
我国清华大学借鉴德国技术设计研发的球床模块式高温实验堆HTR-10,其研究目的是验证其在10MWth功率水平下实现热电联产的可行性,目前已进入示范堆的建设阶段[1]。
目前的高温堆技术出口温度可以达到950℃,发展成1000℃的超高温气冷堆技术的难度并不是很大。
3.VHTR反应堆结构超高温气冷堆(VHTR)是高温气冷堆(HTGR)的进一步发展,是HTGR渐进式开发过程中下一阶段的重点对象。
VHTR的设计依赖于高温气冷堆(HTGR)的设计,因此HTGR的堆芯设计对VHTR有很大的参考价值。
VHTR以1000℃的堆芯出口温度供热,这种热能可用于制氢或为石化和其它工业提供工艺热。
参考堆的热功率为600MWt,堆芯通过与其相连的一个中间热交换器释放工艺热,反应堆芯可以是像正在日本运行的HTTR那样的棱柱形块堆芯,或者是象正在我国运行的高温气冷堆HTR—10那样的球床堆芯。
VHTR参考堆的主要参数见表1[3],表1 VHTR主要参数VHTR根据其燃料元件形状和结构的不同可分为两类:球床高温气冷堆和柱状高温气冷堆。
它们的共同点是均采用涂覆颗粒燃料。
图1 球状燃料元件图2 柱形燃料元件图3 涂覆颗粒燃料图4 柱状VHTR反应堆设计VHTR设计主要设计特点体现在:冷却剂氦为单相、不冷凝、惰性,不受反应性影响。
氦冷却剂决定了泄漏率必须低。
石墨堆芯热容量高,减缓热响应和在超高温条件下结构稳定,功率密度约是轻水的1/10。
所使用的难熔涂覆燃料在比正常运行温度高得多的温度条件和假想事故工况下能滞留裂变产物。
环型、低功率密度堆芯放置在自然循环RCCS围绕的反应堆容器内。
有限的反应堆总功率需通过传导和辐射就具备了最终热阱的能力,同时不会损伤燃料[5]。
图5 VHTR反应堆系统4.VHTR堆型的优缺点VHTR是石墨慢化氦冷反应堆,具有热中子能谱和一次寿命周期。
其总体特点包括冷却剂出口温度高(高于850℃)、功率密度大(大于6MW/m3)、燃料和材料寿命长(大于40年)、安全裕度大、燃耗更深(大于150-200GWd/t(U))。
主要优势表现为:安全性好:VHTR保持了高温气冷堆具有的良好安全特性,由于堆的负反应温度系数和很大的温升裕度,使反应堆在任何情况下即使不进行人为的干预也能安全停堆,同时停堆后的热量(余热)可以依靠自然对流、热传导和辐射等自然机理传输到堆外,保证堆芯燃料元件的最高温度限制在其允许温度以下,因而在任何情况下也不会发生堆芯熔毁、放射性外泄等危害公众和环境安全的事故。
综合效益高:VHTR冷却剂出口温度在1200℃时的热效率能达到60%。
这不仅能提高发电成本,还能降低单位电功率产生的裂变废物,降低废热和减少冷却水消耗。
图6 VHTR热效率与冷却剂出口的温度对比图7 提高热效率的优势用途广泛:VHTR可以向高温、高耗能和不使用电能的工艺过程提供广谱热量,还可以与发电设备组合以满足热电联产的需要。
除了能发电外,还可通过热电联供广泛应用于石油化工、煤的气化液化等需要大量高温工艺热的部门。
另外,它还可以用于城市供暖和海水淡化,特别是还可以用来作为制氢的热源,是未来氢时代最具有前景的能源提供者[7]。
其不足之处为:由于其超高温的特性,对反应堆材料的性能要求很高;用氦气做冷却剂,对系统的密封性要求高;技术不够成熟,缺乏经验。
5.VHTR发展趋势5.1 前景展望在高温气冷堆发展的基础上,超高温气冷堆(VHTR)将成为第四代核能系统的首选堆型之一。
10兆瓦高温气冷实验堆是由我国自主研究开发、自主设计、自主制造、自主建设、自主运行的世界上第一座具有非能动安全特性的模块式球床高温气冷堆,各项技术指标均达到世界先进水平,为商业化开发奠定了坚实的基础。
20万千瓦级高温气冷商用示范堆(HTR-PM )投入商业运行后,随着设计和制造技术的不断完善,除了其独特的固有安全特性外,在高(热)效率、高负荷因子和低造价、低发电成本等方面将充分展现其明显的技术优势和经济优势。
因此,高温气冷堆将成为我国未来核电发展的一个重要堆型。
也必将为VHTR的研发提供技术支持和运行经验。
超高温气冷堆为后石油时代核能制氢展现了光明前景。
在石油、天然气日益紧缺的今天,用氢做燃料是被科学家们普遍看好的清洁能源。
但由于制氢所需要的巨大能量而使其成本太高,而超高温气冷堆能以很低的成本提供巨大的能量,从而大幅降低制氢成本。
核能制氢有可能成为未来生产清洁生产能源极具竞争力的新兴产业,而超高温气冷堆则以她独特的技术优势成为未来核能制氢工业无可替代的堆型。
5.2 VHTR需要填补的技术缺口验证VHTR堆芯的可行性需要攻克许多重要的技术难关,必须开发新型的反应堆材料,这些燃料和材料必须满足一下要求:使堆芯出口温度从850℃提高到1000℃,甚至更高温度;使燃料在发生事故后能承受的最高温度达到1800℃;使燃料的最大燃耗达到150~200GWd/MTHM(HM-重金属);避免堆芯内功率峰值和温度梯度,避免发生冷却剂气体湍流现象[2]。
目前在反应堆温度、功率水平以及运行压力等方面还存在特定工艺技术研究开发上的缺口。
利用氦气使化学反应器加热不同于工业界目前采用的办法,需要进行专门的开发和验证。
需要对耐氢气、一氧化碳和甲烷等腐蚀性气体的高温合金和包覆材进行可用性和合格性鉴定。
采用碘-硫(I-S)工艺制氢的可行性仍需要对三个基本化学反应进行小规模和大规模的验证,而且需要开发耐腐蚀的材料。
必须避免产品受到任何形式的污染。
为了将核岛和制氢工业生产设施隔离开,尤其为了隔离像氚这样能够在高温下极易弥散穿透金属屏蔽层的同位素,必须开发专门的热交换器、气体冷却剂导管及阀门等设备。
VHTR性能问题还包括,为了提高发电效率,必须开发高效率氦气轮机(透平机)。
反应堆和热利用系统的模块化制造将是VHTR在商业推广进程中面临的另一个巨大挑战[4]。
6.总结综上所述,超高温气冷堆(VHTR)是一种功率高、应用范围广、安全性高的重要设计方案,其运行温度高,能够有效地将热能转换为电能,可以从等量的燃料中提取比传统核电站多50%的电能。
同时由于出口温度高,VHTR还可以应用于多种工艺应用,如制氢、工业热或联产利用的各种领域等。
这是解决未来电力和运输用燃料需求的一个有效途径和方向。
另一个方面,在第四代国际核能论坛确定的未来第四代反应堆中,VHTR可能具有实际运行可能的最先进反应堆概念之一。
VHTR将成为今后核能研究的主要方向之一,尤其是对超高温反应堆材料的研究,将会对未来反应堆材料的研究起重要作用。