人溶菌酶基因在大肠杆菌中的表达研究
溶菌酶的实验报告

溶菌酶的实验报告实验报告:溶菌酶的活性和特性1. 引言溶菌酶是一种酶类蛋白质,广泛存在于细菌、真菌和某些病毒中。
它们能够降解细菌细胞壁的组分,导致细菌破裂和死亡。
溶菌酶在医疗、食品工业以及科学研究领域广泛应用。
本实验旨在测定溶菌酶的活性,并研究其特性。
2. 材料与方法2.1 实验材料- 大肠杆菌(或其他细菌菌株)- 溶菌酶溶液- 反应液:含有溶菌酶的缓冲液- 应答物:含有细菌菌株的琼脂平板2.2 实验步骤1. 在琼脂平板上涂布一层薄膜状的细菌液体(大肠杆菌)。
2. 在涂布的细菌表面滴加一定量的溶菌酶溶液。
3. 将琼脂平板在恒温孵化箱中孵育一段时间(通常为24小时)。
4. 检查平板上是否有清晰的细菌溶解区域(透明区域),观察细菌溶解的程度。
3. 结果与讨论在实验过程中,我们发现在涂布完细菌后,经过一段时间的孵育后,在加入溶菌酶的区域产生了明显的细菌溶解区域(透明区域)。
这表明溶菌酶对细菌产生了溶解作用。
溶菌酶的活性可以通过以下几个方面进行评估:3.1 溶菌酶单位(U)溶菌酶单位(U)的定义是在标准条件下,使得溶菌酶在30分钟内使细菌的可溶菌酶量增加1倍所需要的溶菌酶量。
通过测定单位时间内细菌总数量的变化,可以计算出溶菌酶的活性。
活性(U/ml)=单位时间内可溶菌酶总量/单位时间内总分析体积3.2 温度和pH值的影响我们可以通过在不同温度条件下进行实验,或者在不同pH值的溶液中测量溶菌酶活性,来研究温度和pH的影响。
溶菌酶活性在不同温度下可能表现出不同的变化趋势。
通常情况下,随着温度的升高,溶菌酶活性增加,但过高的温度可能导致其变性。
我们可以通过测量不同温度下的溶菌酶活性来确定最适温度。
溶菌酶活性也受pH值的影响。
溶菌酶通常在中性或弱碱性条件下表现出最佳活性。
在酸性环境下,酸性基团可能与酶分子中的氨基酸残基相互作用,从而降低酶的活性。
我们可以通过在不同pH值的缓冲液中测量溶菌酶活性,找到最适宜的pH值。
溶菌酶实验报告讨论

溶菌酶实验报告讨论溶菌酶实验报告讨论引言:溶菌酶是一种广泛存在于细菌和其他生物体中的酶类物质。
它具有破坏细菌细胞壁的作用,从而导致细菌的溶解。
溶菌酶在医学、食品工业和生物技术等领域具有重要的应用价值。
本实验旨在通过观察溶菌酶对细菌的作用,探讨其在抗菌领域的潜力。
实验方法:1. 实验材料准备:- 溶菌酶溶液- 青霉素溶液- 培养基- 大肠杆菌培养物2. 实验步骤:a. 在培养基上均匀涂布大肠杆菌培养物。
b. 在培养基上划分两个区域,一个区域加入溶菌酶溶液,另一个区域加入青霉素溶液。
c. 将培养皿放入恒温培养箱中,以37摄氏度培养24小时。
d. 观察培养皿上菌落的变化。
实验结果:经过24小时的培养,我们观察到以下结果:- 溶菌酶作用区域:在溶菌酶作用区域,我们发现大肠杆菌培养物的菌落明显减少,甚至完全消失。
这表明溶菌酶对大肠杆菌具有明显的抑制作用。
- 青霉素作用区域:在青霉素作用区域,我们观察到大肠杆菌培养物的菌落没有明显的减少。
这说明青霉素对大肠杆菌的抑制作用相对较弱。
讨论:1. 溶菌酶的抗菌机制:溶菌酶通过破坏细菌细胞壁的作用,导致细菌的溶解。
细菌细胞壁主要由肽聚糖和肽聚肌醇组成,溶菌酶能够水解肽聚糖,破坏细菌细胞壁的完整性,从而导致细菌的死亡。
2. 溶菌酶与青霉素的比较:溶菌酶和青霉素都具有抑菌作用,但两者的作用机制不同。
溶菌酶通过破坏细菌细胞壁来抑制细菌生长,而青霉素则是通过抑制细菌的细胞壁合成来发挥抗菌作用。
实验结果显示,溶菌酶对大肠杆菌的抑制作用更明显,这可能与大肠杆菌细胞壁的结构特点有关。
3. 溶菌酶的应用前景:溶菌酶具有广泛的应用前景。
在医学领域,溶菌酶可以用于治疗细菌感染,特别是对于那些对抗生素耐药的细菌感染具有重要意义。
在食品工业中,溶菌酶可以用于食品的保鲜和防腐,有效地抑制细菌的生长。
此外,溶菌酶还可以应用于生物技术领域,用于细菌的基因工程和表达调控等方面。
结论:本实验结果表明溶菌酶对大肠杆菌具有明显的抑制作用,其抗菌机制主要通过破坏细菌细胞壁实现。
我国溶菌酶的研究与应用进展

我国溶菌酶的研究与应用进展一、本文概述溶菌酶是一种广泛存在于生物体内的水解酶,具有溶解细菌细胞壁的能力,因此在生物防御和医药领域具有重要的应用价值。
我国作为世界上人口最多的国家,对于溶菌酶的研究与应用具有深远的实际意义。
本文旨在综述我国溶菌酶的研究现状、应用领域以及未来的发展趋势,以期为推动溶菌酶在我国生物医药、食品工业、农业等领域的应用提供理论支持和指导。
在过去的几十年里,我国溶菌酶的研究取得了显著进展。
从最初的基础研究,到如今的产业化应用,溶菌酶在我国已经成为一种重要的生物活性物质。
本文将从溶菌酶的来源、性质、制备方法、应用领域等方面进行全面概述,并对我国溶菌酶研究的未来发展进行展望。
本文还将关注溶菌酶在应对抗生素滥用和耐药性问题中的潜力,以期为我国生物医药产业的可持续发展提供新的思路和方法。
二、溶菌酶的结构与性质溶菌酶是一种能水解致病菌中黏多糖的碱性酶,主要通过破坏细胞壁中的N-乙酰胞壁酸和N-乙酰氨基葡糖之间的β-1,4糖苷键,使细胞壁不溶性黏多糖分解成可溶性糖肽,导致细胞壁破裂内容物逸出而使细菌溶解。
溶菌酶广泛存在于动物、植物、微生物体内,不同来源的溶菌酶其分子结构具有一定差异,但基本性质相似。
溶菌酶分子量较小,通常约为14-15KD,是一种碱性蛋白质。
其等电点通常在pH值5-0之间,因此,在酸性环境中溶菌酶分子带正电荷,可与带负电荷的微生物细胞壁发生静电吸附。
溶菌酶具有较高的热稳定性,能在50℃左右保持较长时间的活性,但其活性受pH值影响较大,通常在pH值3-4范围内活性最高。
溶菌酶对多种化学试剂表现出较强的稳定性,如氯化钠、氯化钙等盐类以及乙醇、丙酮等有机溶剂对其活性影响较小。
溶菌酶的作用机制主要是通过其催化活性水解细菌细胞壁中的多糖成分,导致细胞壁破裂,从而使细菌失去生存能力。
溶菌酶还具有抗病毒、抗肿瘤、抗炎等多种生物活性,因此在医药、食品、饲料等领域具有广泛的应用前景。
在医药领域,溶菌酶可作为抗菌药物使用,对多种革兰氏阳性菌和阴性菌具有抑制作用,尤其对耐药性金黄色葡萄球菌和链球菌具有较强的杀菌作用。
第4章 基因在大肠杆菌和酵母中的表达

降低包含体形成的措施: 降低培养温度;诱导物浓度; 培养基中加入添加剂;培养基组分、pH等。
包含体复性方法: 尿素; 透析、稀释和超滤复性法; PEG、TritonX、肝素、人工伴侣等
原核表达系统的优点与不足
优点:
产量高、表达高效; 操作简单(可调控表达、方便纯化); 可大规模发酵生产; 成本低。
不足:
缺乏真核中的修饰系统,产物有时缺乏活性。 表达产物易形成包含体。
第二节 真核表达——目的 基因在酵母中的表达
酵母菌表达外源蛋白的优点:
遗传背景清楚 属真核模式生物,具备蛋白质翻译后加 工系统 可发酵生产 不产生内毒素,属安全的表达系统
2
ü 优点: 1. 由于周质中蛋白质种类比较少,因此目标
蛋白质的纯化就比较简单
2. 蛋白质酶解的程度不甚严重
3. 促进了二硫键的形成及蛋白质的折叠作用 (氧化环境)
4. 蛋白质的N-末端结构真实
正确折叠的蛋白质,在转运过程中,在 体内对信号肽进行切割
五、包含体及复性
包含体(inclusion body):蛋白质在大肠杆菌中 大量表达时,在胞内聚集形成不可溶的、没有生物 活性的固体颗粒。
T7 RNA聚合酶/T7启动子的优点:
合成RNA的速度高;
只识别T7启动子,不启动其它基因的转录;
对利福平(能抑制大肠杆菌RNA聚合酶)等抗 生素有抗性,能表达一些大肠杆菌RNA聚合酶 不能转录的序列;
产物量大,可达总蛋白的25%以上。
1
94kDa 67 kDa 43 kDa
大肠杆菌中的基因表达

PL 和 PR 表达系统
宿主菌中没有 cI 基因产物,PL、PR 启动子的高强度直接转录,带有PL
或 PR 启动子的表达载体在普通大肠杆菌中相当不稳定。
对宿主菌的要求
用溶源化 l 噬菌体的大肠杆菌作 PL、PR 启动子表达载体的宿主菌
N4830-1,POP2136 等菌株已经溶源化 cI 857(ts) l 噬菌体, 可用作表达外源基因时的宿主菌。 把 cI 857(ts) 基因组装在表达载体上 宿主菌选择范围更大
cAMP激活CAP,CAP–cAMP复合物与 lac 操纵子上专一位点结合
后,能促进 RNA 聚合酶与 –35、–10 序列的结合,进而促进 Plac
介导的转录。
基因工程中使用的 lac 启动子均为抗葡萄糖代谢阻遏的突变型,即 Plac UV5
cAMP
CAP lacI
RNRANA 聚聚合合酶酶
Plac
二、大肠肝菌中的基因表达
2. 影响目的基因在大肠杆菌中表达的因素
(3)表达产物的稳定性: 组建融合蛋白; 利用信号肽; 特异性突变; 位点特异突变,改变二硫键位置; 宿主蛋白酶缺陷。
二、大肠肝菌中的基因表达
2. 影响目的基因在大肠杆菌中表达的因素
(4)细胞的代谢负荷: 细胞大量生长时,抑制外源基因的表达; 宿主细胞的生长与重组质粒的复制分开;
二、大肠肝菌中的基因表达
2. 影响目的基因在大肠杆菌中表达的因素
(1)外源基因的拷贝数:与载体在宿主中的拷贝数直接相关。 (2)外源基因的表达效率:启动子的强弱,SD序列和ATG的间距等。
A、启动子的强弱:目的基因插入表达载体启动子的下游,可增加
基因的表达。lac、trp、 tac、bla。
B、核糖体结合位点的有效性 C、SD与ATG的间距:影响非融合蛋白的合成水平 D、密码子组成:设计引物或合成基因时选择大肠杆菌“偏爱”的密码
溶菌酶作用实验范文

溶菌酶作用实验范文溶菌酶作用实验是研究溶菌酶对溶菌作用的一种实验方法。
溶菌酶是一种酶,主要能够溶解细菌的细胞壁,使细菌细胞发生溶解死亡。
溶菌酶在生物学研究和医学领域具有广泛的应用价值。
下面将对溶菌酶作用实验进行详细介绍。
实验目的:1.掌握溶菌酶的提取和纯化方法;2.研究溶菌酶对不同细菌产生的溶菌作用;3.分析溶菌酶作用的影响因素。
实验材料:1.大肠杆菌、金黄色葡萄球菌等细菌菌种;2.PBS缓冲液;3.试剂:琼脂、溶菌酶提取液、洗涤缓冲液、显色液等。
实验步骤:1.细菌培养与处理:a.在LB琼脂平板上分别刺穿大肠杆菌和金黄色葡萄球菌菌种,并进行预培养。
b.将培养好的菌种转接到LB培养基中,继续培养至对数生长期。
c.收集培养好的菌液,用PBS缓冲液洗涤2次。
2.溶菌酶提取:a.在PBS缓冲液中添加适量的溶菌酶提取液,使其充分混合。
注意溶菌酶的浓度应根据实验需求调整。
b.将菌液加入上述混合液中,充分搅拌,并放置在适当的温度下孵育一段时间。
3.溶菌酶活性测定:a.取一定体积的培养液,用洗涤缓冲液洗涤。
b.加入一定体积的溶菌酶提取液,并放置一段时间。
c.加入显色液,观察样品颜色变化情况,其浓度与颜色深浅呈正比。
4.溶菌酶对细菌的溶菌作用观察:a.在琼脂平板上分别刺穿大肠杆菌和金黄色葡萄球菌菌种。
b.在刺穿孔中滴加经溶菌酶处理后的细菌菌液,观察菌液滴体周围有无溶菌区域的产生。
实验结果与讨论:通过上述实验步骤,可以得到如下结果和讨论:1.溶菌酶提取和纯化方法的效果:根据溶菌酶的活性测定结果,可以评估溶菌酶提取和纯化的效果。
如实验结果呈现浓度与颜色深浅呈正比的趋势,则说明溶菌酶提取和纯化方法较为有效。
2.溶菌酶对不同细菌的溶菌作用:根据溶菌酶对大肠杆菌和金黄色葡萄球菌菌液的处理结果,可以观察溶菌区域的产生情况。
如果溶菌区域明显,则说明溶菌酶对这些细菌有明显的溶菌作用。
3.溶菌酶作用的影响因素研究:可以通过改变实验条件,如溶菌酶的浓度、温度和pH值等,对溶菌酶的活性产生影响的强弱进行分析和讨论。
人类抗菌肽及溶菌酶对金黄色葡萄球菌、大肠杆菌的白念珠菌的协同抗菌作用

为另~类重要的天然阳离子抗菌肽,由于其氨基酸序列以两个亮氨酸 (Leucine,简称L)起始,共37个氨基酸残基而得名。LL一37在中性粒细 胞组成性分泌,在角质形成细胞可被诱导产生。抗菌肽具有广谱抗微生 物活性,可杀灭细菌、真菌以及病毒。溶菌酶主要存在于分泌细胞、角 质形成细胞和汗液、唾液、泪液、乳汁等体液中,也具有杀灭细菌和真 菌的能力。已有报告人类a防御素和LL.37能协同抗金黄色葡萄球菌(金 葡菌)和大肠杆菌,也有报告人类正常皮肤的pH值为酸性。而h/3D一1、 hBD一2、hBD.3、LL.37以及溶菌酶能否在中性及酸性pH条件下协同抗细 菌及真菌尚未见报道。 目的:研究在酸性和中性pH条件下hBD一1、hBD一2、hBD一3、LL一37 以及溶菌酶对金葡菌、大肠杆菌和白念珠菌的协同抗菌作用。 方法:抗菌肽和溶菌酶的抗金葡菌和大肠杆菌敏感性用微量稀释法 检测,抗白念珠菌活性采用稍加修改的美[雪NCCLS CNational
to
and
lysozyme,it
as
is
present
in
secretory
cells,
keratinocytes
and body
fluid such
sweat,saliva,tears
and human
milk etc,
with antimicrobial activity against bacteria human u—defensins
remained unchanged.In the
activity
of LL一37
and
lysozyme
against
Calbicans under acidic
pH condition was enhanced.Furthermore,when
溶菌酶研究进展及在畜牧业中的应用

溶菌酶研究进展及在畜牧业中的应用作者:张莹雪来源:《科学与财富》2018年第28期摘要:溶菌酶是一种性质稳定、耐酸耐高温、来源于动植物及微生物的球蛋白,具有抑菌、抗病毒等功能。
通过对溶菌酶进行物理、化学及配伍改进,能够提高溶菌酶的生物学功能,作为一种对人和动物安全的抗菌剂,溶菌酶能够提高饲料利用率,用作饲料防腐剂和杀菌剂,用于饲料中可替代抗生素,治疗畜禽疾病等,应用前景相当广阔。
关键词:溶菌酶;功能;改进;饲料;畜牧业1、溶菌酶的结构及性质溶菌酶是由多种氨基酸残基构成的碱性球蛋白,属于葡萄糖苷酶,其纯品为白色或微黄色结晶体或无定型粉末,无臭、微甜、易溶于水和盐溶液,不溶于丙酮、乙醚,化学性质稳定,干燥室温条件下可长期保存。
目前研究比较透彻的是鸡蛋清溶菌酶和牛胃溶菌酶。
2、溶菌酶的分类(1)动物源溶菌酶:分为C型、G型和I型三种类型。
(2)植物源溶菌酶:目前发现含溶菌酶的植物有近170 种,在木瓜、无花果、胡萝卜、大麦等植物中均能分离出溶菌酶。
(3)微生物源溶菌酶:根据其作用对象主要分为细菌细胞壁溶菌酶和真菌细胞壁溶菌酶。
(4)噬菌体溶菌酶:噬菌体产生的溶菌酶具有特异性,由噬菌体感染、诱导宿主细胞产生,未被感染细胞中不存在。
(5)利用基因工程手段制备的溶菌酶:利用基因重组技术将人溶菌酶基因克隆到原核或者真核生物中进行表达。
3、影响溶菌酶活性的因素溶菌酶的活性受到温度、pH、化学环境等因素影响较大。
溶菌酶遇热很稳定,pH值4~7、100℃处理1min仍保持原酶活性;pH值5.5、50℃加热4h后,酶活性不受影响;在碱性条件下,溶菌酶的热稳定性较差,易变性。
糖和聚烯烃类能增加溶菌酶的热稳定牲。
但是,曾发现具有-COOH和-SH、OH基的多糖对溶菌酶活性有抑制作用。
NaCl对溶菌酶也有抗热变性作用,溶菌酶的活性在低盐浓度时和离子强度密切相关的,在高盐浓度时溶菌酶的活性受到抑制。
除此之外,溶菌酶可和许多物质形成络合物导致其活性丧失。