投影与视图知识点复习

合集下载

投影与视图知识点总结

投影与视图知识点总结

投影与视图知识点总结投影与视图是工程图学中的重要内容,是工程师进行设计与制造的基础。

下面是投影与视图的知识点总结。

一、投影的定义与种类1. 投影是将三维实体在二维画面上的投影。

2. 投影分为平行投影和透视投影两种。

平行投影是物体在无穷远处时的投影,保持物体形状和大小不变,适用于工程制图中的多视图投影。

透视投影是通过模拟人眼的透视原理,使物体在近处大远处小,用于绘制逼真的效果图。

二、主视图与副视图1. 主视图是从物体六个主要方向观察并绘制的视图。

2. 副视图是从物体其它非主要方向观察并绘制的视图。

3. 任何物体至少需要主视图和一个副视图来完整表示。

三、视图的投影规律1. 视图的投影规律是指根据物体的几何特性,确定其视图的位置、大小及间隔等规律。

2. 正投影规律:物体的投影与视图同侧,上投下,前投后,左投右。

3. 在主视图、俯视图和立体图中,物体的主要特征线分别为前、上、左三个面上的轮廓线。

四、视图的基本要求1. 视图的大小适中,方便观察和绘制。

2. 视图之间的间距要均匀,以突出主要的特征和轮廓线。

3. 视图应尽量减少折角,直线尽量不折断。

五、视图的选择原则1. 选择平易近人的主视图。

2. 主视图要选主要面直接对称的视图。

3. 选择于构造、加工、检验方便的视图。

4. 尽量选择存在完整轮廓线的视图。

六、常见视图1. 正投主视图:从正前方观察物体并绘制的视图。

2. 俯视图:从物体的上方直接向下观察并绘制的视图。

3. 阜视图:从物体的左前方斜向观察并绘制的视图。

4. 左视图:从物体的左侧观察并绘制的视图。

5. 右视图:从物体的右侧观察并绘制的视图。

七、主视图与副视图的绘制方法1. 主视图绘制方法:a. 确定主视图的位置,主视图应水平或竖直地绘制在图纸上。

b. 根据主视图的投影规律,绘制主视图的轮廓线。

c. 绘制主视图上的特征线、尺寸和字体。

2. 副视图绘制方法:a. 根据几何原理,确定副视图的位置和大小。

初三数学:投影与视图知识点归纳

初三数学:投影与视图知识点归纳

初三数学:投影与视图知识点归纳一、知识要点1、投影(1)投影:用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影(projection),照射光线叫做投影线,投影所在的平面叫做投影面。

(2)平行投影:有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。

由平行光线形成的投影是平行投影(parallel projection).(3)中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影(center projection)。

(4)正投影:投影线垂直于投影面产生的投影叫做正投影。

注:物体正投影的形状、大小与它相对于投影面的位置有关。

2、三视图(1)三视图:是指观测者从三个不同位置观察同一个空间几何体而画出的图形。

将人的视线规定为平行投影线,然后正对着物体看过去,将所见物体的轮廓用正投影法绘制出来该图形称为视图。

一个物体有六个视图:从物体的前面向后面投射所得的视图称主视图--能反映物体的前面形状,从物体的上面向下面投射所得的视图称俯视图--能反映物体的上面形状,从物体的左面向右面投射所得的视图称左视图--能反映物体的左面形三视图就是主视图、俯视图、左视图的总称。

(2)特点:一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。

三视图是从三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。

一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。

三视图是从加速度学习网我的学习也要加速三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。

二、经验之谈:多读两遍吧!有兴趣的同学可以多画图观察。

北师大版本九年级数学上册第五章投影和视图知识点解析含习题练习

北师大版本九年级数学上册第五章投影和视图知识点解析含习题练习

北师大版本九年级数学上册第五章投影和视图知识点解析第01讲_投影与视图知识图谱投影知识精讲投影的定义1.一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影;照射光线叫做投影线;投影所在的平面叫做投影面.2.由平行光线(如太阳光线)形成的投影称为平行投影.3.由同一点发出的光线所形成的投影称为中心投影.4.在物体的平行投影中,投影线垂直于投影面,则该平行投影称为正投影.三点剖析一.考点:投影的定义二.重难点:投影的定义三.易错点:中心投影的光源为点光源,平行投影的光源为阳光;平行投影例题1、平行投影中的光线是()A.平行的B.聚成一点的C.不平行的D.向四面八方发散的【答案】A 【解析】平行投影中的光线是平行的,如阳光等.例题2、下列说法正确的是()A.物体在阳光下的投影只与物体的高度有关B.小明的个子比小亮高,我们可以肯定,不论什么情况,小明的影子一定比小亮的影子长C.物体在阳光照射下,不同时刻,影长可能发生变化,方向也可能发生变化D.物体在阳光照射下,影子的长度和方向都是固定不变的【答案】C【解析】平行投影的特点:在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻的同一物体在太阳光下的影子的大小也在变化.例题3、例已知:如图,AB 和DE 是直立在地面上的两根立柱,5AB m =,某一时刻,AB 在阳光下的投影4BC m =.(1)图中画出此时DE 在阳光下的投影;(2)AB 的投影长时,同时测出DE 在阳光下的投影长为6m ,请你计算DE 的长.【答案】(1)如图所示;(2)7.5m 【解析】(1)根据已知连接AC ,过点D 作DF AC ,即可得出EF 就是DE 的投影;(2)利用ABC DEF ∆∆ AB BC DE EF ∴=5AB m = ,4BC m =,6EF m =7.5DE m ∴=随练1、下列说法错误的是()A.两人在太阳光下行走,同一时刻他们的身高与影长的比相等B.两人在同一灯光下行走,同一时刻他们的身高与其影长不一定相等C.一人在同乙灯光下不同地点的影长不一定相同D.一人在不同时间的阳光下同一地点的影长相等【答案】D【解析】暂无解析随练2、请指出下列小明的影子,平行投影的是__________,中心投影是__________.①一个晴天的上午,小明身后的影子;②一个晴天的中午,小明脚下的影子;③夜晚,小明在路灯下的影子;④小明在幻灯机前经过时投在屏幕上的影子【答案】①②;③④【解析】根据中心投影和平行投影的性质,中心投影的光源为灯光,平行投影的光源为阳光与月亮.随练3、某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB 的影长AC 为12m ,并测出此时太阳光线与地面成30 夹角.(1)求出树高AB ;(2)因水土流失,此时树AB 沿太阳光线方向倒下,在倾倒过程中,树影长度发上了变化,假设太阳光线与地面夹角保持不变,求树的最大影长.【答案】(1);(2)【解析】(1)3tan 3012)3AB AC m ==⨯=(2)如图2,112sin 45)2B N AN AB m ====11tan 60)NC NB m === ,11AC AN NC =+=+当树与地面成60 角时影长最大2AC ,222AC AB ==随练4、如图是两根标杆在地面上的影子,根据这些投影,在灯光下的影子是()A.①和②B.②和④C.③和④D.②和③【答案】D【解析】根据物体的顶端和影子顶端的连线必经过光源从而可判断出答案.随练5、如图,小明和小燕在院子里玩捉迷藏游戏,院子里有三堵墙,现在小明站在O点,小燕如果不想被小明看到,则不应该站的区域是()A.(1)B.(2)C.(3)D.(4)【答案】C【解析】∵(1)、(2)、(4)区域均为视力盲区∴站在(1)、(2)、(4)区域均不会被看见,而(3)区在视力范围内∴只要不站在(3)区就不会被看见.中心投影例题1、物体在光线的照射下,会在地面或墙壁上留下它的影子,这种现象就是__________现象,投影现象中,由阳光形成的影子是__________投影,由灯光形成的影子是__________投影,海滩上游人的影子是__________投影,晚上路旁栏杆的影子是__________投影.【答案】投影;平行;中心;平行;中心【解析】根据平行投影和中心投影的定义作答即可.例题2、四个直立在地面上的字母广告牌在不同情况下,在地面上的投影(阴影部分)效果如图.则在字母L、K、C的投影中,与字母N属同一种投影的有()A.L、KB.CC.KD.L、K、C【答案】A【解析】根据平行投影和中心投影的特点和规律.“L”、“K”与“N”属中心投影.例题3、如图,我们常用“y随x的增大而增大”来表示两个变量之间的变化关系.有这样一个情境:如图,小王从点A经过路灯C的正下方沿直线走到点B,他与路灯C的距离y随他与点A之间的距离x的变化而变化.下列函数中y与x之间的变化关系,最有可能与上述情境类似的是()y x=+A.y x=B.3C.3y x = D.()233y x =-+【答案】D【解析】从A 到路灯的正下方前他与路灯的距离逐渐减少,经过路灯后它与路灯的距离逐渐增加.随练1、如图,夜晚小亮从点A 经过路灯C 的正下方沿直线走到点B ,他的影长y 随他与点A 之间的距离x 的变化而变化,那么表示y 与x 之间的函数关系的图像大致是()A.B.C.D.【答案】A【解析】设身高GE h =,1CF =,AF a=当x a ≤时,OEG OFC∆∆ OE GE OF CF ∴=,即y h a x l =-h hay x l l∴=-+a 、h l 、均为常数∴这个函数图像是一次函数图像影长将随着离灯光越来越近而越来越短,到灯下的时候,将是一个点,进而随着离灯光的越来越远而影长将变大.正投影例题1、Rt ABC ∆斜边在平面α上,则ABC ∆在平面α的正投影()A.一定不是钝角三角形B.一定不是直角三角形C.一定不是锐角三角形D.一定是三角形【答案】C【解析】当三角形所在的平面与平面α垂直时,三角形在平面上的正投影是一条线段;当三角形所在的平面与平面不垂直时,投影形成钝角三角形;当三角形在平面上时,形成投影是直角三角形.例题2、一根笔直的小木棒(记为线段AB ),它的正投影为线段CD ,则下列各式中一定成立的是()A.AB CD =B.AB CD ≤C.AB CD >D.AB CD≥【答案】D【解析】根据正投影的定义,当AB 与投影面平行时,AB CD =;当AB 与投影面不平行时,AB CD >.视图知识精讲一.视图当我们从某一角度观察一个物体时,所看到的图像叫做物体的一个视图.视图也可以看做物体在某一角度的光线下的投影.二.常见立体图的三视图如图,我们用三个互相垂直的平面(例如墙角处的三面墙壁)作为投影面,其中正对着我们的叫做正面,正面下方的叫做水平面,右边的叫做侧面.一个物体在三个投影面内同时进行投影:在正面内得到的由前向后观察物体的视图,叫做主视图;在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到的由左向右观察物体的视图,叫做左视图.三.三视图的做法:1.主视图与俯视图表示同一物体的长,主视图与左视图表示同一物体的高,左视图与俯视图表示同一物体的宽;主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等.2.看得见部分的轮廓线画成实线;3.看不见部分的轮廓线画成虚线.一个投射面水平放置,叫做水平投射面,投射到这个面内的图形叫做俯视图;一个投射面放置在正前方,叫直立投射面,投射到此平面内的图形叫做主视图;和水平投射面、直立投射面都垂直的投射面叫做侧立投射面,通常把这个平面放在直立投射面的右面,投射到这个平面内的图形叫做左视图;三点剖析一.考点:立体图形三视图二.重难点:立体图形三视图及由三视图求解立体图形三.易错点:1.画三视图时看不见的线应该用虚线;2.利用三视图确定小立方体的个数立体图形的三视图例题1、下列几何体的主视图、左视图、俯视图的图形完全相同的是()A.三棱锥B.长方体C.三棱柱D.球体【答案】D【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图.例题2、如图是一个底面为正三角形的直三棱柱,则这个几何体的主视图是()A.B.C.D.【答案】C【解析】从正面看是两个矩形,矩形的公共边是虚线,例题3、下面四个立体图形,从正面、左面、上面观察都不可能看到长方形的是()A. B. C. D.【答案】C【解析】A、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误;B、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;C、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;D、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误.例题4、如图是一个由若干个正方形搭建而成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的序号是:________________.【答案】①②③【解析】综合左视图跟主视图:从正面看,第一行第一列有3个正方形,第一行第二列有1个或第二行第2列有一个或都有一个.第二行第1列有2个正方体.随练1、如图①,这是一个正方体毛坯,将其沿一组对面的对角线切去一半,得到一个工件如图②,对于这个工件,左视图、俯视图正确的一组是()①②a b c dA.a,bB.b,dC.a,cD.a,d【答案】D【解析】左视图、俯视图是分别从物体的侧面和上面看所得到的图形.由三视图求解立体图形例题1、若一个几何体的主视图、左视图、俯视图都是正方形,则这个几何体是()A.正方体B.圆锥C.圆柱D.球【答案】A【解析】∵主视图和左视图都是正方形,∴此几何体为柱体,∵俯视图是一个正方形,∴此几何体为正方体.例题2、如图是由一些相同的小正方体构成的立体图形的三种视图.那么构成这个立体图形的正方体有多少个小立方块()A.4个B.5个C.6个D.7个【答案】【解析】根据图形可得:最底层有4个小立方块,第二层有1个小立方块,所以构成这个立体图形的小立方块有5个.例题3、如图是某几何体的三视图,根据图中数据,求得该几何体的体积为()A.60πB.70πC.90πD.160π【答案】B 【解析】观察三视图发现该几何体为空心圆柱,其内圆半径为3,外圆半径为4,高为10,所以其体积为22104370πππ⨯-=(),例题4、由一些大小相同的小正方体组成的简单几何体的主视图和俯视图.(如图)(1)请你画出这个几何体的一种左视图;(2)若组成这个几何体的小正方体的块数为n ,请你写出n 的所有可能值.【答案】(1)见解析;(2)8n =,9,10,11.【解析】(1)左视图有以下5种情形:(2)8n =,9,10,11.随练1、从一个边长为3cm 的大立方体挖去一个边长为1cm 的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()A. B. C. D.【答案】C【解析】如图所示:∵从一个边长为3cm 的大立方体挖去一个边长为1cm 的小立方体,∴该几何体的左视图为:.随练2、如图所示的是某几何体的三视图,则该几何体的形状是()A.长方形B.三棱柱C.圆柱D.正方体【答案】C 【解析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱.随练3、如图是由一些相同的小正方体组成的几何体的三视图,则组成该几何体的小正方体的个数最少为()A.7个B.8个C.9个D.10个【答案】C 【解析】由俯视图可得底面有一排有6个小正方体;从主视图看,第二层最少有2个正方体,第3层最少有一个小正方体,组成该几何体的小正方体的个数为9个.随练4、如图是一个几何体的三视图,则这个几何体的侧面积是()A.πB.9πC.18πD.27π【答案】C 【解析】根据三视图可得:这个几何体为圆锥,∵直径为6,圆锥母线长为6,∴侧面积66218ππ=⨯⨯÷=;随练5、如右图,是一个由若干个小正方体搭建而成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的序号是___________.【答案】①②③【解析】根据几何的主视图和左视图即可判断.拓展1、给下列几种关于投影的说法,正确的是()A.矩形的平行投影一定是矩形B.平行直线的平行投影仍是平行直线C.垂直于投影面的直线或线段的正投影是点D.中心投影的投影线是互相平行的【答案】C【解析】矩形的平行投影可能是平行四边形,也可能是线段;平行直线的平行投影可能是平行直线,也可能重合;垂直于投影面的直线或线段的正投影是点;中心投影的投影线是相交于一点的.2、李华的弟弟拿着一个菱形木框在阳光下玩,李华发现菱形木框在阳光照射下,在地面上形成了各种图形的阴影,但以下一种图形始终没有出现,没有出现的图形是()A.B.C. D.【答案】D【解析】根据平行四边形投影的特点,在同一时刻不同物体的物高和影长成比例,所以不可能是梯形.3、如图,一根直立于水平地面上的木杆AB 在灯光下形成影子,当木杆绕点A 按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB 垂直于地面时的影长为AC (假定AC AB >)的最大值为m ,最小值为n ,那么下列结论:①m AC >;②m AC =;③n AB =;④影子的长度先增大后减小.其中,正确结论的序号是.【答案】①③④【解析】当木杆绕点A 按逆时针方向旋转时,如图所示当AB 与光线BC 垂直时,m 最大,则m AC >,①成立;最小值为AB 与底面重合,故n AB =;由上可知,影子的长度先增大后减小.4、如图,小军、小珠之间的距离为2.7m ,他们在同一盏路灯下的影长分别为1.8m ,1.5m ,已知小军、小珠的身高分别为1.8m ,1.5m ,则路灯的高为_________m .【答案】3【解析】如图,∵CD ∥AB ∥MN ,∴△ABE ∽△CDE ,△ABF ∽△MNF ,∴CD DE =AB BE ,FN MN =FB AB ,即1.8 1.8=AB 1.8+BD , 1.5 1.5=AB 1.5+2.7-BD,解得:AB=3m5、如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向上远移时,圆形阴影的大小的变化情况是()A.越来越小B.越来越大C.大小不变D.不能确定【答案】A【解析】灯光下,涉及中心投影,根据中心投影的特点灯光下影子与物体离灯源距离有关,此距离越大,影子才越小.6、如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长3.5mB.变长2.5mC.变短3.5mD.变短2.5m【答案】C【解析】设小明在A处时影长为x,AO长为a,B处时影长为y.∵AC∥OP,BD∥OP,∴△ACM∽△OPM,△BDN∽△OPN,∴AC MAOP MO=,BD BNOP ON=,则1.68xx a=+,∴14x a=;1.6148yy a= +-,∴1 3.54y a=-,∴ 3.5x y-=,故变短了3.5米.7、如图所示零件的左视图是()A.B.C.D.【答案】D【解析】零件的左视图是两个竖叠的矩形.中间有2条横着的虚线8、如图是由一些相同的小正方体构成的立体图形的三种视图,那么构成这个立体图形的小正方体有()A.4个B.5个C.6个D.7个【答案】B【解析】由俯视图易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5个正方体组成.故选B.9、如图所示的几何体是由五个小正方体组合而成的,它的左视图是()A. B. C. D.【答案】A【解析】从左边看第一层是两个小正方形,第二层左边一个小正方形,10、与如图所示的三视图对应的几何体是()A.B.C.D.【答案】B【解析】根据主视图、左视图、俯视图判断即可得到.11、一张桌子上摆放有若干个大小、形状完全相同的碟子,现从三个方向看,其三种视图如图所示,则这张桌子上碟子的总数为()A.11B.12C.13D.14【答案】B【解析】由俯视图可得:碟子共有3摞,由几何体的主视图和左视图,可得每摞碟子的个数,如下图所示:故这张桌子上碟子的个数为3+4+5=12个。

第5章投影与视图复习教案

第5章投影与视图复习教案
2.培养学生的逻辑思维与推理能力:在视图绘制与分析过程中,训练学生运用逻辑思维进行问题解决,掌握从立体到平面、从平面到立体的转换方法。
3.培养学生的创新意识与应用能力:结合实际案例,鼓励学生将所学知识运用于建筑设计、机械制图等领域,激发学生的创新意识和学以致用的能力。
4.培养学生的几何直观与审美观念:通过视图的绘制与观察,引导学生发现几何图形的美,提高几何直观和审美素养。
实践活动环节,学生们在分组讨论和实验操作中表现得相当积极,但我也注意到有些小组在操作过程中对绘图工具的使用还不够熟练,导致视图绘制不够准确。这可能需要我们在今后的教学中加强对绘图技巧的培训和指导。
学生小组讨论部分,大家对于投影与视图在实际生活中的应用提出了很多有趣的观点和想法。但在引导和启发学生思考问题时,我意识到自己还可以做得更好,比如提供更多开放式问题,激发学生的创新思维。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用绘图工具绘制一个几何体的三视图。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“投影与视图在实际生活中的应用”这一主题展开讨论,探讨其在建筑、机械制造等领域的具体应用。
-建筑图纸
-机械制图
本章节复习教案旨在帮助学生巩固投影与视图的基本概念、掌握三视图的绘制方法,并能将其应用于实际生活中,提高学生的空间想象能力和实际操作能力。教学内容与教材紧密关联,确保实用性。
二、核心素养目标
1.培养学生的空间想象能力:通过投影与视图的学习,使学生能够理解和应用空间几何体的投影原理,提高对三维空间的感知和想象能力。
-投影与视图的应用:将理论知识应用于实际案例,学生可能难以理解其中的转换过程。

投影与视图知识点总结

投影与视图知识点总结

投影与视图知识点总结投影与视图主要涉及到平行投影、透视投影、三维图形的多视图投影,各种视图对应的关系等。

在本文中,我们将对这些概念进行详细的讨论,并深入探讨它们在工程学和设计领域中的应用。

一、平行投影平行投影是投影中最基本的一种类型。

它是通过平行光线将三维对象投影到二维平面上的过程。

在平行投影中,光线是平行的,因此投影到平面上的图形保持了原始对象的大小和形状。

在工程图纸中,平行投影通常用于绘制多视图投影和透视投影。

在建筑设计中,平行投影也经常用于绘制建筑平面图和立面图等。

平行投影对于工程设计师和建筑师来说是非常重要的,因为它能够准确地表达三维对象的形状和尺寸,在设计和制造过程中起到至关重要的作用。

二、透视投影透视投影是一种通过透视原理将三维对象投影到二维平面上的过程。

在透视投影中,光线不再是平行的,而是会汇聚到一个点上,因此投影到平面上的图形会呈现出远近关系和透视效果。

透视投影常常用于绘制逼真的图像,如绘画、摄影和电影等。

在工程设计中,透视投影往往用于展示设计概念和效果图,以便更好地向客户展示设计方案和效果。

在建筑设计中,透视投影也经常用于绘制逼真的建筑效果图和室内设计图。

透视投影对于产品设计师、室内设计师和广告设计师来说是非常重要的,因为它能够更好地展示设计概念和效果,让客户更好地理解和接受设计方案。

三、多视图投影多视图投影是一种通过多个视图来描述三维对象的投影方法。

在多视图投影中,三维对象通常被投影到正面视图、顶视图和侧视图等不同的平面上,从而得到多个视图来描述对象的形状和尺寸。

多视图投影是工程图纸中常用的一种投影方法,它能够全面准确地表达对象的各个方面,从而为设计和制造提供必要的信息。

在多视图投影中,正面视图、底视图和侧视图等不同的视图之间有一定的关系,设计师需要根据这些关系来确定各个视图的尺寸和位置。

多视图投影对于工程师和设计师来说是非常重要的,因为它能够为设计和制造提供必要的信息,帮助他们更好地理解并表达对象的形状和尺寸。

投影与视图知识点总结

投影与视图知识点总结

投影与视图知识点总结在我们的日常生活和学习中,投影与视图是一个重要的数学概念,它不仅在数学领域有着广泛的应用,在工程、建筑、设计等实际领域也发挥着关键作用。

接下来,让我们一起深入了解投影与视图的相关知识点。

一、投影投影是光线(投射线)通过物体,向选定的面(投影面)投射,并在该面上得到图形的方法。

1、中心投影由同一点(点光源)发出的光线形成的投影叫做中心投影。

比如,夜晚路灯下的人影就是中心投影的例子。

其特点是:等长的物体平行于地面放置时,在灯光下,离点光源越近的物体的影子越短,离点光源越远的物体的影子越长。

2、平行投影由平行光线(太阳光线)形成的投影称为平行投影。

平行投影又分为正投影和斜投影。

正投影是指投射线垂直于投影面的平行投影。

在平行投影中,同一时刻,不同物体的物高和影长成比例。

二、视图视图是将物体按正投影向投影面投射所得到的图形。

1、三视图三视图包括主视图、俯视图和左视图。

主视图:从物体的前面向后面投射所得的视图。

俯视图:从物体的上面向下面投射所得的视图。

左视图:从物体的左面向右面投射所得的视图。

三视图的位置关系:主视图在上方,俯视图在主视图的正下方,左视图在主视图的正右方。

三视图的大小关系:长对正、高平齐、宽相等。

即主视图与俯视图的长相等,主视图与左视图的高相等,俯视图与左视图的宽相等。

2、常见几何体的三视图(1)正方体:三视图都是正方形。

(2)长方体:主视图、左视图是长方形,俯视图是长方形。

(3)圆柱:主视图、左视图是长方形,俯视图是圆。

(4)圆锥:主视图、左视图是三角形,俯视图是圆及圆心。

(5)球:三视图都是圆。

三、根据视图还原几何体根据三视图还原几何体时,要先分别根据主视图、俯视图和左视图想象几何体的前面、上面和左面的形状,然后综合起来考虑整体形状。

四、投影与视图的应用1、在建筑设计中,设计师需要通过绘制三视图来准确表达建筑物的形状和尺寸,以便施工人员能够按照设计进行施工。

2、在机械制造中,工程师需要根据零件的三视图来制造零件,确保零件的精度和质量。

第五章投影与视图单元复习课件北师大版九年级上册

第五章投影与视图单元复习课件北师大版九年级上册
第五章 投影与视图
1. 投影、平行投影、中心投影
(1) 投影:物体在光线的照射下,会在某个平面 (地面或墙壁)上留下它的影子,这就是 投影现象.
如图:
1. 投影、平行投影、中心投影
(2) 平行投影: 太阳光线可以看成平行光线,像这样的光线所形成 的投影,称为平行投影,如下图:
1. 投影、平行投影、中心投影
(3) 中心投影: 手电筒、路灯和台灯的光线可以看成是从一点发出的,像这样的光线所
形成的投影称为中心投影,如下图:
1. 投影、平行投影、中心投影
(4) 平行投影与中心投影的区别与联系:
区别:投影线互相平行形成平行投影 投影线集中于一点,形成中心投影
联系:都是物体在光线的照射下,在某个平面内 形成的影子。(即都是投影)
注意:不可见的轮廓线,用虚线画出。
(3) 常见几何体的三视图:
(4) 由三视图确定几何体:
由三视图想象立体图形时,先分别根据主视图、俯视 图和左视图想象立体图形的前面、主面和左侧面的局 部形状,然后再综合起来考虑整体图形。
(5) 由三视图确定几何体的面积和体积:
①先根据给出的三视图确定立体图形,并确定立体图形的长、宽、 高、底面半径等;
2. 正投影
(1) 概念:投影线垂直于投影面产生的投影叫做正投影. (2) 性质:当物体的某个面平行于投影面时,这个面的正投影 与这个面的形状、大小完全相同.
3. 三视图 (1) 三视图的概念
将三个投影面展开在一个平面内,得到这个物体的一张三视图。
(2) 三视图的画法:
①确定主视图的位置,画出主视图; ②在主视图正下方画出俯视图,注意与主视图长对正; ③在主视图正右方画出左视图,注意与主视图高平齐, 与俯视图宽相等; ④为表示圆柱、圆锥等的对称轴,规定在视图中加画点划线 表示对称轴.

投影与视图的知识点

投影与视图的知识点

投影与视图的知识点(共4页) -本页仅作为预览文档封面,使用时请删除本页-投影与视图知识点知识结构框图1.投影一般地,用光线照射物体,在某个平面(地面墙壁等)上得到的影子叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面.生活中有许多利用投影的例子,如手影表演,皮影戏等。

投影分为平行投影和中心投影.由一点(点光源)发出的光线形成的投影是中心投影,如位似图。

平面为投影面,各射线为投影线,空间图形经过中心投影后,直线变成直线,但平行线可能变成了相交的直线。

中心投影后的图形与原图形相比虽然改变较多、但直观性强、看起来与人的视觉效果一致、最像原来的物体、所以在绘画时、经常使用这种方法,但在立体几何中很少用中心投影原理来画图。

平行线在经过中心投影后有可能变成了相交的直线如果一个平面图形所在的平面与投射面平行、那么中心投影后得到的图形与原图形也是平行的、由平行光线形成的投影(太阳光等)称为平行投影,它是投射线相互平行的投影。

平行投影按照投射方向是否正对着投影面,可以分为斜投影和正投影两种。

当投影线倾斜于投影面时,称斜投影;当投影线垂直于投影面时,称正投影。

光由一点向外散射形成的投影是中心投影,一束平行光线照射下形成的投影是平行投影,那么用灯泡照射物体和用手电筒照射物体形成的投影分别属于哪种投影。

从一点到一条直线所作垂线的垂足,叫做这点在这条直线上的正投影。

一条线段的两个端点在一条直线上的正投影之间的线段,叫做这条线段在这直线上的正投影。

平行投影和中心投影有什么不同平行投影;发出来的光线是平行的(如太阳光),对应点的连线是平行的中心投影:是从一点发出来的光(如灯泡的光)对应点的连线或延长线相交于一点工程图样一般都是采用正投影根据投影方法我们可以看到,当直线段平行于投影面时,直线段与它的投影及过两端点的投影线组成一个矩形,因此,直线的投影反映直线的实长。

当平面图形平行与投影面时,不难得出,平面图形与它的投影为全等图形,即反映平面图形的实形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【详解】
由题意,画出长方体如图所示:
由三视图可知, ,四边形ACBD是正方形
则这个长方体的表面积为
故选:C.
【点睛】
本题考查了正方形的性质、三视图的定义、长方体的表面积公式等知识点,掌握理解三视图的相关概念是解题关键.
6.下列几何体中,主视图与俯视图不相同的是( )
A. B. C. D.
【答案】B
【解析】
所以该几何体的侧面积为2π×1×3=6π(cm2).
故选C.
【点睛】
此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.
20.如图,是由若干个相同的小正方形搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方形的个数不可能是()
A.3B.4C.5D.6
【答案】D
故选:C.
【点睛】
此题主要考查简单几何体的三视图,熟练画图是解题关键.
17.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()
A.俯视图B.主视图C.俯视图和左视图D.主视图和俯视图
【答案】A
【解析】
画出三视图,由此可知俯视图既是轴对称图形又是中心对称图形,故选A.
故选A.
【名师点睛】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.
4.如图,小明用由5个相同的小立方体搭成的立体图形研究几何体的三视图的变化情况.若由图1变到图2,不变化的是()
A.主视图B.主视图和左视图C.主视图和俯视图D.左视图和俯视图
【答案】B
【解析】
分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.
详解:四棱锥的主视图与俯视图不同.
故选B.
点睛:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表示在三视图中.
7.如图是空心圆柱,则空心圆柱在正面的视图,正确的是( )
A. B. C. D.
【答案】C
C.俯视图的面积为4,此选项错误;
D.由以上选项知此选项错误;
故选A.
【点睛】
本题主要考查三视图的画法,关键在于正面方向.
15.如图,某工厂加工一批无底帐篷,设计者给出了帐篷的三视图(图中尺寸单位:m).根据三视图可以得出每顶帐篷的表面积为( )
A.6πm2B.9πm2C.12πm2D.18πm2
【答案】B
【解析】
【分析】
找出从几何体的正面看所得到的视图即可.
【详解】
解:从几何体的正面看可得:

故选:C.
【点睛】
此题主要考查了简单几何体的三视图,关键是掌握三视图所看的位置.
8.如图是某几何体的三视图及相关数据,则下面判断正确的是()
A.a>cB.b>cC.a2+4b2=c2D.a2+b2=c2
【答案】D
14.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是( ).
A.主视图的面积为4B.左视图的面积为4
C.俯视图的面积为3D.三种视图的面积都是4
【答案】A
【解析】
【分析】
根据三视图的绘制,首先画出三视图再计算其面积.
【详解】
解:A.主视图的面积为4,此选项正确;
B.左视图的面积为3,此选项错误;
此题考查了从不同方向观察物体和几何体,有良好的空间想象力和抽象思维能力是解决本题的关键.
12.如图所示的几何体,它的左视图是( )
A. B. C. D.
【答案】D
【解析】
分析:根据从左边看得到的图形是左视图,可得答案.
详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,
A.圆锥B.圆柱C.三棱锥D.三棱柱
【答案】C
【解析】
【分析】
由主视图和左视图可得此几何体为锥体,根据俯视图可判断出该物体的形状是三棱锥.
【详解】
解:∵主视图和左视图都是三角形,
∴此几何体为椎体,
∵俯视图是3个三角形组成的大三角形,
∴该物体的形状是三棱锥.
故选:C.
【点睛】
本题考查了几何体三视图问题,掌握几何体三视图的性质是解题的关键.
10.已知圆锥的三视图如图所示,则这个圆锥的侧面展开图的面积为()
A.60πcm2B.65πcm2C.90πcm2D.130πcm2
【答案】B
【解析】
【分析】
先利用三视图得到底面圆的半径为5cm,圆锥的高为12cm,再根据勾股定理计算出母线长为13cm,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.
故正确答案为B
【点睛】
此题考查了圆锥的计算:圆锥的侧面展开图是一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,也考查了三视图
16.如图,由若干个大小相同的小正方体搭成的几何体的左视图是()
A.பைடு நூலகம்B. C. D.
【答案】C
【解析】
【分析】
根据简单几何体的三视图即可求解.
【详解】
解:左视图有3列,每列小正方形数目分别为2、1、1.
【解析】
【分析】
由三视图可知该几何体是圆锥,圆锥的高是a,母线长是c,底面圆的半径是b,刚好组成一个以c为斜边的直角三角形,由勾股定理,可得解.
【详解】
由题意可知该几何体是圆锥,根据勾股定理得,a2+b2=c2
故选:D.
【点睛】
本题考查三视图和勾股定理,关键是由三视图判断出几何体是圆锥.
9.下面是从不同的方向看一个物体得到的平面图形,则该物体的形状是()
本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.
19.如图是一个几何体的三视图(图中尺寸单位: ),根据图中所示数据求得这个几何体的侧面积是()
A. B. C. D.
【答案】C
【解析】
【分析】
根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.
【详解】
先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.
11.由6个相同的立方体搭成的几何体如图所示,则它的从正面看到的图形是( )
A. B. C. D.
【答案】C
【解析】
【分析】
观察立体图形的各个面,与选项中的图形相比较即可得到答案.
【详解】
观察立体图形的各个面,与选项中的图形相比较即可得到答案,
由图像 能够看到的图形是 ,故C选项为正确答案.
【点睛】
【详解】
解:根据三视图得到圆锥的底面圆的直径为10cm,即底面圆的半径为5cm,圆锥的高为12cm,
所以圆锥的母线长= (cm)
所以这个圆锥的侧面积= (cm2),
故选:B.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.
故选:B.
【点睛】
本题考查了简单组合体的三视图,利用三视图的意义是解题关键.
5.一个长方体的三视图如图,若其俯视图为正方形,则这个长方体的表面积为()
A.48B.57C.66D.
【答案】C
【解析】
【分析】
先根据三视图画出长方体,再根据三视图得出 ,然后根据正方形的性质求出 的长,最后根据长方体的表面积公式即可得.
18.下列水平放置的几何体中,俯视图是矩形的为()
A. B. C. D.
【答案】B
【解析】
【分析】
俯视图是从物体上面看,所得到的图形.
【详解】
A.圆柱俯视图是圆,故此选项错误;
B.长方体俯视图是矩形,故此选项正确;
C.三棱柱俯视图是三角形,故此选项错误;
D.圆锥俯视图是圆,故此选项错误;
故选B.
【点睛】
故选D.
点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.
13.如图所示的几何体的俯视图为( )
A. B.
C. D.
【答案】C
【解析】
【分析】
根据从上边看得到的图形是俯视图,可得答案.
【详解】
解:从上边看外面是一个矩形,里面是一个圆形,
故选:C.
【点睛】
考查了简单组合体的三视图,从上边看得到的图形是俯视图.
2.六个大小相同的正方体搭成的几何体如图所示,其俯视图是( )
A. B. C. D.
【答案】B
【解析】
分析:俯视图有3列,从左到右正方形个数分别是2,1,2,并且第一行有三个正方形.
详解:俯视图从左到右分别是2,1,2个正方形,并且第一行有三个正方形.
故选B.
点睛:本题考查了简单组合体的三视图,培养学生的思考能力和对几何体三种视图的空间想象能力.
【分析】
根据主视图是从物体的正面看得到的视图,俯视图是从上面看得到的图形,左视图是左边看得到的图形,可得答案.
【详解】
主视图都是第一层三个正方形,第二层左边一个正方形,故主视图不变;
左视图都是第一层两个正方形,第二层左边一个正方形,故左视图不变;
俯视图底层的正方形位置发生了变化.
∴不改变的是主视图和左视图.
【解析】
【分析】
根据三视图得到每顶帐篷由圆锥的侧面和圆柱的侧面组成,且圆锥的母线长为2m,底面圆的半径为1.5m,圆柱的高为2m,由于圆锥的侧面展开图为一扇形,圆柱的侧面展开图为矩形,则根据扇形面积公式和矩形面积公式分别计算,然后求它们的和
【详解】
根据三视图得到每顶帐篷由圆锥的侧面和圆柱的侧面组成,且圆锥的母线长为2m,底面圆的半径为1.5m,圆柱的高为2m,所以圆锥的侧面积= =3π 圆柱的侧面积=2π =6π 所以每顶帐篷的表面积=3π+6π=9π
相关文档
最新文档