防止汽轮机大轴弯曲技术措施
防止汽轮机大轴弯曲的措施

防止汽轮机大轴弯曲的措施汽轮机大轴弯曲是汽轮发电机组恶性事故中最为突出的事故,必须引起足够重视。
特别是大容量汽轮机由于缸体结构复杂,使得汽缸的热膨胀和热变形变得复杂,增大了汽轮机大轴弯曲的危险性。
一.汽轮机大轴弯曲的原因:1.由于通流部分动静磨擦,转子局部过热,一方而显著降低了该部位屈服极限,另一方而受热局部的热膨胀受制于周围材料而产生很大压应力。
当应力超过该部位屈服极限时,发生塑性变形。
当转子温度均匀后,该部位呈现凹而永久性弯曲°2.在第一临界转速下,大轴热弯曲方向与转子不平衡力方向大致一致,动静碰磨时将产生恶性循环,致使大轴产生永久弯曲。
3.停机后在汽缸温度较髙时,因某种原因使冷汽、冷水进入汽缸,汽缸和转子将由于上下缸温差产生很大的热变形,甚至中断盘车,加速大轴弯曲,严重时将造成永久弯曲。
4.转子的原材料存在过大的内应力。
在较高的工作温度下经过一段时间的运行以后,内应力逐渐得到释放,从而使转子产生弯曲变形。
5.运行人员在机组启动或运行中由于未严格执行规程规左的启动条件、紧急停机规定,硬撑硬顶也会造成大轴弯曲。
二.机组冷态启动时防止大轴弯曲的措施:1.启动前运行人员应严格按照规程和操作卡做好检查工作,特别是对以下阀门应重点检查,使其处于正确的位置:1)高压旁路减温水隔离门,调整门应关闭严密。
2)所有的汽轮机蒸汽管道,本体疏水门应全部开启。
3)通向锅炉的减温水门,给水泵的中间抽头门应关闭严密,等锅炉需要后再开启。
4)各水封袋注完水后应关闭注水门,防止水从轴封加热器倒至汽封。
2.机组启动前一泄要盘车2h以上不得间断,测大轴晃动值不大于原始值0. 02mm.3.冲转过程中,应严格监视各轴承振动,临界转速时三个方向的振动值不大于0.10mm,否则应立即打闸停机,停机后测大轴晃动值并连续盘车2〜4h以上,正常后方可重新启动。
4.转速达3000r/min后应逐渐关小电动主闸门后疏水门,防止疏水量太大影响本体疏水畅通。
防止汽轮机大轴弯曲技术

防止汽轮机大轴弯曲技术防止汽轮机大轴弯曲是保证汽轮机正常运行和延长其寿命的关键技术之一。
汽轮机大轴在运行过程中会承受巨大的转矩和载荷,特别是在启动和停机过程中,由于转子与定子的热胀冷缩不一致等原因,容易引起大轴的弯曲和变形,严重影响汽轮机的正常运行和安全性。
因此,针对汽轮机大轴弯曲问题,工程师们采取了一系列的技术措施来提高汽轮机大轴的强度和刚度,保证其在运行过程中不易发生弯曲。
一、合理设计大轴结构合理的大轴结构设计是防止大轴弯曲的基础。
设计中需要考虑到转矩和载荷分布的特点,使大轴结构具有足够的强度和刚度来抵抗外部的力矩和载荷。
此外,还应注意避免设计过于复杂,影响制造难度和成本。
二、优化轴材质的选择选择合适的材料是预防大轴弯曲的重要因素。
通常情况下,汽轮机大轴采用高强度合金钢制造,如40CrNiMoA。
此外,还可以采用增加适度含碳量来提高材料的强度和硬度。
在具体选择时,需要综合考虑材料的高温性能、耐疲劳性能和焊接性能等因素。
三、加强加工工艺控制汽轮机大轴的加工工艺对防止弯曲至关重要。
在大轴的车削、磨削、淬火等加工过程中,需要严格控制加工工艺参数,避免过度热处理引起大轴的过热和变形。
此外,对于淬火工艺,要保证大轴的冷却速度均匀,避免产生过多的应力和变形。
四、采用轴端支撑技术为了增强大轴的刚度和稳定性,可以采用轴端支撑技术。
通过在大轴两端安装轴承和油膜支撑等装置,形成对大轴的支撑力,减小大轴的自由度,从而减小大轴的变形和弯曲。
此外,轴端支撑装置还可以起到减少震动和噪声的作用。
五、加强轴系刚性设计轴系刚性对于防止大轴弯曲也起着重要作用。
轴系的刚性设计包括轴承、定位环和连轴器等部件的选择和布置,以及轴系的支撑结构和刚性连接。
通过增加轴承的数量和改善轴承的布置,使轴系具有更好的支持力和刚性,能够更好地抵抗外部转矩和载荷的作用。
六、定期检测和维修定期检测和维修是防止大轴弯曲的重要手段。
通过定期的振动测试、温度测量和形状检查等手段,能够及时发现和分析大轴的变形情况,避免发现问题过晚,并采取相应的维修措施,保持大轴的良好状态。
防止汽轮机大轴弯曲技术范本(2篇)

防止汽轮机大轴弯曲技术范本汽轮机大轴弯曲是一种常见的问题,给汽轮机的运行稳定性和寿命带来了很大的威胁。
为了防止汽轮机大轴弯曲,需要采取一系列的技术措施。
本文将介绍几种常用的防止汽轮机大轴弯曲的技术范本。
1. 使用高强度材料汽轮机大轴的弯曲问题通常是由于材料的强度不足引起的。
因此,在设计和制造汽轮机大轴时,应使用高强度材料,如优质合金钢等。
高强度材料能够提供更好的抗弯曲性能,并能够承受更大的载荷。
2. 加强轴杆的支撑和固定为了增强汽轮机大轴的刚度和稳定性,需要对轴杆进行适当的支撑和固定。
可以使用支撑轮轴、筏板和弹簧等装置,将轴杆固定在相应的位置上,从而减少轴杆的挠度和变形,并防止其发生弯曲。
3. 定期进行轴杆的维护和检测定期对汽轮机大轴进行维护和检测是防止其弯曲的关键。
维护包括轴杆的润滑和清洁,确保其表面的光滑度和清洁度,减少摩擦和磨损。
同时,还应定期进行轴杆的非破坏性检测,如超声波检测和磁粉检测等,以及应力分析和振动分析,及早发现轴杆的问题,并及时采取修复措施。
4. 加强轴承和轴承座的设计轴承和轴承座是汽轮机大轴的关键部件,对防止轴杆弯曲起着至关重要的作用。
必须对轴承和轴承座进行合理的设计,以确保其具有足够的强度和刚度,能够承受汽轮机大轴的重量和运行载荷,并能够有效地分散和传递轴杆的应力和振动。
5. 提高汽轮机的运行稳定性汽轮机在运行过程中的不稳定因素也会导致大轴弯曲的发生。
为了防止大轴弯曲,需要提高汽轮机的运行稳定性。
在汽轮机设计和操作中,应充分考虑各种因素的影响,如温度变化、压力变化、负载变化等,采取相应的措施来减少这些因素对汽轮机大轴的影响,从而确保汽轮机的运行稳定性。
综上所述,防止汽轮机大轴弯曲是一个复杂的工程问题,需要从多个方面来进行考虑和解决。
通过使用高强度材料、加强轴杆的支撑和固定、定期进行轴杆的维护和检测、加强轴承和轴承座的设计以及提高汽轮机的运行稳定性等技术手段,可以有效地防止汽轮机大轴的弯曲问题的发生,提高汽轮机的运行效率和寿命。
防止汽轮机大轴弯曲事故技术措施标准版本

文件编号:RHD-QB-K6615 (解决方案范本系列)编辑:XXXXXX查核:XXXXXX时间:XXXXXX防止汽轮机大轴弯曲事故技术措施标准版本防止汽轮机大轴弯曲事故技术措施标准版本操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。
,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。
在机组启、停过程中或正常运行时,由于汽缸变形、振动过大而引起摩擦以及热状态下汽轮机进冷水、冷汽等原因都可能导致汽轮机转子的弯曲。
为防止此类事故发生,特制订以下措施:1、汽缸保温良好,能保证在启、停及正常运行过程中上、下缸不产生过大的温差。
2、首次启动过程中,应适当延长暖机时间,以利于全面检查,并避免潮湿的保温造成汽缸表面受热不均而变形。
3、汽轮机的监测仪表如转速表、大轴晃度表、振动表、汽缸金属温度表、轴向位移表、差胀表等必须齐全、完好、准确、可靠。
4、冲转前,必须符合下列条件,否则禁止启动:4.1大轴晃度值不超过原始值0.02mm,转子偏心小于0.0762mm。
4.2主蒸汽温度应至少高于汽缸最高金属温度50℃,蒸汽过热度不低于50℃4.3转子进行充分的连续盘车,一般不少于4小时。
5、启、停及带负荷过程中,汽轮机各监视仪表都应投入,严格监视汽缸温差、胀差和轴向位移的变化。
有专人监测振动,瓦振达到50μm报警,100μm以上时停机,严禁在临界转速下停留。
6、疏水系统应保证疏水畅通。
机组负荷在20%额定负荷以下,应开启低压调节阀后所有疏水;在10%额定负荷以下时,开启主汽阀后所有汽机本体疏水。
7、热态启动时,严格按规程选择合理的主汽参数,严格遵守操作规程。
轴封供汽温度应与汽缸金属温度匹配,轴封管道经充分疏水后方可投汽,并应先送轴封,后抽真空。
8、机组在启、停和变工况运行时,应按规定曲线和技术指标控制参数变化,特别是应避免汽温大幅度快速变化。
防止大轴弯曲讲解

在高速转动下摩擦产生的热量是很大的,即使有 蒸汽流过,亦不能将热量带走阻止温度升高。有时外 轴封处局部碰摩产生的火花冒到机外,在停机以后检 查,碰摩处可能会变成蓝色,表明碰摩时产生过高温, 淬火后变色并留有碰摩痕迹。在大轴冷却到室温条件 下,碰摩处亦即是轴凹入处,这一些都是这种碰摩弯 曲的特征。
加热 轴封
除氧器
加热器
冷
凝汽器
汽
旁路系统
冷
疏水水位
水
主再汽温
设备 本身
弯轴框图
停机、盘车
暂时 弯曲
弯曲 消除
汽缸、法兰 温差
振动
违章指挥 盲目启动
套装件 位移
转子 内应力
大
永久 弯曲
弯轴 揭缸
防止大轴弯曲的措施
1做好汽轮机组基础技术工作 1.1转子安装原始弯曲的最大晃动值(双振幅),最大弯曲点的轴向位置及在圆 周方向的位置、机组应备有安装和大修资料; 1.2 大轴弯曲表测点安装位置的原始晃动值(双振幅),最高点在圆周方向的 位置; 1.3 机组正常启动过程中的波德图和实测轴系临界转速;
汽轮机大轴弯曲事故是运行中出现次数 较多的一种。
大轴弯曲后振动变大,会迫使机组停运, 并且会使一些轴封被磨损,造成通流部 分损坏。
轴封及通流部分修复困难大,将大轴重 新校直费时较多,从而造成重大损失。
大轴弯曲的种类
大轴弯曲可分为两种:热弹性弯曲 为永久性弯曲
热弹性弯曲:指转子在一截面上温度不均匀,转子受热时,在
防止汽轮机大轴弯曲技术

防止汽轮机大轴弯曲技术防止汽轮机大轴弯曲是一项重要的技术任务,因为大轴弯曲会导致汽轮机失效甚至损坏。
在汽轮机运行过程中,大轴受到来自转子的重力、转子的离心力和由于温度变化引起的热应力等多种力的作用,长期的受力会导致大轴弯曲。
下面将介绍一些常见的防止汽轮机大轴弯曲的技术措施。
1. 合理的轴承设计和选用合理的轴承设计和选用是防止大轴弯曲的关键因素之一。
轴承的选用应根据轴的负载、运行速度和工作环境等要求进行选择,以保证轴承具有足够的承载能力和稳定性。
同时,合理的轴承设计可以减小轴承对大轴的约束力,降低大轴的变形和弯曲。
2. 加强大轴的加工质量控制大轴的加工质量直接影响其使用性能和抗弯曲能力。
为了保证大轴的加工质量,需要对加工工艺进行严格的质量控制。
具体措施包括:提高车床的精度和稳定性,遵循正确的车削顺序和切削参数,严格控制刀具磨损和刀具寿命等。
3. 加强舱内附件的刚性连接汽轮机大轴上安装有多种舱内附件,如鼓风机、冷却水泵等。
这些附件的存在会增加大轴的荷载并对大轴产生额外的约束力。
为了减小附件对大轴的约束力,需要加强附件与大轴的刚性连接,采取适当的支撑和固定措施,如加强附件基座的刚性、合理安装支承和间隙等。
4. 针对大轴的温度变化采取整体热处理汽轮机运行中,大轴由于温度的变化会产生热应力,从而导致大轴发生变形和弯曲。
为了减小温度变化对大轴的影响,可以采取整体热处理的方法,通过控制热处理过程和温度来降低大轴的内部应力。
5. 加强对大轴的在线监测和维护对于汽轮机大轴,需要进行定期的在线监测和维护,及时发现和修复存在的问题,避免因轴的变形和弯曲而引发更严重的故障。
在线监测可以采用振动监测、温度监测等手段,及时获得大轴的工作状态和变化情况,为维护提供重要的依据。
综上所述,为了防止汽轮机大轴弯曲,需要从轴承设计、加工质量、舱内附件连接、温度变化和在线监测等多个方面进行综合考虑和措施实施。
通过这些技术措施的应用,可以有效地保护大轴的安全运行,延长汽轮机的使用寿命。
汽轮机防大轴弯曲的措施有哪些

汽轮机防大轴弯曲的措施有哪些
⑴认真做好每台机组的基础技术措施:
①每台机组必须备有机组安装和大修的资料以及大轴原始弯曲度、临界转速、盘车电流以及正常摆动值等重要数据,并要求主要值班人员熟悉掌握;
②运行规程中必须编制各种不同状态下的启动曲线及停机惰走曲线;
③机组启、停应有专门的记录。
停机后仍要认真、定时记录各金属温度、大轴弯曲、盘车电流、汽缸膨胀、差胀等。
⑵设备、系统方面的技术措施:
①汽缸应具有良好的保温;
②机组在安装和大修中,必须合理调整动静间隙,保证在正常运行中不会发生摩擦;
③疏水系统合理布置,保证疏水通畅,不反汽,不相互排挤;
④汽轮机各监视仪表完好,各部位金属温度表计齐全可靠,大轴弯曲指示准确;
⑶运行方面的技术措施:
①每次冲转前,必须确认转子偏心在正常范围。
盘车脱扣、转子静止情况下,严禁冲转;
②上、下缸温差不超过42℃;
③汽轮机启动前应充分连续盘车,最低不少于2小时,并避免盘车中
断;
④热态启动时,应保证轴封送汽温度、主汽温度、金属温度匹配,并充分疏水;
⑤启动过程中轴承振动一般不超过0.08mm,过临界轴承振动不超过
0.1mm,否则应视情况打闸停机,严禁硬闯临界转速;
⑥机组变工况运行时,应注意监视轴振、差胀等参数正常;
⑦停机后应立即投入盘车,盘车电流大或有摩擦声时,严禁强行连续盘车,必须先进行180°间断盘车,待摩擦声消失后,再投入连续盘车。
停机后还应做好防止冷汽、冷水进入汽轮机的措施。
汽轮机运行中的技术与安全措施

汽轮机运行中的技术与安全措施一、机组达到3000转/分且转速大辐度摆动并不上网的技术措施:1、注意检查主、再热蒸汽压力情况,联系锅炉降低压力。
2、如果因真空太高,此时可手动微开真空破坏门,适当降低真空,增大进汽量,以稳定转速。
3、联系锅炉,关闭高压旁路,以增大高压缸进汽量,维持转速以便并网。
二、开机过程中真空下降的技术措施:1、检查真空破坏门是否关闭严密。
2、检查真空泵组是否工作正常。
3、汽封压力是否太低,送汽封是否及时。
4、凝结器水位是否太高,注意控制凝结器水位。
5、真空式阀门应检查注水是否正常,以免真空系统不严密,致使真空下降。
6、检查循环水一次滤网是否堵塞严重,致使循环水量减小,导致真空下降。
7、联系热工检查表计和测点是否正常。
三、停机过程中的防范措施:1、主、再热蒸汽温度的下降速度要控制在1.5—2.5℃/分,以免下降过快而引起汽缸和转子的应力增加和负胀差增大。
2、联系锅炉要先降温后降压,严格根据滑停曲线进行。
3、主、再热蒸汽温度始终保持50℃过热度。
4、如主汽温度低于高压缸下半壁温度35℃以上时,应停止降温降压,以免发生水冲击。
5、注意调整汽封压力。
6、主、再热蒸汽温差≤40℃.7、注意轴向位移、推力瓦温度、轴承回油温度、振动的监视及机内磨擦声。
四、首次机组启动应作好如下技术和安全措施:1、严格按照规程规定的压力、温度,达到冲转条件开始冲转。
2、一经冲转,盘车应立即脱开。
否则应立即打闸停机。
3、冲转后要注意倾听机组内部声音。
4、严密监视汽缸内外壁温度不超过规程规定的范围,防止汽缸变形。
5、根据内外壁温差及时投入汽缸加热装置。
6、严密监视轴向位移、推力瓦温度和轴承回油温度。
7、冲转后高、低压加热器即可随机启动,以增大高压缸疏水量,提升高压外缸内壁的温度。
也有利于加热器的逐渐升温加热。
8、注意高、低压胀差变化情况并及时调整,以便将胀差值控制在正常范围。
9、转速达200转/分,注意顶轴油泵停止。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
防止汽轮机大轴弯曲技术措施汽轮机大轴弯曲和严重超速、轴系断裂事故一样,是火力发电厂汽轮机严重事故。
对火电厂安全生产、经济运行构成重大危害,给企业造成巨大损失。
防止大轴弯曲事故是火电厂汽轮机运行维护重点,应该引起各级领导和生产技术人员充分重视。
作为火电厂汽轮机值班人员,更应详细了解其产生原因,防范措施,防患于未然。
一.汽轮机大轴弯曲原因:造成汽轮机大轴弯曲的原因是多方面的,主要归纳为以下几方面。
1汽轮机通流部分动静摩擦通流部分动静摩擦,造成转子局部过热。
一方面显著降低了摩擦部分的屈服极限;另一方面摩擦部分局部过热,其热膨胀受限于周围材料而产生很大压应力。
当应力超过该部位屈服极限时,将发生塑性变形。
当转子温度均匀后,该部位就呈现凹面永久性弯曲。
在第一临界转速下,大轴热弯曲方向与转子不平衡力方向大体一致。
此时,发生动静摩擦将产生恶性循环,致使大轴产生永久弯曲。
而在第一临界转速上,热弯曲方向与转子不平衡力方向趋于相反,有使摩擦脱离趋向。
所以,应充分重视低转速时振动、摩擦检查。
2热状态汽轮机,进冷汽冷水冷汽冷水进入汽缸,汽缸和转子由于上下缸温差过大而产生很大热变形。
转子热应力超过转子材料屈服极限,造成大轴弯曲。
如果在盘车状态进冷汽冷水,造成盘车中断,将加速大轴弯曲,严重时将使大轴永久弯曲。
3套装件位移套装转子上套装件偏斜、卡涩和产生相对位移;汽轮机断叶、强烈振动、转子产生过大弯矩等原因使套装件和大轴产生位移,都将造成汽轮机大轴弯曲。
4转子材料内应力过大汽轮机转子原材料不合格,存在过大内应力,在高温状态运行一段时间后,内应力逐渐释放,造成大轴弯曲。
5运行管理不当总结转子弯曲事故,大多数在发生、发展过程中都有领导违章指挥,运行人员违章操作,往往这是事故直接原因和事故扩大的原因。
如不具备启动条件强行启动;忽视振动、异音危害;各类原因造成汽缸进水;紧急停机拖延等违章违规,造成大轴弯曲。
二.防止大轴弯曲的措施1做好汽轮机组基础技术工作1.1转子安装原始弯曲的最大晃动值(双振幅),最大弯曲点的轴向位置及在圆周方向的位置、机组应备有安装和大修资料;1.2大轴弯曲表测点安装位置的原始晃动值(双振幅),最高点在圆周方向的位置;1.3机组正常起动过程中的波德图和实测轴系临界转速;1.4正常情况下盘车电流和电流摆动值,以及相应的油温和顶轴油压;1.5正常停机过程的惰走曲线,以及相应的真空和顶轴油泵的开启时间。
紧急破坏真空停机过程的惰走曲线。
1.6停机后,机组正常状态下的汽缸主要金属温度下降曲线。
1.7通流部分的轴向间隙和径向间隙。
1.8应具有机组在各种状态下的典型起动曲线和停机曲线,并应全部纳入运行规程。
1.9记录机组起停全过程中的主要参数和状态。
停机后定时记录汽缸金属温度、大轴弯曲、盘车电流、汽缸膨胀、胀差等重要参数,直到机组下次热态起动或汽缸金属温度低于150℃为止。
2.0系统进行改造、运行规程中尚未作具体规定的重要运行操作或试验,必须预先制定安全技术措施,经上级主管部门批准后再执行2.11准确完整的汽轮机运行规程,现场系统图,设备异动报告,安全措施。
运行人员熟记运行规程,了解相关技术数据后,通过比较、分析、判断就能发现机组存在的问题,防患于未然。
2设备系统方面的技术措施2.1汽缸应具有良好的保温,保证停机后上下缸温差不超过50℃;2.2安装和检修中,合理调整动静间隙,保证在热状态下不发生动静摩擦;2.3合理布置主蒸汽、再热蒸汽、旁路系统、导汽管、汽缸本体疏水,保证疏水畅通。
疏水中不发生倒汽,不互相排挤。
疏水扩容器标高高于凝结器热水井最高标高。
高低压疏水分别接入高低压疏水扩容器或疏水联箱。
按疏水压力高低依次接入,并向低压侧倾斜45℃。
在所有疏水开启情况下,疏扩或联箱压力仍应低于疏水各管道最低压力,防止疏水不良;2.4汽轮机各监视仪表齐全可靠,汽缸各部位金属温度表完好齐全。
尤其是转子弯曲表、振动表、缸温表、胀差表等;2.5主蒸汽、再热蒸汽减温水截止门应关闭严密,自动可靠;2.6门杆漏汽,轴封高压漏汽至除氧器管路上应设置逆止门和截止门;2.7高压加热器应装设紧急疏水阀,高水位能自动开启和远方控制,水位计正常;2.8除氧器、低压加热器水位计正常,疏水自调可靠,危急情况可放水;2.9自动主汽门、调速汽门、各段抽汽逆止门关闭严密,动作可靠;2.10提高转子一阶临界转速,避免发后油膜振荡;2.11热工保护,报警信号完整正常。
3运行方面技术措施3.1汽轮机起动前必须符合以下条件,否则禁止起动:3.1.1大轴晃动、串轴、胀差、低油压和振动保护等表计显示正确,并正常投入;3.1.2大轴晃动值不应超过制造厂的规定值或原始值的0.02mm;3.1.3高压外缸上、下缸温差不超过50℃,高压内缸上、下缸温差不超过35℃;3.1.4主蒸汽温度必须高于汽缸最高金属温度50℃,但不超过额定蒸汽温度。
蒸汽过热度不低于50℃;3.1.5主要保护试验不合格如轴向位移保护、胀差保护、低真空保护、润滑油压低保护,超速保护等不合格;3.1.6交流油泵、直流油泵、顶轴油泵、高压油泵不能启动或不能正常运行时;3.1.7 DEH、DCS不能正常工作时;3.1.8盘车时汽轮机内有明显的金属磨擦声时3.1.9高中压主汽门、高中压调速汽门、抽汽逆止门关闭不严或卡涩时6.2.10汽轮机不能维持空负荷运行或汽轮机甩负荷后不能维持在危急保安器动作转速以下运行时。
3.2冷态启动防止大轴弯曲措施3.2.1启动前对照阀门检查卡做详尽检查3.2.2连续盘车两小时以上,如间断应重新计时。
启动前转子弯曲值不大于原始值0.02mm。
3.2.3未连续盘车,严禁向轴封供汽。
3.2.4冲转前各保护试验合格并正常投入。
3.2.5冲转前检查各热工信号正常。
3.2.6冲转前检查大轴弯曲表,轴向位移,胀差,振动表,缸温,转速表等重要表计投入。
3.2.7冲转前应对主蒸汽、再热蒸汽、导汽管、轴封供汽管、法兰螺栓加热联箱充分暖管疏水。
3.2.8冲转前参数选择。
主蒸汽温度必须高于汽缸最高温度50℃以上,过热度不低于50℃,但不超过额定主蒸汽温度。
3.2.9冲转前高压外缸上下温差不超过50℃,高压内缸上下温差不超过35℃,否则不允许启动。
3.2.10主汽门、调门,各段抽汽逆止门动作正常无卡涩,关闭严密。
调节系统赶空气正常。
3.2.11启动中严密监视主蒸汽、再热蒸汽变化,严禁汽温反复上下波动,10分钟变化50℃应打闸停机。
3.2.12启动过程中严密监视凝汽器,除氧器水箱,及各加热器水位变化,防止满水。
3.2.13法兰螺栓加热投入后,应精心调整,确保汽缸各处温度均匀上升,温差在允许范围。
3.2.14汽轮机冲转过程中严格监视轴承振动。
中速暖机前,轴承振动超过0.03mm,过临界转速时轴承振动超过0.10mm或相对轴振动值超过0.26mm,应立即打闸停机。
当轴承振动变化±0.015mm 或相对轴振动变化±0.05mm,应查明原因设法消除,当轴承振动突然增加0.05mm,应立即打闸停机。
严禁强行通过临界转速或降速暖机。
盘车中应全面检查,认真分析。
查明原因并处理后连续盘车不少于4小时,再启动。
3.2.15冲转至3000rpm定速后,应关小电动主汽门后疏水门,防止其疏水量太大影响汽缸本体汽缸疏水畅通。
其他疏水在主再热蒸汽温度350℃以上再择机关闭。
3.2.16启动冲转过程中,不得投入再热蒸汽减温器喷水,否则将造成再热蒸汽带水。
3.3热态启动防止大轴弯曲措施热态启动中除做好冷态启动前防弯曲措施外,还应注意以下工作。
3.3.1尽量避免极热态启动。
3.3.2热态启动,应先向轴封供汽后抽真空。
3.3.3各主蒸汽、再热蒸汽、轴封供汽管道应暖管充分,加强疏水是热启防进水3.3.4热态启动和滑参数停机后尽量不做超速试验。
3.3.5调节系统充分赶空气。
因为冲转中调门大幅波动,不易控制转速,并引起锅炉参数不稳定,造成蒸汽带水。
3.3.6合理选择冲转参数。
主再热蒸汽温度高于汽缸最高温度50-100℃,并有80-100℃过热度。
3.3.7轴封供汽温度应与金属温度相适应,减少温差产生的局部热应力。
必须充分疏水并在连续盘车时才能投入轴封供汽。
3.3.8热态启动前连续盘车不少于4小时,若盘车中断应重新计时。
3.3.9加强振动监视,因为热态汽轮机各部件温差大,容易发生摩擦,振动。
3.3.10启动前,启动班组应详细了解上次停机综合情况,并向每个操作人员说明,做好预想。
3.3.11将上次停机曲线与正常曲线比较,若有异常应认真分析,查明原因,采取措施处理。
3.4正常运行维护中防止大轴弯曲措施3.4.1汽轮机变工况时,加强状态监视,控制各参数在规定范围。
3.4.2主蒸汽、再热蒸汽温度下降,应及时联系锅炉恢复正常,并按规定减负荷,疏水。
如果10分钟内急剧下降50℃,应紧急故障停机。
主再热蒸汽温度下降过快,是过水征兆。
不但增加热应力,而且将引起剧烈热变形,造成动静摩擦,使大轴弯曲。
3.4.3汽轮机因主再热蒸汽引起发生水冲击时严禁采用主、再热蒸汽向轴封供汽;3.4.4凝结器、除氧器,各高低压加热器水位正常。
3.4.5低负荷运行时,不得投入再热器减温水因为此时再热蒸汽流量很小,如果投入减温水会引起再热蒸汽带水。
3.4.7甩负荷、炉熄火后应及时切断主再热蒸汽减温水门,防止主再热蒸汽温度急降。
3.4.8定期活动各主汽门、高中压调门、各抽汽逆止门,防止卡涩。
保证在异常发生后能及时阻止冷汽冷水进入汽缸。
3.4.9定期试验热工报警信号正常,各监视仪表正常,有缺陷及时联系检修处理。
3.4.10加强设备巡视检查,对通流部分异音应加强监视分析,防止动静摩擦造成大轴弯曲。
3.4.11加强振动监视,防止动静摩擦。
正常运行中要求轴承振动不超过0.03mm,相对轴振动不超过0.08mm,如超过应设法消除。
当轴承振动变化±0.015mm或相对轴承振动变化±0.05mm时,应查明原因设法消除。
当各轴承振动突增0.05mm 或相对轴振动大于0.26mm时,应立即打闸停机特别应注意振动的突变值,这是突发事故的明显征兆。
3.4.12加强润滑油温、油压、油位监视,防止断油烧瓦造成大轴弯曲。
切换冷油器小心细致。
3.4.13加强轴向位移、胀差、推力瓦温度、轴瓦温度及回油温度监视。
3.5停机、盘车状态防止大轴弯曲措施3.5.1滑参数停机应严格按照滑参数停机曲线执行。
必须保持主再热蒸汽有50℃以上过热度,且不能有回升现象,否则应开启相关疏水。
若蒸汽温度10分钟急降50℃立即打闸停机。
3.5.2及时停运高加、低加、防止其水位异常。
3.5.3在汽轮机打闸后,因转子回转效应将造成低压胀差大幅度正向上涨。
故应该在打闸前降低低压胀差值,防止动静摩擦。