2017高考数学函数真题汇编
02分段函数-2017年高考数学(文)母题题源系列(天津专版)含解析

母题二 分段函数【母题原题1】【2017天津】已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+≥⎪⎩设a ∈R ,若关于的不等式()||2x f x a ≥+在R 上恒成立,则的取值范围是(A )[2,2]- (B )[23,2]- (C )[2,23]-(D )[23,23]-【答案】A【考点】1.分段函数;2.函数图形的应用;3。
不等式恒成立.【名师点睛】一般不等式恒成立求参数1.可以选择参变分离的方法,转化为求函数最值的问题; 2。
也可以画出两边的函数图象,根据临界值求参数取值范围;3。
也可转化为()0F x >的问题,转化讨论求函数的最值求参数的取值范围.【母题原题2】【2016天津】已知函数2(43)3,0()(01)log (1)1,0a x a x a x f x a a x x ⎧+-+<⎪=>≠⎨++≥⎪⎩且在R 上单调递减,且关于x 的方程|()|23x f x =-恰有两个不相等的实数解,则a 的取值范围是_________。
【答案】12[,)33【解析】由函数()f x 在R 上单调递减得43130,01,31234a a a a --≥<<≥⇒≤≤,又方程|()|23x f x =-恰有两个不相等的实数解,所以12132,1637a a a <-≤⇒>≥,因此的取值范围是12[,)33【母题原题3】【2015天津】已知函数22||,2()(2),2x x f x x x ,函数()3(2)g x f x ,则函数y ()()f x g x 的零点的个数为( )(A ) 2 (B ) 3 (C )4 (D )5【答案】A【考点定位】本题主要考查分段函数、函数零点及学生分析问题解决问题的能力。
【名师点睛】本题解法采用了直接解方程求零点的方法,这种方法对运算能力要求较高。
含有绝对值的分段函数问题,一直是天津高考数学试卷中的热点,这类问题大多要用到数形结合思想与分类讨论思想,注意在分类时要做到:互斥、无漏、最简.【命题意图】高考对本部分内容重点考查函数性质的运用。
17年高考数学真题高考题(3套)

2017年普通高等学校招生全国统一考试全国Ⅰ(文数)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2017·全国Ⅰ卷,文1)已知集合A={x|x<2},B={x|3-2x>0},则( A )(A)A∩B=(x|x<错误!未找到引用源。
)(B)A∩B=(C)A∪B=(x|x<错误!未找到引用源。
)(D)A∪B=R解析:B={x|3-2x>0}=(x|x<错误!未找到引用源。
),A∩B=(x|x<错误!未找到引用源。
),故选A.2.(2017·全国Ⅰ卷,文2)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( B )(A)x1,x2,…,xn的平均数(B)x1,x2,…,xn的标准差(C)x1,x2,…,xn的最大值(D)x1,x2,…,xn的中位数解析:标准差衡量样本的稳定程度,故选B.3.(2017·全国Ⅰ卷,文3)下列各式的运算结果为纯虚数的是( C )(A)i(1+i)2(B)i2(1-i)(C)(1+i)2(D)i(1+i)解析:(1+i)2=2i,故选C.4.(2017·全国Ⅰ卷,文4)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( B )(A)错误!未找到引用源。
(B)错误!未找到引用源。
(C)错误!未找到引用源。
(D)错误!未找到引用源。
解析:不妨设正方形的边长为2,则正方形的面积为4,圆的半径为1,圆的面积为πr2=π.黑色部分的面积为圆面积的错误!未找到引用源。
,即为错误!未找到引用源。
,所以点取自黑色部分的概率是错误!未找到引用源。
2017年普通高等学校招生全国统一考试 数学 函数

2017年普通高等学校招生全国统一考试数学函数部分目录2017年普通高等学校招生全国统一考试数学(理)(全国卷Ⅰ) (1)2017年普通高等学校招生全国统一考试数学(文)(全国卷Ⅰ) (3)2017年普通高等学校招生全国统一考试数学(理)(全国卷Ⅱ) (3)2017年普通高等学校招生全国统一考试数学(文)(全国卷Ⅱ) (5)2017年普通高等学校招生全国统一考试数学(理)(全国卷Ⅲ) (8)2017年普通高等学校招生全国统一考试数学(文)(全国卷Ⅲ) (10)2017年普通高等学校招生全国统一考试数学(上海卷) (13)2017年普通高等学校招生全国统一考试数学(江苏卷) (15)2017年普通高等学校招生全国统一考试数学(浙江卷) (17)2017年普通高等学校招生全国统一考试数学(理)(山东卷) (19)2017年普通高等学校招生全国统一考试数学(文)(山东卷) (22)2017年普通高等学校招生全国统一考试数学(理)(天津卷) (24)2017年普通高等学校招生全国统一考试数学(文)(天津卷) (26)2017年普通高等学校招生全国统一考试数学(理)(北京卷) (28)2017年普通高等学校招生全国统一考试数学(文)(北京卷) (29)2017年普通高等学校招生全国统一考试数学(理)(全国卷Ⅰ)1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}A B x x =>D .A B =∅5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]9.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 211.设xyz 为正数,且235x y z==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为23sin aA(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.21.(12分)已知函数)f x(a e2x+(a﹣2) e x﹣x.(1)讨论()f x的单调性;(2)若()f x有两个零点,求a的取值范围.23.[选修4—5:不等式选讲](10分)已知函数f(x)=–x2+ax+4,g(x)=│x+1│+│x–1│.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.2017年普通高等学校招生全国统一考试数学(文)(全国卷Ⅰ)1.已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A B =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A B =∅ C .A B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A B=R8..函数sin21cos xy x=-的部分图像大致为9.已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称14.曲线21y x x=+在点(1,2)处的切线方程为_________________________. 15.已知π(0)2a ∈,,tan α=2,则πcos ()4α-=__________。
2017年高考全国名校试题数学分项汇编 专题04 三角函数与解三角形(原卷版) Word版无答案

一、填空题1. 【2016高考冲刺卷(9)【江苏卷】】已知()23tantan 1,sin 3sin 222ααβαβ+==+,则()tan αβ+=2. 【2016高考冲刺卷(7)【江苏卷】】直线3=y 与曲线)0(sin 2>=ωωx y 相距最近的两个交点间距离为6π,则x y ωsin 2=的最小正周期为 . 3. 【2016高考冲刺卷(6)【江苏卷】】已知θ是第三象限角,且52cos 2sin -=-θθ,则=+θθcos sin4. 【2016高考冲刺卷(5)【江苏卷】】已知312sin =α,则⎪⎭⎫ ⎝⎛-4cos 2πα=_____▲____.5. 【2016高考冲刺卷(3)【江苏卷】】将函数()sin(),(0,)22f x x ππωϕωϕ=+>-<<图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移4π个单位长度得到sin y x =的图象,则()6f π= .6. 【2016高考冲刺卷(1)【江苏卷】】若α、β均为锐角,且1cos 17α=,47cos()51αβ+=-,则cos β= .7. 【江苏省苏中三市(南通、扬州、泰州)2016届高三第二次调研测试数学试题】若将函数)4sin(πω+=x y 的图象向左平移6π个单位长度后,与函数)4cos(πω+=x y 的图象重合,则正数ω的最小值为_____________.8. 【江苏省南京市2016届高三年级第三次学情调研适应性测试数学】将函数f (x )=sin(2x +θ)()22ππθ-<<的图象向右平移φ(0<φ<π)个单位长度后得到函数g (x )的图象,若f (x ),g (x )的图象都经过点P ,则φ的值为 ▲ .9. 【2016高考冲刺卷(2)【江苏卷】】已知函数f (x )=|sin |x -kx (x ≥0,k ∈R )有且只有三个零点,设此三个零点中的最大值为0x ,则200(1)sin 2x x x += ▲ . 10. 【2016高考押题卷(3)【江苏卷】】已知函数b a x b x a x f ,(cos sin )(+=为常数,且R x a ∈≠,0),若函数)4(π+=x f y 是偶函数,则)4(π-f 的值为 .11. 【2016高考押题卷(3)【江苏卷】】设α为锐角,若31)6sin(=-πα,则αcos 的值为 . 12. 【2016高考押题卷(3)【江苏卷】】如图,在平面四边形ABCD 中,若090,2,2,1=∠===ACD DC AD BC AB ,则对角线BD 的最大值为 .13. 【2016高考押题卷(1)【江苏卷】】将函数3cos sin y x x x的图像向左平移0m m个单位长度后,所得的图像关于y 轴对称,则m 的最小值是_______.14. 【2016年第四次全国大联考【江苏卷】】已知sin 2cos αα+=,那么tan2α的值为_______.15. 【2016年第三次全国大联考【江苏卷】】已知]4,4[ππθ-∈,且314cos -=θ,则=--+)4(sin )4(sin 44πθπθ .16. 【 2016年第二次全国大联考(江苏卷)】已知1sin tan(),(,)72ααβαπ=+=∈π,那么tan β的值为_______.二、解答题1. 【 2016年第二次全国大联考(江苏卷)】(本小题满分14分)在ABC △中,角CB A 、、分别是边c b a 、、的对角,且b a 23=, (Ⅰ)若 60=B ,求C sin 的值; (Ⅱ)若2cos 3C=,求sin()A B -的值. 2. 【 2016年第二次全国大联考(江苏卷)】(本小题满分16分)如图,290,,3OC km AOB OCD πθ=∠=∠=,点O 处为一雷达站,测控范围为一个圆形区域(含边界),雷达开机时测控半径r 随时间t 变化函数为3r =,且半径增大到81km 时不再变化.一架无人侦察机从C 点处开始沿CD 方向飞行,其飞行速度为15/min km .(Ⅰ) 当无人侦察机在CD 上飞行t 分钟至点E 时,试用t 和θ表示无人侦察机到O 点的距离OE ;(Ⅱ)若无人侦察机在C 点处雷达就开始开机,且4πθ=,则雷达是否能测控到无人侦察机?请说明理由.3. 【2016年第三次全国大联考【江苏卷】】(本小题满分14分)在平面直角坐标系xOy 中,设锐角α的始边与x 轴的非负半轴重合,终边与单位圆交于点11(,)P x y ,将射线OP 绕坐标原点O 按逆时针方向旋转2π后与单位圆交于点22(,)Q x y . 记12()f y y α=+.(Ⅰ)求函数()f α的值域;(Ⅱ)设ABC ∆的角,,A B C 所对的边分别为,,a b c,若()f C =a =1c =,求b的值.4. 【2016年第四次全国大联考【江苏卷】】(本小题满分14分)在ABC ∆中,角C B A 、、分别是边c b a 、、的对角,且(cos ,sin ),(cos ,sin ),cos2,sin sin 3sin sin A A B B C A B A B =-=⋅=+=m n m n ,(Ⅰ)求角C 的值;(Ⅱ)若3c =,求ABC ∆的面积.5. 【2016年第四次全国大联考【江苏卷】】(本小题满分14分)如图,等边三角形OAB 的边O C DEAB长为4km.现在线段OB 上取一点D (不含线段OB 端点)建发电站向,A B 两点供电.如果线段DB 上每公里建设费用为a 万元(a 为正常数),线段AD 上每公里建设费用为3a 万元,设ADO θ∠=,建设总费用为S 万元.(Ⅰ) 写出S 关于θ的函数关系式,并指出θ的取值范围; (Ⅱ)AD 等于多少时,可使建设总费用S 最少?6. 【2016年第一次全国大联考【江苏卷】】(本小题满分14分)已知角α终边逆时针旋转6π与单位圆交于点 且2tan()5αβ+=. (1)求sin(2)6πα+的值,(2)求tan(2)3πβ-的值.7. 【2016高考押题卷(1)【江苏卷】】(本小题满分14分)如图,两座建筑物AB ,CD 的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9m 和15m ,从建筑物AB 的顶部A 看建筑物CD 的张角45CAD ∠=. (1)求BC 的长度;(2)在线段BC 上取一点P (点P 与点B ,C 不重合),从点P 看这两座建筑物的张角分别为APB α∠=,DPC β∠=,问点P 在何处时,tan()αβ+最小?8. 【2016高考押题卷(3)【江苏卷】】(本小题满分14分)已知ABC ∆的面积是30,内角C B A ,,所对边长分别是c b a ,,,且144-=⋅AC AB . (1)求A cos 的值;(2)若4=-b c ,求a 的值.9. 【2016高考押题卷(2)【江苏卷】】(本小题满分14分) 已知函数2()sin(2)cos 6f x x x π=+-.(1)求()f x 的最小正周期及2[,]123x ππ∈时()f x 的值域;(2)在△ABC 中,角A 、B 、C 所对的边为c b a ,,,其中角C 满足423)4(-=+πC f ,若ABC S ∆,2=c ,,求)(,b a b a >的值.10. 【江苏省扬州中学2015—2016学年第二学期质量检测】(本小题满分14分)设ABC ∆的内角,,A B C 的对边分别为,,,tan a b c a b A =,且B 为钝角.(1)证明:2B A π-=; (2)求sin sin A C +的取值范围.11. 【2016高考冲刺卷(4)【江苏卷】】(本小题满分14分)已知函数()2sin cos()3f x x x ωωπ=+(0ω>)的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)求()f x 在区间[,]62ππ-上的最大值和最小值.12. 【南京市2016届高三年级第三次模拟考试】(本小题满分14分)在△ABC 中,已知a ,b ,c 分别为角A ,B ,C 的对边.若向量m =(a ,cos A ),向量n =(cos C ,c ),且m ·n =3b cos B . (1)求cos B 的值;(2)若a ,b ,c 成等比数列,求11tan tanCA +的值. 13. 【2016高考冲刺卷(1)【江苏卷】】(本小题满分14分)已知ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,满足sin sin sin sin b a B Cc B A--=+. ⑴求角A 的值;⑵若a ,c ,b 成等差数列,试判断ABC ∆的形状.14. 【2016高考冲刺卷(3)【江苏卷】】(本小题满分14分)若A B C 、、为ABC ∆的三内角,且其对边分别为a b c 、、.若向量2(cos ,cos 1)22A A m =-,向量(1,cos 1)2An =+,且21m n ⋅=-.(1)求A 的值;(2)若a =S =b c +的值.15. 【2016高考冲刺卷(5)【江苏卷】】(本题满分14分)已知函数2()2sin cos f x x x x =+.(1)求函数()f x 的最小正周期和单调减区间;(2)已知ABC ∆的三个内角A ,B ,C 的对边分别为a ,b ,c ,其中7a =,若锐角A 满足()26A f π-=sin sin B C +=,求bc 的值. 16. 【2016高考冲刺卷(6)【江苏卷】】在△ABC 中,角A 、B 、C 的对边分别为c b a ,,,已知A C B cos 1)cos(-=-,且c a b ,,成等比数列.(1)求C B sin sin ⋅之值; (2)求角A 的大小; (3)求C B tan tan +的值。
函数的概念和性质高考真题

函数的概念和性质高考真题1.函数的概念和性质1.1 函数的定义函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素上。
通常用符号f(x)表示函数,其中x是定义域中的元素,f(x)是值域中的元素。
1.2 函数的性质函数有很多性质,其中一些比较重要的包括:1)定义域和值域:函数的定义域是所有可能输入的集合,值域是所有可能输出的集合。
2)奇偶性:如果对于函数f(x),有f(-x)=-f(x),则称f(x)是奇函数;如果有f(-x)=f(x),则称f(x)是偶函数。
3)单调性:如果对于函数f(x),当x1f(x2),则称f(x)在区间(x1,x2)上单调递减。
4)零点和极值:函数的零点是函数图像与x轴的交点,极值是函数在某一区间内的最大值或最小值。
2.例题解答2.1(2019江苏4)函数y=7+6x-x^2的定义域是所有实数。
函数f(x)是奇函数,且当x<0时,f(x)=-eax。
若f(ln2)=8,则a=ln(1/4)。
2.2(2019全国Ⅱ理14)已知。
2.3(2019全国Ⅲ理11)设f(x)是定义域为R的偶函数,且在(0,+∞)上单调递减,则正确的不等式是B。
2.4(2019北京理13)设函数f(x)=ex+ae-x(a为常数),若f(x)为奇函数,则a=0;若f(x)是R上的增函数,则a的取值范围是(-∞,0)。
2.5(2019全国Ⅰ理11)关于函数f(x)=sin|x|+|sinx|有下述四个结论:①f(x)是偶函数;②f(x)在区间(π/2,π)单调递增;③f(x)在[-π,π]有4个零点;④f(x)的最大值为2.其中所有正确结论的编号是B。
2.6(2019全国Ⅰ理5)函数f(x)=sinx+x/cosx+x^2在[-π,π]的图像大致为D。
2.7(2019全国Ⅲ理7)函数y=2x+2-x在[-6,6]的图像大致为A。
2.8(2019浙江6)在同一直角坐标系中,函数y=11/x^2,y=loga(x+2)(a>0且a≠1)的图像可能是B。
2017高考十年高考数学(理科)分项版 专题02 函数(浙江专版)(解析版) 含解析

一.基础题组1。
【2014年。
浙江卷.理6】已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ()A.3≤c B 。
63≤<c C 。
96≤<c D 。
9>c2。
【2013年。
浙江卷.理3】已知x ,y 为正实数,则( ). A .2lg x +lg y =2lg x +2lg y B .2lg (x +y )=2lg x ·2lg y C .2lg x ·lg y =2lg x +2lg y D .2lg (xy )=2lg x ·2lg y 【答案】:D【解析】:根据指数与对数的运算法则可知,2lg x +lg y =2lg x ·2lg y ,故A 错,B 错,C 错;D 中,2lg (xy )=2lg x +lg y =2lg x ·2lg y ,故选D .3. 【2012年。
浙江卷.理9】设a >0,b >0,( ) A .若2a +2a =2b +3b ,则a >b B .若2a +2a =2b +3b ,则a <b C .若2a -2a =2b -3b ,则a >bD .若2a -2a =2b-3b ,则a <b 【答案】A【解析】考查函数y =2x +2x 为单调递增函数,若2a +2a =2b +2b ,则a =b ,若2a +2a =2b +3b ,则a >b . 4。
【2011年.浙江卷。
理1】设函数2,0,()()4,0.x x f x f x x α-≤⎧==⎨>⎩若,则实数α=(A)—4或—2 (B )—4或2 (C )—2或4 (D )—2或2【答案】 B【解析】:当2042,a aa >=⇒=时,044a a a ≤=⇒=-当时,-,故选B5。
【2011年。
浙江卷.理11】若函数2()f x xx a =-+为偶函数,则实数a =。
2017年高考真题分类汇编(理数)专题1集合与函数 Word版含解析

2017年高考真题分类汇编(理数):专题1 集合与函数一、单选题(共15题;共30分)1、(2017•新课标Ⅰ卷)已知集合A={x|x<1},B={x|3x<1},则()A、A∩B={x|x<0}B、A∪B=RC、A∪B={x|x>1}D、A∩B=∅2、(2017•新课标Ⅱ)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()A、{1,﹣3}B、{1,0}C、{1,3}D、{1,5}3、(2017•新课标Ⅲ)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为()A、3B、2C、1D、04、(2017•山东)已知命题p:∀x>0,ln(x+1)>0;命题q:若a>b,则a2>b2,下列命题为真命题的是()A、p∧qB、p∧¬qC、¬p∧qD、¬p∧¬q5、(2017•山东)设函数y= 的定义域为A,函数y=ln(1﹣x)的定义域为B,则A∩B=()A、(1,2)B、(1,2]C、(﹣2,1)D、[﹣2,1)6、(2017·天津)设集合A={1,2,6},B={2,4},C={x∈R|﹣1≤x≤5},则(A∪B)∩C=()A、{2}B、{1,2,4}C、{1,2,4,5}D、{x∈R|﹣1≤x≤5}7、(2017•浙江)已知集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q=()A、(﹣1,2)B、(0,1)C、(﹣1,0)D、(1,2)8、(2017•北京卷)若集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},则A∩B=()A、{x|﹣2<x<﹣1}B、{x|﹣2<x<3}C、{x|﹣1<x<1}D、{x|1<x<3}9、(2017·天津)已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(﹣log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为()A、a<b<cB、c<b<aC、b<a<cD、b<c<a10、(2017·天津)设θ∈R,则“|θ﹣|<”是“sinθ<”的()A、充分而不必要条件B、必要而不充分条件C、充要条件D、既不充分也不必要条件11、(2017•北京卷)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A、1033B、1053C、1073D、109312、(2017•北京卷)已知函数f(x)=3x﹣()x,则f(x)()A、是奇函数,且在R上是增函数B、是偶函数,且在R上是增函数C、是奇函数,且在R上是减函数D、是偶函数,且在R上是减函数13、(2017•新课标Ⅰ卷)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A、[﹣2,2]B、[﹣1,1]C、[0,4]D、[1,3]14、(2017•山东)已知当x∈[0,1]时,函数y=(mx﹣1)2的图象与y= +m的图象有且只有一个交点,则正实数m的取值范围是()A、(0,1]∪[2 ,+∞)B、(0,1]∪[3,+∞)C、(0,)∪[2 ,+∞)D、(0,]∪[3,+∞)15、(2017•新课标Ⅰ卷)设x、y、z为正数,且2x=3y=5z,则()A、2x<3y<5zB、5z<2x<3yC、3y<5z<2xD、3y<2x<5z二、填空题(共7题;共8分)16、(2017•江苏)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为________.17、(2017•北京卷)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为________.18、(2017•江苏)已知函数f(x)=x3﹣2x+e x﹣,其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是________.19、(2017•山东)若函数e x f(x)(e≈2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数的序号为________.①f(x)=2﹣x②f(x)=3﹣x③f(x)=x3④f(x)=x2+2.20、(2017•浙江)已知a∈R,函数f(x)=|x+ ﹣a|+a在区间[1,4]上的最大值是5,则a 的取值范围是________.21、(2017•北京卷)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中A i的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点B i的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.①记Q i为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是________.②记p i为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是________.22、(2017•江苏)设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)= ,其中集合D={x|x= ,n∈N*},则方程f(x)﹣lgx=0的解的个数是________.答案解析部分一、单选题1、【答案】A【考点】并集及其运算,交集及其运算,指数函数的图像与性质【解析】【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.【分析】先分别求出集合A和B,再求出A∩B和A∪B,由此能求出结果.2、【答案】C【考点】交集及其运算【解析】【解答】解:集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则1∈A且1∈B,可得1﹣4+m=0,解得m=3,即有B={x|x2﹣4x+3=0}={1,3}.故选:C.【分析】由交集的定义可得1∈A且1∈B,代入二次方程,求得m,再解二次方程可得集合B.3、【答案】B【考点】交集及其运算【解析】【解答】解:由,解得:或,∴A∩B的元素的个数是2个,故选:B.【分析】解方程组求出元素的个数即可.4、【答案】B【考点】复合命题的真假,对数函数的单调性与特殊点,不等式比较大小【解析】【解答】解:命题p:∀x>0,ln(x+1)>0,则命题p为真命题,则¬p为假命题;取a=﹣1,b=﹣2,a>b,但a2<b2,则命题q是假命题,则¬q是真命题.∴p∧q是假命题,p∧¬q是真命题,¬p∧q是假命题,¬p∧¬q是假命题.故选B.【分析】由对数函数的性质可知命题p为真命题,则¬p为假命题,由不等式的性质可知,命题q是假命题,则¬q是真命题.因此p∧¬q为真命题.5、【答案】D【考点】交集及其运算,函数的定义域及其求法,一元二次不等式的解法【解析】【解答】解:由4﹣x2≥0,解得:﹣2≤x≤2,则函数y= 的定义域[﹣2,2],由对数函数的定义域可知:1﹣x>0,解得:x<1,则函数y=ln(1﹣x)的定义域(﹣∞,1),则A∩B=[﹣2,1),故选D.【分析】根据幂函数及对数函数定义域的求法,即可求得A和B,即可求得A∩B.6、【答案】B【考点】交、并、补集的混合运算【解析】【解答】解:∵A={1,2,6},B={2,4},∴A∪B={1,2,4,6},又C={x∈R|﹣1≤x≤5},∴(A∪B)∩C={1,2,4}.故选:B.【分析】由并集概念求得A∪B,再由交集概念得答案.7、【答案】A【考点】并集及其运算【解析】【解答】解:集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q={x|﹣1<x<2}=(﹣1,2).故选:A.【分析】直接利用并集的运算法则化简求解即可.8、【答案】A【考点】交集及其运算【解析】【解答】解:∵集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},∴A∩B={x|﹣2<x<﹣1}故选:A【分析】根据已知中集合A和B,结合集合交集的定义,可得答案.9、【答案】C【考点】函数单调性的判断与证明,函数单调性的性质,函数奇偶性的判断,对数值大小的比较,对数函数的图像与性质【解析】【解答】解:奇函数f(x)在R上是增函数,当x>0,f(x)>f(0)=0,且f′(x)>0,∴g(x)=xf(x),则g′(x)=f(x)+xf′(x)>0,∴g(x)在(0,+∞)单调递增,且g(x)=xf(x)偶函数,∴a=g(﹣log25.1)=g(log25.1),则2<﹣log25.1<3,1<20.8<2,由g(x)在(0,+∞)单调递增,则g(20.8)<g(log25.1)<g(3),∴b<a<c,故选C.【分析】由奇函数f(x)在R上是增函数,则g(x)=xf(x)偶函数,且在(0,+∞)单调递增,则a=g(﹣log25.1)=g(log25.1),则2<﹣log25.1<3,1<20.8<2,即可求得b<a<c 10、【答案】A【考点】必要条件、充分条件与充要条件的判断,正弦函数的图象,正弦函数的单调性,绝对值不等式的解法【解析】【解答】解:|θ﹣|<⇔﹣<θ﹣<⇔0<θ<,sinθ<⇔﹣+2kπ<θ<+2kπ,k∈Z,则(0,)⊂[﹣+2kπ,+2kπ],k∈Z,可得“|θ﹣|<”是“sinθ<”的充分不必要条件.故选:A.【分析】运用绝对值不等式的解法和正弦函数的图象和性质,化简两已知不等式,结合充分必要条件的定义,即可得到结论.11、【答案】D【考点】指数式与对数式的互化【解析】【解答】解:由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈100.48,∴M≈3361≈(100.48)361≈10173,∴≈ =1093,故本题选:D.【分析】根据对数的性质:T= ,可得:3=10lg3≈100.48,代入M将M也化为10为底的指数形式,进而可得结果.12、【答案】A【考点】函数单调性的性质,函数奇偶性的性质,奇偶性与单调性的综合【解析】【解答】解:显然,函数的定义域为全体实数,f(x)=3x﹣()x=3x﹣3﹣x,∴f(﹣x)=3﹣x﹣3x=﹣f(x),即函数f(x)为奇函数,又由函数y=3x为增函数,y=()x为减函数,故函数f(x)=3x﹣()x为增函数,故选:A.【分析】由已知得f(﹣x)=﹣f(x),即函数f(x)为奇函数,由函数y=3x为增函数,y=()x为减函数,结合“增”﹣“减”=“增”可得答案.13、【答案】D【考点】函数的单调性及单调区间,函数奇偶性的性质,奇偶性与单调性的综合,抽象函数及其应用【解析】【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D【分析】由已知中函数的单调性及奇偶性,可将不等式﹣1≤f(x﹣2)≤1化为﹣1≤x﹣2≤1,解得答案.14、【答案】B【考点】函数的值域,函数单调性的性质,函数的图象【解析】【解答】解:根据题意,由于m为正数,y=(mx﹣1)2为二次函数,在区间(0,)为减函数,(,+∞)为增函数,函数y= +m为增函数,分2种情况讨论:①、当0<m≤1时,有≥1,在区间[0,1]上,y=(mx﹣1)2为减函数,且其值域为[(m﹣1)2,1],函数y= +m为增函数,其值域为[m,1+m],此时两个函数的图象有1个交点,符合题意;②、当m>1时,有<1,y=(mx﹣1)2在区间(0,)为减函数,(,1)为增函数,函数y= +m为增函数,其值域为[m,1+m],若两个函数的图象有1个交点,则有(m﹣1)2≥1+m,解可得m≤0或m≥3,又由m为正数,则m≥3;综合可得:m的取值范围是(0,1]∪[3,+∞);故选:B.【分析】根据题意,由二次函数的性质分析可得:y=(mx﹣1)2为二次函数,在区间(0,)为减函数,(,+∞)为增函数,分2种情况讨论:①、当0<m≤1时,有≥1,②、当m>1时,有<1,结合图象分析两个函数的单调性与值域,可得m的取值范围,综合可得答案.15、【答案】D【考点】指数式与对数式的互化,对数的运算性质,对数值大小的比较,不等式比较大小【解析】【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x= ,y= ,z= .∴3y= ,2x= ,5z= .∵= = ,>= .∴>lg >>0.∴3y<2x<5z.故选:D.【分析】x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x= ,y= ,z= .可得3y= ,2x= ,5z= .根据= = ,>=.即可得出大小关系.二、填空题16、【答案】1【考点】交集及其运算【解析】【解答】解:∵集合A={1,2},B={a,a2+3}.A∩B={1},∴a=1或a2+3=1,解得a=1.故答案为:1.【分析】利用交集定义直接求解.17、【答案】﹣1,﹣2,﹣3【考点】命题的否定,命题的真假判断与应用【解析】【解答】解:设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题,则若a>b>c,则a+b≤c”是真命题,可设a,b,c的值依次﹣1,﹣2,﹣3,(答案不唯一),故答案为:﹣1,﹣2,﹣3【分析】设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题,则若a>b>c,则a+b≤c”是真命题,举例即可,本题答案不唯一18、【答案】[-1,]【考点】函数奇偶性的性质,利用导数研究函数的单调性,一元二次不等式的解法,基本不等式【解析】【解答】解:函数f(x)=x3﹣2x+e x﹣的导数为:f′(x)=3x2﹣2+e x+ ≥﹣2+2 =0,可得f(x)在R上递增;又f(﹣x)+f(x)=(﹣x)3+2x+e﹣x﹣e x+x3﹣2x+e x﹣=0,可得f(x)为奇函数,则f(a﹣1)+f(2a2)≤0,即有f(2a2)≤﹣f(a﹣1)=f(1﹣a),即有2a2≤1﹣a,解得﹣1≤a≤ ,故答案为:[﹣1,].【分析】求出f(x)的导数,由基本不等式和二次函数的性质,可得f(x)在R上递增;再由奇偶性的定义,可得f(x)为奇函数,原不等式即为2a2≤1﹣a,运用二次不等式的解法即可得到所求范围.19、【答案】①④【考点】函数单调性的性质,指数函数的图像与性质,利用导数研究函数的单调性【解析】【解答】解:对于①,f(x)=2﹣x,则g(x)=e x f(x)= 为实数集上的增函数;对于②,f(x)=3﹣x,则g(x)=e x f(x)= 为实数集上的减函数;对于③,f(x)=x3,则g(x)=e x f(x)=e x•x3,g′(x)=e x•x3+3e x•x2=e x(x3+3x2)=e x•x2(x+3),当x<﹣3时,g′(x)<0,∴g(x)=e x f(x)在定义域R上先减后增;对于④,f(x)=x2+2,则g(x)=e x f(x)=e x(x2+2),g′(x)=e x(x2+2)+2xe x=e x(x2+2x+2)>0在实数集R上恒成立,∴g(x)=e x f(x)在定义域R上是增函数.∴具有M性质的函数的序号为①④.故答案为:①④.【分析】把①②代入e x f(x),变形为指数函数判断;把③④代入e x f(x),求导数判断.20、【答案】(﹣∞,)【考点】函数的最值及其几何意义,绝对值不等式的解法【解析】【解答】解:由题可知|x+ ﹣a|+a≤5,即|x+ ﹣a|≤5﹣a,所以a≤5,又因为|x+ ﹣a|≤5﹣a,所以a﹣5≤x+ ﹣a≤5﹣a,所以2a﹣5≤x+ ≤5,又因为1≤x≤4,4≤x+ ≤5,所以2a﹣5≤4,解得a≤ ,故答案为:(﹣∞,).【分析】通过转化可知|x+ ﹣a|+a≤5且a≤5,进而解绝对值不等式可知2a﹣5≤x+ ≤5,进而计算可得结论.21、【答案】Q1;p2【考点】函数的图象与图象变化【解析】【解答】解:①若Q i为第i名工人在这一天中加工的零件总数,Q1=A1的综坐标+B1的综坐标;Q2=A2的综坐标+B2的综坐标,Q3=A3的综坐标+B3的综坐标,由已知中图象可得:Q1,Q2,Q3中最大的是Q1,②若p i为第i名工人在这一天中平均每小时加工的零件数,则p i为A i B i中点与原点连线的斜率,故p1,p2,p3中最大的是p2故答案为:Q1,p2【分析】①若Q i为第i名工人在这一天中加工的零件总数,则Q i=A i的综坐标+B i的综坐标;进而得到答案.②若p i为第i名工人在这一天中平均每小时加工的零件数,则p i为A i B i中点与原点连线的斜率;进而得到答案.22、【答案】8【考点】分段函数的解析式求法及其图象的作法,函数的周期性,对数函数的图像与性质,根的存在性及根的个数判断【解析】【解答】解:∵在区间[0,1)上,f(x)= ,第一段函数上的点的横纵坐标均为有理数,又f(x)是定义在R上且周期为1的函数,∴在区间[1,2)上,f(x)= ,此时f(x)的图象与y=lgx有且只有一个交点;同理:区间[2,3)上,f(x)的图象与y=lgx有且只有一个交点;区间[3,4)上,f(x)的图象与y=lgx有且只有一个交点;区间[4,5)上,f(x)的图象与y=lgx有且只有一个交点;区间[5,6)上,f(x)的图象与y=lgx有且只有一个交点;区间[6,7)上,f(x)的图象与y=lgx有且只有一个交点;区间[7,8)上,f(x)的图象与y=lgx有且只有一个交点;区间[8,9)上,f(x)的图象与y=lgx有且只有一个交点;在区间[9,+∞)上,f(x)的图象与y=lgx无交点;故f(x)的图象与y=lgx有8个交点;即方程f(x)﹣lgx=0的解的个数是8,故答案为:8【分析】由已知中f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)= ,其中集合D={x|x= ,n∈N*},分析f(x)的图象与y=lgx图象交点的个数,进而可得答案.。
2017年高考数学真题(含答案)

2017年高考数学真题(含答案)本试卷共4 页,150 分.考试时长120 分钟.考生务必将答案答在答题卡上,在试卷上 作答无效.考试结束后,将本试卷和答题卡一并交回.一、选择题共8 小题,每小题5 分,共40 分.在每小题列出的四个选项中,选出符合题目 要求的一项.1.函数()21x f x =-的定义域为 A .[0,+∞)B .[1,+∞)C .(-∞,0]D .(-∞,1]2.某程序的框图如图所示,若输入的z =i (其中i 为虚数单位),则输出的S 值为 A .-1 B .1 C .-i D .i3.若x ,y 满足20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则12z x y =+的最大值为A .52 B .3 C .72D .44.某三棱锥的三视图如图所示,则其体积为 A .33 B .32 C .233 D .2635.已知数列{}n a 的前n 项和为S n ,则“ {}n a 为常数列”是“*,n n n N S na ∀∈=”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.在极坐标系中,圆C 1 :2cos ρθ=与圆C 2:2sin ρθ=相交于 A ,B 两点,则|AB |= A .1 B .2 C .3 D . 2 7.已知函数sin(),0()cos(),0x a x f x x b x +≤⎧=⎨+>⎩是偶函数,则下列结论可能成立的是A .,44a b ππ==-B .2,36a b ππ==C .,36a b ππ==D .52,63a b ππ==8.某生产基地有五台机器,现有五项工作待完成,每台机器完成每项工作后获得的效益值如表所示.若每台机器只完成一项工作,且完成五项工作后获得的效益值总和最大,则 下列叙述正确的是A .甲只能承担第四项工作B .乙不能承担第二项工作C .丙可以不承担第三项工作D .丁可以承担第三项工作二、填空题共6 小题,每小题5 分,共30 分.9.已知向量(1,),(,9)a t b t ==,若a b ,则t = _______. 10.在等比数列{}n a 中,a 2=2,且131154a a +=,则13a a +的值为_______. 11.在三个数1231,2.log 22-中,最小的数是_______.12.已知双曲线C :22221x y a b -=的一条渐近线l 的倾斜角为3π,且C 的一个焦点到l 的距离为3,则C 的方程为_______.13.如图,在三角形三条边上的6个不同的圆内分别填入数字1,2,3 中的一个.(ⅰ)当每条边上的三个数字之和为4 时,不同的填法有_______种; (ⅱ)当同一条边上的三个数字都不同时,不同的填法有_______种.14.已知函数()f x ,对于实数t ,若存在a >0,b >0 ,满足:[,]x t a t b ∀∈-+,使得|()()|f x f t -≤2,则记a +b 的最大值为H (t ). (ⅰ)当 ()f x =2x 时,H (0)= _______.(ⅱ)当()f x 2x =且t [1,2]∈时,函数H (t )的值域为_______.三、解答题共6 小题,共80 分.解答应写出文字说明、演算步骤或证明过程.15.(本小题满分13 分) 如图,在△ABC 中,点D 在边 AB 上,且13AD DB =.记∠ACD =α ,∠BCD =β. (Ⅰ)求证:sin 3sin AC BC βα=; (Ⅱ)若,,1962AB ππαβ===,求BC 的长.16.(本小题满分13 分)2004 年世界卫生组织、联合国儿童基金会等机构将青蒿素作为一线抗疟药品推 广.2015 年12 月10 日,我国科学家屠呦呦教授由于在发现青蒿素和治疗疟疾的疗法 上的贡献获得诺贝尔医学奖.目前,国内青蒿人工种植发展迅速.某农科所为了深入研究海拔因素对青蒿素产量的影响,在山上和山下的试验田中 分别种植了100 株青蒿进行对比试验.现在从山上和山下的试验田中各随机选取了4 株青蒿作为样本,每株提取的青蒿素产量(单位:克)如下表所示:(Ⅰ)根据样本数据,试估计山下试验田青蒿素的总产量;(Ⅱ)记山上与山下两块试验田单株青蒿素产量的方差分别为21s ,22s ,根据样本数据, 试估计21s 与22s 的大小关系(只需写出结论);(Ⅲ)从样本中的山上与山下青蒿中各随机选取1 株,记这2 株的产量总和为ξ,求 随机变量ξ的分布列和数学期望.17.(本小题满分14 分)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,四边形ABCD 为正方形,点M ,N 分别为线段PB ,PC 上的点,MN ⊥PB . (Ⅰ)求证: BC ⊥平面P AB ;(Ⅱ)求证:当点M 不与点P ,B 重合时,M ,N ,D , A 四个点在同一个平面内; (Ⅲ)当P A =AB =2,二面角C -AN -D 的大小为3π时,求PN 的长.18.(本小题满分13 分) 已知函数f (x ) =ln x +1x -1,1()ln x g x x-= (Ⅰ)求函数 f (x )的最小值;(Ⅱ)求函数g (x )的单调区间;(Ⅲ)求证:直线 y =x 不是曲线 y =g (x )的切线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年高考数学《不等式》真题汇编1.(2017北京)已知函数1()3()3x xf x =-,则()f x (A )(A )是奇函数,且在R 上是增函数 (B )是偶函数,且在R 上是增函数(C )是奇函数,且在R 上是减函数(D )是偶函数,且在R 上是减函数2.(2017北京)已知函数()cos xf x e x x =- (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在区间[0,]2π上的最大值和最小值.解:(Ⅰ)()cos xf x e x x =- ∴()(cos sin )1xf x e x x '=--∴曲线()y f x =在点(0,(0))f 处的切线斜率为0(cos0sin 0)10k e =--= 切点为(0,1),∴曲线()y f x =在点(0,(0))f 处的切线方程为1y = (Ⅱ)()(cos sin )1xf x e x x '=--,令()()g x f x '=,则()(cos sin sin cos )2sin xxg x e x x x x e x '=---=- 当[0,]2x π∈,可得()2sin 0x g x e x '=-≤,即有()g x 在[0,]2π上单调递减,可得()(0)0g x g ≤=, 所以()f x 在[0,]2π上单调递减,所以函数()f x 在区间[0,]2π上的最大值为0(0)cos 001f e =-=; 最小值为2()cos2222f e πππππ=-=-3.(2017全国卷Ⅰ)函数在单调递减,且为奇函数.若,则满足的的取值范围是(D )A .B .C .D .()f x (,)-∞+∞(11)f =-21()1x f --≤≤x [2,2]-[1,1]-[0,4][1,3]4.(2017全国卷Ⅰ)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O 。
D 、E 、F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形。
沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D 、E 、F 重合,得到三棱锥。
当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为_______35.(2017全国卷Ⅰ)已知函数2()(2)x xf x ae a e x =+-- (1)讨论的单调性;(2)若()f x 有两个零点,求a 的取值范围. 解:(1)()f x 的定义域为(,)-∞+∞,2()2(2)1(1)(21)xx x x f x aea e ae e '=+--=-+(i )若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减 (ii )若0a >,则由()0f x '=的ln x a =- 当(,ln )x a ∈-∞-时,()0f x '<; 当(ln ,)x a ∈-+∞时,()0f x '>所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增。
(2)(i )若0a ≤,由(1)知,()f x 至多有一个零点(ii )若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+ 当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; 当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; 当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<又()f x又422(2)(2)2220f aea e e ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点。
设正整数0n 满足03ln(1)n a>-,则00000000()(2)20nnnnf n e ae a n e n n =+-->->-> 由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点 综上,a 的取值范围为(0,1)6.(2017全国卷Ⅰ)函数sin21cos xy x =-的部分图像大致为(C )7.(2017全国卷Ⅰ)已知函数()ln ln(2)f x x x =+-,则(C ) A.()f x 在(0,2)单调递增B.()f x 在(0,2)单调递减C.y =()f x 的图像关于直线x =1对称D.y =()f x 的图像关于点(1,0)对称8.(2017全国卷Ⅰ)已知函数()f x =e x (e x ﹣a )﹣a 2x . (1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围.解:(1)函数()f x 的定义域为22(,),()2(2)()x x x xf x e ae a e a e a '-∞+∞=--=+-①若0a =,则2()xf x e =,在(,)-∞+∞单调递增 ②若0a >,则由()0f x '=得ln x a =9.(2017全国卷Ⅱ)若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( C )A.1-B.32e -- C.35e - D.110.(2017全国卷Ⅱ)已知函数()2ln f x ax ax x x =--,且()0f x ≥。
(1)求a 的值;(2)证明:()f x 存在唯一的极大值点0x ,且()2202e f x --<<.解:(1)()f x 的定义域为(0,)+∞设()ln g x ax a x =--,则()(),()0f x xg x f x =≥等价于()0g x ≥ 因为(1)0,()0g g x =≥,故(1)0g '=,而1(),(1)1g x a g a x''=-=-,得1a = 若1a =,则1()1g x x'=-当01x <<时,()0,()g x g x '<单调递减; 当1x >时,()0,()g x g x '>单调递增所以1x =是()g x 的极小值点,故()(1)0g x g ≥=,综上,1a = (2)由(1)知2()ln ,()22ln f x x x x x f x x x '=--=-- 设()22ln h x x x =--,则1()2h x x'=-当1(0,)2x ∈时,()0h x '<;当1(,)2x ∈+∞时,()0h x '>.所以()h x 在1(0,)2单调递减,在1(,)2+∞单调递增.又21()0,()0,(1)02h e h h -><=,所以()h x 在1(0,)2有唯一零点0x ,在1[,)2+∞有唯一零点1,且当0(0,)x x ∈时,()0h x >;当0(,1)x x ∈时,()0h x <;当(1,)x ∈+∞时,()0h x >. 因为()()f x h x '=,所以0x x =是()f x 的唯一极大值点. 由0()0f x '=得00ln 2(1)x x =-,故000()(1)f x x x =-. 由0(0,1)x ∈得01()4f x <. 因为0x x =是()f x 在(0,1)的最大值点,由11(0,1),()0e f e --'∈≠得120()()f x f e e -->=.所以220()2e f x --<<11.(2017全国卷Ⅱ)函数2()ln(28)f x x x =-- 的单调递增区间是(D ) A.(-∞,-2) B. (-∞,-1) C.(1, +∞) D. (4, +∞)12.(2017全国卷Ⅱ)设函数2()(1)xf x x e =-. (1)讨论()f x 的单调性;(2)当0x ≥时,()1f x ax ≤+,求a 的取值范围. 解:(1)2()(12)xf x x x e '=--令()0f x '=得11x x =-=-+当(,1x ∈-∞-时,()0f x '<;当(11x ∈---+时,()0f x '>;当(1)x ∈-++∞时,()0f x '<.所以()f x 在(,11)-∞---++∞单调递减,在(11---+单调递增. (2)()(1)(1)x f x x x e =+-,当1a ≥时, 设函数()(1),()0(0)xxh x x e h x xe x '=-=-<<, 因此()h x 在[0,)+∞单调递减,而(0)1h =,故()1h x ≤, 所以()(1)()11f x x h x x ax =+≤+≤+ 当01a <<时,设函数()1,()10(0)xxg x e x g x e x '=--=->>,所以()g x 在[0,)+∞单调递增, 而(0)0g =,故1xe x ≥+当01x <<时,2()(1)(1)f x x x >-+,22(1)(1)1(1x x ax x a x x -+--=---),取0x =,则20000(0,1),(1)(1)10x x x ax ∈-+--=,故00()1f x ax >+当0a ≤时,取0x =,则200000(0,1),()(1)(1)11x f x x x ax ∈>-+=≥+综上,a 的取值范围是[1,)+∞.13.(2017全国卷Ⅲ)已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a =(C )A .12-B .13C .12D .114.(2017全国卷Ⅲ)设函数1,0,()2,0xx x f x x +≤⎧=⎨>⎩ 则满足1()()12f x f x +->的x 的取值范围是________1(,)4-+∞15.(2017全国卷Ⅲ)函数2sin 1xy x x =++的部分图像大致为(D ) A . B .C .D .16.(2017全国卷Ⅲ)已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =(C )A .12-B .13C .12D .117.(2017全国卷Ⅲ)已知函数()2(1)ln 2x ax a x f x =+++. (1)讨论()f x 的单调性; (2)当0a <时,证明3()24f x a≤--. 解:(1)f(x)的定义域为(0,)+∞,1(1)(21)()221x ax f x ax a x x++'=+++=若0a ≥,则当(0,)x ∈+∞时,()0f x '>,故()f x 在(0,)+∞单调递增若0a <,则当1(0,)2x a ∈-时,()0f x '>;当1(,)2x a∈-+∞时,()0f x '< 故()f x 在1(0,)2a -单调递增,在1(,)2a-+∞单调递减。