回归分析相关系数计算
用Excel计算相关系数和进行回归分析

例我国1988–1998年的城镇居民人均全年耐用消费品支出、人均全年可支配收入以及耐用消费品价格指数的统计资料如下表所示。
试建立城镇居民人均全年耐用消费品支
出关于可支配收入和耐用消费品价格指数的回归模型,并进行回归分析。
人均耐用消费品支
(元)人均全年可支配收入
(元)
耐用消费品价格指数
(1987年=100)
资料来源:《中国统计年鉴》
一、计算相关系数
步骤一:输入数据。
打开Excel工作簿,将样本观测值输入到A2:C12单元格中。
步骤二:计算相关系数。
1. 选择“工具”下拉菜单的“数据分析”选项;
2. 在分析工具中选择“相关系数”;
3. 当出现“相关系数”对话框后,
⑴在“输入区域”中键入A2:C12;
⑵在“输出选项”中选择输出区域(这里我们选择“新工作薄”);
⑶单击“确定”按钮,得下面的相关矩阵表。
相关矩阵
二、回归分析
我们继续说明如何利用Excel进行回归分析。
1. 选择“工具”下拉菜单的“数据分析”选项;
2. 在分析工具中选择“回归”;
3. 当出现对话框后,
⑴在“Y值输入区域”方框中键入A2:A12;
⑵在“X值输入区域”方框中键入B2:C12;
⑶在“输出选项”中选择输出区域(这里我们选择“新工作薄”);
⑷单击“确定”按钮,得到的结果如下表所示:
从表中得到的主要结果有:
复相关系数:,
判定系数:,
估计的回归方程为:
根据括号内的统计量的值可知:对有显著影响,而对没有显著影响。
根据统计量的值可知:回归方程是显著的。
相关性分析回归分析

Sig. .000a
a. Predictors: (Constant), j3 b. Dependent Variable: s1
定量变量的线性回归分析
和刚才简单的回归模型类似,一般的有k 个(定量)自变量x1, x2…, xk的对因变量 y的线性回归模型为(称为多元回归)
y 0 1 x1 2 x2 k xk e
定量变量的相关
Kendall t 相关系数(Kendall’s t)这里的 度量原理是把所有的样本点配对(如果每 一个点由x和y组成的坐标(x,y)代表,一对 点就是诸如(x1,y1)和(x2,y2)的点对),然后 看每一对中的x和y的观测值是否同时增加 (或减少)。比如由点对(x1,y1)和(x2,y2), 可以算出乘积(x2-x1)(y2-y1)是否大于0;如 果大于0,则说明x和y同时增长或同时下 降,称这两点协同(concordant);否则 就是不协同。如果样本中协同的点数目多, 两个变量就更加相关一些;如果样本中不 协同(discordant)的点数目多,两个变量 就不很相关。
a. Predictors: (Constant), j3
ANOVAb Sum of Squares Regression Residual Total 4307.206 2502.794 6810.000
Model 1
df 1 48 49
Mean Square 4307.206 52.142
F 82.606
问题的提出
该数据中,除了初三和高一的成 绩之外,还有一个定性变量(没 有出现在上面的散点图中)。它 是学生在高一时的家庭收入状况; 它有三个水平:低、中、高,分 别在数据中用1、2、3表示。
回归分析lxy公式

回归分析lxy公式直线回归是用直线回归方程表示两个数量变量间依存关系的统计分析方法,属双变量分析的范畴.1. 直线回归方程的求法(1)回归方程的概念:直线回归方程的一般形式是l=a+bx,其中x为自变量,一般为资料中能精确测定和控制的量,Y为应变量,指在x规定范围内随机变化的量.a为截距,是回归直线与纵轴的交点,b为斜率,意为x每改变一个单位时的变化量.(2)直线回归方程的求法确定直线回归方程利用的是最小二乘法原理,基本步骤为:1)先求b,基本公式为b=lxy/lxx=SSxy/SSxx ,其中lxy为X,Y的离均差积和,lxx为X的离均差平方和;2)再求a,根据回归方程a等于Y的均值减去x均值与b 乘积的差值.(3)回归方程的图示:根据回归方程,在坐标轴上任意取相距较远的两点,连接上述两点就可得到回归方程的图示.应注意的是,连出的回归直线不应超过x的实测值范围.2. 回归关系的检验回归关系的检验又称回归方程的检验,其目的是检验求得的回归方程在总体中是否成立,即是否样本代表的总体也有直线回归关系.方法有以下两种:(1)方差分析其基本思想是将总变异分解为SS回归和SS剩余,然后利用F检验来判断回归方程是否成立.(2)t检验其基本思想是利用样本回归系数b与总体均数回归系数?进行比较来判断回归方程是否成立,实际应用中因为回归系数b的检验过程较为复杂,而相关系数r的检验过程简单并与之等价,故一般用相关系数r的检验来代替回归系数b的检验.3. 直线回归方程的应用(1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系(2)利用回归方程进行预测;把预报因子(即自变量x)代入回归方程对预报量(即因变量Y)进行估计,即可得到个体Y值的容许区间.(3)利用回归方程进行统计控制规定Y值的变化,通过控制x的范围来实现统计控制的目标.如已经得到了空气中NO2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO2的浓度.4. 应用直线回归的注意事项(1)做回归分析要有实际意义;(2)回归分析前,最好先作出散点图;(3)回归直线不要外延.。
数据分析技巧Excel中的回归分析和相关性计算

数据分析技巧Excel中的回归分析和相关性计算在Excel中,回归分析和相关性计算是数据分析中常用的技巧。
通过这些分析方法,我们可以了解变量之间的关系,以及预测和解释数据的趋势。
本文将介绍Excel中回归分析和相关性计算的基本原理和操作方法。
一、回归分析回归分析是用于研究因变量和一个或多个自变量之间关系的方法。
在Excel中,我们可以使用“数据分析”功能来进行回归分析。
下面以一个示例来说明回归分析的具体步骤。
假设我们想研究一个人的身高与体重之间的关系。
首先,将收集到的身高和体重数据录入Excel表格中,如下所示:身高(cm)体重(kg)160 50165 55170 60175 65180 70接下来,在Excel的菜单栏中选择“数据”→“数据分析”→“回归”功能。
然后,选择“输入Y范围”为体重数据,选择“输入X范围”为身高数据。
点击“确定”,Excel会生成回归分析的结果。
回归分析的结果包括了斜率、截距、相关系数等信息。
通过这些信息,我们可以得出一个回归方程,用于预测体重。
例如,回归方程可能是:体重 = 0.5 ×身高 + 25。
通过回归分析,我们可以得到身高与体重之间的关系,并进行相关的预测和解释。
二、相关性计算相关性是用来描述两个变量之间关系的统计指标。
在Excel中,我们可以使用相关性函数来计算两个变量之间的相关系数。
下面以一个示例来说明相关性计算的具体操作。
假设我们有两列数据,分别是销售额和广告费用。
我们想知道这两个变量之间是否存在相关关系。
首先,在Excel表格中录入这两列数据,如下所示:销售额(万元)广告费用(万元)10 212 315 518 620 8然后,在Excel的一个空白单元格中输入“=CORREL(A2:A6, B2:B6)”并按下回车键,Excel会自动计算出这两个变量的相关系数。
相关系数的取值范围在-1到1之间。
相关系数为正值表示正相关,即当一个变量增加时,另一个变量也随之增加;相关系数为负值表示负相关,即当一个变量增加时,另一个变量会减少;相关系数为0表示没有线性关系。
回归方程的相关系数公式(一)

回归方程的相关系数公式(一)回归方程的相关系数公式在统计学中,回归分析是一种用于探索变量之间关系的方法。
回归分析可用于预测和解释因变量与一个或多个自变量之间的关系。
相关系数是回归分析中常用的指标,用于衡量自变量与因变量之间的关联程度。
下面是回归方程的相关系数公式及其解释说明。
简单线性回归的相关系数公式在简单线性回归中,只有一个自变量和一个因变量。
相关系数(也称为皮尔逊相关系数)表示自变量和因变量之间的线性关系强度。
相关系数公式如下:r=∑(x−x)(y−y)i i其中,r为相关系数,x i和y i分别表示第i个观测值的自变量和因变量值,x和y分别为自变量和因变量的均值。
多元线性回归的相关系数公式多元线性回归中,有多个自变量和一个因变量。
相关系数矩阵可以用来衡量每个自变量与因变量之间的关联程度。
相关系数矩阵公式如下:R=(X T X)−1(X T Y)其中,R为相关系数矩阵,X为自变量矩阵,Y为因变量矩阵。
示例说明假设我们想要研究某个城市的房价与以下两个因素的关系:房屋面积和距离市中心的距离。
我们收集了10个房屋的数据,如下所示:房屋编号 | 面积(平方米) | 距离市中心(公里) | 房价(万元) || | | |1 | 80 | 5 | 200 |2 | 90 | 4 | 220 |3 | 95 | 7 | 230 |4 | 100 | 6 | 250 |5 | 110 | 3 | 270 |6 | 120 | 8 | 290 |7 | 130 | 2 | 310 |8 | 140 | 9 | 330 |9 | 150 | 1 | 350 |10 | 160 | 10 | 370 |我们可以使用多元线性回归模型来分析房屋面积和距离市中心与房价之间的关系。
根据相关系数矩阵公式,我们可以计算出相关系数矩阵R:R=(X T X)−1(X T Y)其中,X是由房屋面积和距离市中心组成的自变量矩阵,Y是房价的因变量矩阵。
用Excel进行相关性与回归分析

小值会给出样本中第K个大值和第K个小值。
第三步:单击确定,可得输出结果。
上面的结果中,平均指样本均值;标准误差 指样本平均数的标准差;中值即中位数;模 式指众数;标准偏差指样本标准差,自由度 为n-1;峰值即峰度系数;偏斜度即偏度系 数;区域实际上是极差,或全距;可以看出 与我们前面用函数计算的结果完全相同。最 大值为16,最小值为11,第三个最大值为 15,第三个最小值为13。
二、描述统计菜单项的使用
仍使用上面的例子 我们已经把数据输入到B2:B11单元格, 然后按以下步骤操作:
第一步:在工具菜单中选择数据分析选项,从其对话框中 选择描述统计,按确定后打开描述统计对话框。
第二步:在输入区域中输入$B$1:$B$11,在 输出区域中选择$F$1,其他复选框可根据需 要选定,选择汇总统计,可给出一系列描述统 计量;选择平均数置信度,会给出用样本平均 数估计总体平均数的置信区间;第K大值和第K
多 元 回 归 分 析
用Excel进行回归分析
第三步:单击确定按钮,得回归分析结果如下图所示。
回归分析工具的输出解释
Excel回归分析工具的输出结果包括3个部分: (1)回归统计表 回归统计表包括以下几部分内容: ① Multiple R (复相关系数 R ):是 R2 的平方根, 又称为相关系数,用来衡量变量x和y之间相关程 度的大小。本例中 R 为 0.6313 ,表示二者之间的 关系是正相关。 ②R Square(复测定系数R2):用来说明自变 量解释因变量变差的程度,以测定因变量y的拟 合效果。
利用EXCEL计算相关系数源自1.利用函数计算相关系数 2.用相关系数宏计算相关系数
1.利用函数计算相关系数
统计学 第 七 章 相关与回归分析
(一)回归分析与相关分析的关系
回归分析与相关分析是研究现象 之间相互关系的两种基本方法。
区别:
1、相关分析研究两个变量之间相关的 方向和相关的密切程度。但是相关分析不 能指出两变量相互关系的具体形式,也无 法从一个变量的变化来推测另一个变量的 变化关系。
2、按研究变量多少分为单相关和 复相关
单相关即一元相关,亦称简单相 关,是指一个因变量与一个自变量 之间的依存关系。复相关又称多元 相关,是指一个因变量与两个或两 个以上自变量之间的复杂依存关系。
3、按相关形式分为线性相关和非 线性相关
从相关图上观察:观察的样本点的 分布近似表现为直线形式,即观察点近 似地分布于一直线的两边,则称此种相 关为直线相关或线性相关。如果这些样 本点近似地表现为一条曲线,则称这种 相关为曲线相关或非线性相关(curved relationship).
不确定性的统计关系 —相关关系
Y= f(X)+ε (ε为随机变量)
在这种关系中,变量之间的关系值 是随机的,当一个(或几个)变量的值 确定以后,另一变量的值虽然与它(们) 有关,但却不能完全确定。然而,它们
之间又遵循一定的统计规律。
相关关系的例子
▪ 商品的消费量(y)与居民收入(x)
之间的关系
▪ 商品销售额(y)与广告费支出(x)
▲相关系数只反映变量间的线性相关程度,不 能说明非线性相关关系。
▲相关系数不能确定变量的因果关系,也不能 说明相关关系具体接近于哪条直线。
例题1: 经验表明:商场利润额与 其销售额之间存在相关关系。下表为 某市12家百货公司的销售额与利润额 统计表,试计算其相关系数。
回归方程相关系数r公式
回归方程相关系数r公式
回归方程相关系数r是一种统计指标,用于衡量两个变量之间的线性关系。
它是一种反映变量之间线性关系的统计指标,可以用来衡量两个变量之间的相关性。
回归方程相关系数r的取值范围从-1到1,其中-1表示完全负相关,1表示完全正相关,0表示没有线性关系。
回归方程相关系数r的计算公式为:r=Σ(x-x̅)(y-y̅)/√[Σ(x-
x̅)^2]*[Σ(y-y̅)^2],其中x和y分别表示两个变量,x̅和y̅分别表示两个变量的均值。
回归方程相关系数r的计算可以帮助我们了解两个变量之间的线性关系,从而更好地分析数据。
它可以帮助我们判断两个变量之间是否存在线性关系,以及线性关系的强度。
回归方程相关系数r的计算可以帮助我们更好地理解数据,从而更好地分析数据。
回归方程相关系数r的计算是一种重要的统计指标,它可以帮助我们更好地理解数据,从而更好地分析数据。
它可以帮助我们判断两个变量之间是否存在线性关系,以及线性关系的强度。
因此,回归方程相关系数r的计算是统计分析中不可或缺的一部分。
统计学原理第8章相关与回归分析[精]
估计标准误差就是因变量的估计值yc与实际值y之间差异 公 的平均程度。记为Syx,它的基本公式为:
式
或
式中,Syx表示估计标准误差;下标yx表示y依x的回归方程; y是因变量的实际值;yc是因变量的估计值。
例8.4以例8.1的资料计算估计标准误差。
步骤: 1.设计一张计算表,将已知x的值代入回归方程求出对应的yc的值 2.计算离差y-yc并加以平方求和 3.求出估计标准误差Syx。
数关系。
当r=0时,表示x与y完全没有线性相关。
当0<|r|<1时,表示x与y存在着一定的线性相关。一般分四个
等级,判断标准如下:
若0<|r|<0.3,则称x与y为微弱相关;
若0.3<|r|<0.5, 则称x与y为低度相关;
若0.5<|r|<0.8, 则称x与y为显著相关;
若0.8<|r|<1, 则称x与y为高度相关。
8.3.2简单直线回归方程
a, b是待定参数 利用最小二乘法 得到a,b求值,再反解得到方程式
建立回归直线的过程:列计算表,求出∑xy,∑x2,∑y2,x,y; 计算Lxy,Lxx和Lyy的值;求出b和a的值并写出方程
例 8.2某工厂某产品的产量与单位成本资料见表8.2,试 求单位成本依产量的回归直线方程。
★ 填空题 (1) 现象之间的相关关系,从相关因素的个数看,可分为()和();从相关的形式
的两个回归方程。() (9) 估计标准误差指的就是因变量的估计值yc与实际值y之间的平均误差程度。() (10) 在任何相关条件下,都可以用相关系数r说明变量之间相关的密切程度。() (11) 若变量x与y的相关系数r1=-0.8,变量p与q的相关系数r2=-0.92,由于r1>r2,
相关分析与回归分析方案
明X是影响Y的主要因素
相关分析 与
回归分析
弱负相关关系,其特点是变量X增加,导致Y减少,但 减少幅度不明显,说明X是Y的影响因素,但不是唯一 因素。
非线性相关关系,其特点是X、Y之间没有明显的线性 关系,却存在着某种非线性关系,说明X仍是影响Y的 因素。
3、具体判断相关是否显著,要看显著性水平
相关分析 与
回归分析
相关系数的计算
样本的相关系数一般用r表示,总体的相关系数一般用p表 示。
对于不同类型的变量,相关系数的计算公式不同。在相关 分析中,常用的相关系数有: Pearson简单相关系数:对定距连续变量的数据进行计算。 如测度收入和储蓄,身高和体重。 Spearman等级相关系数:用于度量定序变量间的线性相关 关系。如军队教员的军衔与职称。 Kendall r相关系数:用非参数检验方法来度量定序变量间 的线性相关关系。计算基于数据的秩。
(1)
最小二乘估计就是寻找参数β0 、β1、… βp的估计值β̂0 、β ̂ 1、… β ̂p,使式(1)达到极小。通过求极值原理(偏导为零) 和解方程组,可求得估计值,SPSS将自动完成。
线性回归
相关分析 与
回归分析
回归方程的统计检验 回归方程的拟合优度检验(相关系数检验) 一元线性回归的拟合优度检验采用R2统计量,称为判定 系数或决定系数,数学定义为
线性回归
相关分析 与
回归分析
回归方程的统计检验 回归系数的显著性检验(t检验)
多元线性回归方程的回归系数显著性检验的零假设是βi=0, 检验采用t统计量,其数学定义为:
ti
ˆi ˆ