中考数学复习课件:等腰三角形
合集下载
中考数学复习第4章图形的认识与三角形第15讲等腰三角形与直角三角形课件

1 为圆心,大于 2 AC的长为半径画弧,两弧相交于点M,N,作直线MN,
交BC于点D,连接AD,则∠BAD的度数为( A ) A.65° B.60° C.55° D.45°
A 由作图知,MN是AC的垂直平分线,∴∠DAC=∠C=30°.又 ∵∠BAC=180°-∠B-∠C=180°-55°-30°=95°,∴∠BAD= ∠BAC-∠DAC=95°-30°=65°.
1 ∴∠CDE=∠CED= 2
∠BCD=30°.
∴∠DBC=∠DEC. ∴DB=DE(等角对等边).
变式运用► [2017·蓬江区质检]如图,在△ABC中,AB=AC,点D,E, F分别在AB,BC,AC边上,且BE=CF,BD=CE. (1)求证:△DEF是等腰三角形; (2)当∠A=40°时,求∠DEF的度数. 解:(1)证明:∵AB=AC, ∴∠ABC=∠ACB. 在△DBE和△ECF中,
第四章
图形的认识与三角形
第 15讲
等腰三角形与直角三角形
考点梳理过关
考点1 等腰三角形的性质及判定 6年1考 等腰三角形的两腰①相等(定义赋予) 等腰三角形的两个底角相等,即“②等边 对等角” 性质
提示►(1)在一个三角形中, 等腰三角形顶角的平分线、底边上的中线、 如果一个角的平分线与该 底边上的高相互重合,即“③三线合一” 角对边上的中线重合,那 么这个三角形是等腰三角 形;(2)在一个三角形中, 等腰三角形是轴对称图形,有④一条对称 如果一个角的平分线与该 轴 角对边上的高重合,那么 有两⑤边相等的三角形是等腰三角形(定义这个三角形是等腰三角形 赋予) 有两个⑥角相等的三角形是等腰三角形, 即“⑦等角对等边”
判定
考点2
等边三角形的性质及判定 6年1考
考点3
交BC于点D,连接AD,则∠BAD的度数为( A ) A.65° B.60° C.55° D.45°
A 由作图知,MN是AC的垂直平分线,∴∠DAC=∠C=30°.又 ∵∠BAC=180°-∠B-∠C=180°-55°-30°=95°,∴∠BAD= ∠BAC-∠DAC=95°-30°=65°.
1 ∴∠CDE=∠CED= 2
∠BCD=30°.
∴∠DBC=∠DEC. ∴DB=DE(等角对等边).
变式运用► [2017·蓬江区质检]如图,在△ABC中,AB=AC,点D,E, F分别在AB,BC,AC边上,且BE=CF,BD=CE. (1)求证:△DEF是等腰三角形; (2)当∠A=40°时,求∠DEF的度数. 解:(1)证明:∵AB=AC, ∴∠ABC=∠ACB. 在△DBE和△ECF中,
第四章
图形的认识与三角形
第 15讲
等腰三角形与直角三角形
考点梳理过关
考点1 等腰三角形的性质及判定 6年1考 等腰三角形的两腰①相等(定义赋予) 等腰三角形的两个底角相等,即“②等边 对等角” 性质
提示►(1)在一个三角形中, 等腰三角形顶角的平分线、底边上的中线、 如果一个角的平分线与该 底边上的高相互重合,即“③三线合一” 角对边上的中线重合,那 么这个三角形是等腰三角 形;(2)在一个三角形中, 等腰三角形是轴对称图形,有④一条对称 如果一个角的平分线与该 轴 角对边上的高重合,那么 有两⑤边相等的三角形是等腰三角形(定义这个三角形是等腰三角形 赋予) 有两个⑥角相等的三角形是等腰三角形, 即“⑦等角对等边”
判定
考点2
等边三角形的性质及判定 6年1考
考点3
2024年九年级数学中考专题:二次函数等腰三角形存在性问题 两圆一线课件

C
二、两圆一线画法
尺规作图
二、两圆一线画法(尺规作图)
1、探究实验:以线段AB为边做一个等腰三角形? 2、作图:如图,在平面直角坐标系找一点P,使得ΔABP为
等腰三角形,则满足要求的点P 有几个?
三、例题解析
二次函数等腰三角形存在性问题 -----两圆一线
三、例题解析
如图,抛物线与x轴交于A. B两点,与y轴交C点,点A的坐标 为(2,0),点C的坐标为(0,3)它的对称轴是直线x=−0.5 (1)求抛物线的解析式; (2)M是坐标轴上任意一点,当△MBC为等腰三角形时, 求M圆一线
目录
CONTENTS
一、等腰三角形 二、两圆一线画法 三、例题解析 四、方法归纳
一、等腰三角形
一、等腰三角形
等腰三角形 定义:
有两条边相等的三角形为等腰三角 形,相等的两条边叫做腰
如图:ΔABC,AB=AC, 则ΔABC为等腰三角形
A
B
做题技巧
1、做题工具: 圆规,直尺
2、做题方法: 两圆一线
3、做题思想: 数形结合,分 类讨论
谢谢
轴上找出点P,使△CDP为等腰三角形,请直接写出满足条件 的所有点P的坐标
2.如图所示,二次函数y=k(x-1)2+2的图像与一次函数y=kx-k+2 的图像交于A、B两点,点B在点A的右侧,直线AB分别与x、y轴交 于C、D两点,其中k<0.
(1)求A、B两点的横坐标;
(2)若△OAB是以OA为腰的等腰三角形,求k的值;
四、方法归纳
四、方法归纳
2、分类讨论
4、写结果
1、先作图
3、计算点的坐标
五、学以致用
五、学以致用
1.如图,在平面直角坐标系中,抛物线与x轴交于A、B两点 (A在B的左侧),与y轴交于点C(0,4),顶点为(1,4.5) (1)求抛物线的函数关系式; (2)如图①,设该抛物线的对称轴与x轴交于点D,试在对称
中考数学一轮复习:第19课时等腰三角形课件

返回目录
4. (202X龙岩5月质检8题4分)三个等边三角形的摆放位置如图,若∠3=60°,
则∠1+∠2的度数为( B )
A. 90°
B. 120° C. 270°
D. 360°
第4题图
No
B. ∠AEF= 12∠ABC D. ∠AEB=∠ACB
No
第1题图
第19课时 等腰三角形
返回目录
2. (202X莆田5月质检14题4分)如图,△ABC中,AB=3 5 ,AC=4 5 ,点F在
AC上,AE平分∠BAC,AE⊥BF于点E.若点D为BC中点,则DE的长为 5
____2____.
第2题图
例题图①
例题图②
No
第19课时 等腰三角形
返回目录
类型一 等腰三角形的判定及计算(202X.5)
1. (202X宁德5月质检10题4分)如图,已知等腰△ABC,AB=BC,D是AC上一点,
线段BE与BA关于直线BD对称,射线CE交射线BD于点F,连接AE,AF.则下列关
系正确的是( B ) A. ∠AFE+∠ABE=180° C. ∠AEC+∠ABC=180°
第1题图
No
第19课时 等腰三角形
解:在△BAD和△CAD中,
AB=AC
BD=CD ,
AD=AD
△BAD≌△CAD(SSS).
∴∠BAD=∠CAD,
∴∠BDA=∠CDA=90°,AD⊥BC,
即AD是底边BC的高.
∴BC边上的中线、高以及∠BAC的平分线互相重合
No
返回目录
返回思维导图
第19课时 等腰三角形
No
第19课时 等腰三角形
返回目录
类型二 等边三角形性质的相关计算(202X.5)
中考专题复习--等腰三角形中的旋转(课件)-2023-2024学年北师大版数学九年级下册+

拓展延伸:(3)直接写出当△DOM是等腰三角形时旋转角的度数.
综合与实践
问题情境:活动课上,同学们以等腰三角形为背景展开有关图形旋转 的探究活动,如图1,已知△ABC中,AB=AC,∠B=40°,将△ABC从图1 的位置开始绕点A逆时针旋转,得到△ADE(点D、E分别是点B、C的对 点),旋转角为α(0<α<100°),设线段AD与BC相交于点M,线段DE分别 交BC,AC于点O、N
J
谢谢!
探究规律:(2)如图3,在△ABC绕点A逆时针旋转的过程中,“求真” 小组的同学发现线段AM始终等于线段AN,请你证明这一结论;
综合与实践
问题情境:活动课上,同学们以等腰三角形为背景展开有关图形旋转 的探究活动,如图1,已知△ABC中,AB=AC,∠B=40°,将△ABC从图1 的位置开始绕点A逆时针旋转,得到△ADE(点D、E分别是点B、C的对 点),旋转角为α(0<α<100°),设线段AD与BC相交于点M,线段DE分别 交BC,AC于点O、N
等腰三角形中的旋转
旋转
旧知回顾:
1.旋转:在平面内,将一个图形绕一个定点按某个方向转动 一个角度,这样的图形运动称为旋转。定点称为旋转中心。
2.旋转角:转动的角度为旋转角。一般用对应边的夹角来表示。
3.旋转不改变图形的形状和大小,属于全等变换。
如图,点P在等边三角形ABC内,且∠APC=150°, PA=3,PC=4,求PB的长.
数.
C
P
A
B
已知:RtΔABC中,∠ACB=90°,AC=BC。
2.如图,点D是BC上的一点(不与B、C重合),连接AD,过点D做 BE⊥AD,交AD的延长线于点E,连接CE,若∠BAD=α,求∠DBE 的大小(用含α的式子表示)。
综合与实践
问题情境:活动课上,同学们以等腰三角形为背景展开有关图形旋转 的探究活动,如图1,已知△ABC中,AB=AC,∠B=40°,将△ABC从图1 的位置开始绕点A逆时针旋转,得到△ADE(点D、E分别是点B、C的对 点),旋转角为α(0<α<100°),设线段AD与BC相交于点M,线段DE分别 交BC,AC于点O、N
J
谢谢!
探究规律:(2)如图3,在△ABC绕点A逆时针旋转的过程中,“求真” 小组的同学发现线段AM始终等于线段AN,请你证明这一结论;
综合与实践
问题情境:活动课上,同学们以等腰三角形为背景展开有关图形旋转 的探究活动,如图1,已知△ABC中,AB=AC,∠B=40°,将△ABC从图1 的位置开始绕点A逆时针旋转,得到△ADE(点D、E分别是点B、C的对 点),旋转角为α(0<α<100°),设线段AD与BC相交于点M,线段DE分别 交BC,AC于点O、N
等腰三角形中的旋转
旋转
旧知回顾:
1.旋转:在平面内,将一个图形绕一个定点按某个方向转动 一个角度,这样的图形运动称为旋转。定点称为旋转中心。
2.旋转角:转动的角度为旋转角。一般用对应边的夹角来表示。
3.旋转不改变图形的形状和大小,属于全等变换。
如图,点P在等边三角形ABC内,且∠APC=150°, PA=3,PC=4,求PB的长.
数.
C
P
A
B
已知:RtΔABC中,∠ACB=90°,AC=BC。
2.如图,点D是BC上的一点(不与B、C重合),连接AD,过点D做 BE⊥AD,交AD的延长线于点E,连接CE,若∠BAD=α,求∠DBE 的大小(用含α的式子表示)。
中考数学专题复习课件(第20讲_等腰三角形)

目录
首页
上一页
下一页
末页
考 点 知 识 精 讲 中 考 典 例 精 析
7.如图,在边长为 4 的正三角形 ABC 中,AD⊥BC 于点 D,以 AD 为一边向右作正三 角形 ADE.
举 一 反 三
(1)求△ABC 的面积 S; (2)判断 AC、DE 的位置关系,并给出证明.
考 点 训 练
答案:(1)S=4 3 (2)AC⊥DE
考 点 训 练
目录
首页
上一页
下一页
末页
考 点 知 识 精 讲 中 考 典 例 精 析
6. 如图, △ABC 内有一点 D, 且 DA=DB=DC, 若∠DAB=20° , ∠DAC=30° , 则∠BDC 的大小是( A ) A.100° B.80° C.70° D.50°
举 一 反 三
考 点 训 练
)
(3)(2010· 烟台 )如图,在等腰三角形 ABC 中, AB= AC,∠ A= 20° .线段 AB 的垂直平分 线交 AB 于 D,交 AC 于 E,连结 BE,则∠ CBE 等于( ) A. 80° B. 70° C.60° D.50°
举 一 反 三
考 点 训 练
例 1(3)题
目录
首页
上一页
举 一 反 三
【解答】 (1)根据“三角形任意两边之和大于第三边”知腰应为 7, 该三角形三边为 7、 7、 3.故选 B. (2)当 40° 为底角时,顶角为 100° ; 40° 也可以为顶角.故选 C. (3)∵DE 垂直平分 AB ,∴EA = EB ,∴∠EBD =∠A = 20° .∵∠ A = 20° , AB = AC , ∴∠ABC=∠C=80° ,∴∠CBE=80° -20° =60° ,故选 C. 考 (4)等腰三角形分别是△ ABC、△ABD、△BCD、△BCE、△CDE.故选 A. 点
2023年河北省中考数学复习全方位第18讲 等腰三角形直角三角形 课件

AB于D,交AC于E,BC=6cm.求:
(1)∠EBC的度数;
(2)△BEC的周长.
解:(1)∵AB=AC,∠A=50°,∴∠C=∠ABC=65°.
∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=50°,
∴∠EBC=∠ABC-∠ABE=15°.
(2)∵AE=BE,AB=AC=8cm,BC=6cm,∴ △ BEC 的 周 长
D. 北偏西35°
返回子目录
3. (2013·河北,8)如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它
以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东
40°的N处,则N处与灯塔P的距离为(
A. 40海里
B. 60海里
D
)
C. 70海里
D. 80海里
返回子目录
命题点3
等边三角形角的性质与判定
上一点,且AB=BD,AD=DC,则∠C=
36
°.
返回子目录
5. (2021 · 河 北 预 测 ) 如 图 , 在 等 腰 △ ABC 中 ,AB=AC, ∠ A=36°, 将
△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE= ,则BC的长
是
.
返回子目录
6. 如图,在△ABC中,AB=AC=8cm,∠A=50°,AB的垂直3)勾股定理:如果直角三角形两直
+
=
角边分别为a,b,斜边为c,那么⑩
;
(4)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜
边的一半;在直角三角形中,如果一条直角边等于斜边的一半,那么这条直
30°
(1)∠EBC的度数;
(2)△BEC的周长.
解:(1)∵AB=AC,∠A=50°,∴∠C=∠ABC=65°.
∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=50°,
∴∠EBC=∠ABC-∠ABE=15°.
(2)∵AE=BE,AB=AC=8cm,BC=6cm,∴ △ BEC 的 周 长
D. 北偏西35°
返回子目录
3. (2013·河北,8)如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它
以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东
40°的N处,则N处与灯塔P的距离为(
A. 40海里
B. 60海里
D
)
C. 70海里
D. 80海里
返回子目录
命题点3
等边三角形角的性质与判定
上一点,且AB=BD,AD=DC,则∠C=
36
°.
返回子目录
5. (2021 · 河 北 预 测 ) 如 图 , 在 等 腰 △ ABC 中 ,AB=AC, ∠ A=36°, 将
△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE= ,则BC的长
是
.
返回子目录
6. 如图,在△ABC中,AB=AC=8cm,∠A=50°,AB的垂直3)勾股定理:如果直角三角形两直
+
=
角边分别为a,b,斜边为c,那么⑩
;
(4)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜
边的一半;在直角三角形中,如果一条直角边等于斜边的一半,那么这条直
30°
中考数学总复习 第一部分 教材同步复习 第四章 三角形 第17讲 等腰三角形与直角三角形课件
125/9/2021
2.(2016·江西 12 题 3 分)如图是一张长方形纸片 ABCD,已知 AB=8,AD=7, E 为 AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点 P 落在长 方形 ABCD 的某一条边上,则等腰三角形 AEP 的底边长是_5___2_或__4__5_或___5__________.
1224/9/2021
如答图 2 所示, 当∠B′ED=90°时,点 C 与点 E 重合.
∵AB′=10,AC=6,∴B′E=4. 设 BD=DB′=x,则 DE=CD=8-x. 在 Rt△B′DE 中,DB′2=DE2+B′E2,即 x2=(8-x)2 +42.解得 x=5,∴BD=5. 综合所述,BD 的长为 2 或 5.
第一部分 教材同步复习
第四章 三角形
第17讲 等腰三角形与直角三角形
12/9/2021
Байду номын сангаас
知识要点 · 归纳
知识点一 等腰三角形的性质与判定
概念
有两条边相等的三角形叫做等腰三角形
(1)两底角相等,即∠B=∠C; (2)两腰相等,即 AB=AC; 性质 (3)是轴对称图形,有一条对称轴,即 AD; (4)“三线合一”(即顶角的①__平_分__线___、底边上的中线和底边上的高互 相重合)
• (2)若图形中含折叠,考虑用折叠的性质,然后在直角三角形中,设 未知量,列方程求解.
• (3)若所求为线段和(或可转化为线段和的形式),考虑用证全等转 化到直角三角形中求解.
1227/9/2021
12/9/2021
122/9/2021
重难点2 直角三角形的多解题 重点 例3 (2018·宜春模拟)如图,Rt△ABC 纸片中,∠C=90°,AC=6,BC=8, 点 D 在边 BC 上,以 AD 为折痕将△ABD 折叠得到△AB′D,AB′与边 BC 交于点 E.若△DEB′为直角三角形,则 BD 的长是__2_或__5___.
2.(2016·江西 12 题 3 分)如图是一张长方形纸片 ABCD,已知 AB=8,AD=7, E 为 AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点 P 落在长 方形 ABCD 的某一条边上,则等腰三角形 AEP 的底边长是_5___2_或__4__5_或___5__________.
1224/9/2021
如答图 2 所示, 当∠B′ED=90°时,点 C 与点 E 重合.
∵AB′=10,AC=6,∴B′E=4. 设 BD=DB′=x,则 DE=CD=8-x. 在 Rt△B′DE 中,DB′2=DE2+B′E2,即 x2=(8-x)2 +42.解得 x=5,∴BD=5. 综合所述,BD 的长为 2 或 5.
第一部分 教材同步复习
第四章 三角形
第17讲 等腰三角形与直角三角形
12/9/2021
Байду номын сангаас
知识要点 · 归纳
知识点一 等腰三角形的性质与判定
概念
有两条边相等的三角形叫做等腰三角形
(1)两底角相等,即∠B=∠C; (2)两腰相等,即 AB=AC; 性质 (3)是轴对称图形,有一条对称轴,即 AD; (4)“三线合一”(即顶角的①__平_分__线___、底边上的中线和底边上的高互 相重合)
• (2)若图形中含折叠,考虑用折叠的性质,然后在直角三角形中,设 未知量,列方程求解.
• (3)若所求为线段和(或可转化为线段和的形式),考虑用证全等转 化到直角三角形中求解.
1227/9/2021
12/9/2021
122/9/2021
重难点2 直角三角形的多解题 重点 例3 (2018·宜春模拟)如图,Rt△ABC 纸片中,∠C=90°,AC=6,BC=8, 点 D 在边 BC 上,以 AD 为折痕将△ABD 折叠得到△AB′D,AB′与边 BC 交于点 E.若△DEB′为直角三角形,则 BD 的长是__2_或__5___.
中考数学一轮复习 第四单元 三角形 第18讲 等腰三角形课件
2021/12/9
第十九页,共二十三页。
变式 等腰三角形ABC中,∠A=80°,求∠B的度数. (1)请你解答(jiědá)以上的变式题; (2)解答(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如 果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的
2021/12/9
第十八页,共二十三页。
(2018·绍兴(shào xīnɡ))数学课上,张老师举了下面的例题:
例1 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°) 例2 等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°)
张老师启发同学们进行变式,小敏编了如下一题:
综上所述,当0<x<90且x≠60时,∠B有三个不同的度数.
2021/12/9
第二十二页,共二十三页。
内容 总结 (nèiróng)
第18讲 等腰三角形。以学生熟悉的一副三角板为背景结合中点和垂线求线段的长度,看似简单实 则不易(bù yì),是考查能力的一道好题.。①当点C在线段OB上时,如图1,。②当点C在线段OB的延长线上时,如图2,。错误鉴定
或5
25
2
或
试真题·练易
命题(mìng tí)点 等腰三角形的性质
1.(2016·山西,15,3分)如图,已知点C为线段(xiànduàn)AB的中点,CD⊥AB且CD=AB=4,连 接AD,BE⊥AB,AE是∠DAB的平分线,与DC相交于点F,EH⊥DC于点G,交AD 于点H,则HG的长为3- .5
A.2 cm2 B.3 cm2 C.4 cm2 D.5 cm2
2021/12/9
第十一页,共二十三页。
2024年中考数学复习课件 第17讲 等腰三角形与直角三角形
返回命题点清单
返回栏目导航
8.(2019·三州联考20题3分)三角板是我们学习数学的好帮手.将一对
直角三角板如图放置,点C在FD的延长线上,点B在ED上,AB∥CF,
∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,则CD的长度
是 15-5 .
6
7
8
9
10
11
第17讲 等腰三角形与直角三角形— 真题试做
返回栏目导航
方法指导
1.在解决与直角三角形相关问题时,要联想到与其相关的知
识:(1)两锐角互余;(2)勾股定理;(3)斜边上的中线等于斜
边的一半;(4)30°角所对直角边等于斜边的一半.
2.常过直角三角形直角顶点作斜边垂线,构造相似三角形求
线段长度.
例2
3
4
第17讲 等腰三角形与直角三角形— 重难突破
命题点 2 直角三角形的性质及计算
返回栏目导航
第17讲 等腰三角形与直角三角形— 真题试做
返回栏目导航
返回命题点清单
命题点 1 等腰三角形的性质及计算 (贵阳6年1考,遵义6年2考,毕节
6年1考)
1.(2020·毕节9题3分)等腰三角形的两条边长分别为3和7,则这个等腰
三角形的周长是 ( C
A.10
湘教:八上P61~P67,八下P2~P18
考点梳理
返回栏目导航
第17讲
返回栏目导航
等腰三角形与直角三角形— 思维导图
定义
定义
性质
性质
直角三角形
等腰三角形
判定
判定
等腰三角
形与直角
三角形
定义
性质
判定
等边三角形
2024年广东省深圳市九年级中考数学一轮教材梳理复习课件+第20讲+等腰三角形
∘ − ,
∠ = ∠ − ∠ = − ∘ ,
∴ ∠ = ∘ − ∠ − ∠ = ∘ − ∘ − − − ∘ = ∘ .
①当∠ = ∠时,∘ − = − ∘ ,∴ = ∘ .
◁上一页
下一页▷
【方法总结】1.当等腰三角形的腰和底、顶角、底角不明确时,需分类讨论.
2.等腰三角形的性质“等边对等角”,是三角形中边与角关系转化的纽带.当利
用方程思想求角度时,等腰三角形的性质在用含未知数的代数式表示角时起到
关键作用.
3.等腰三角形常常与线段垂直平分线的性质定理结合运用,在证明线段或角相
在 △ 中,∵ ∠ = ∘ , = ,∠ = ∘ ,
∴ = = ,∴ = − = .
中考总复习·数学
◁上一页
下一页▷
1.(2021·广州)如图,在△ ABC中,AC = BC,∠B = 38∘ ,D
是AB边上一点,点B关于直线CD的对称点为B′,当
切性质,包括具有“三线合一”的性质,等边三角形也是轴对称图形,并且有3条
对称轴.
2.等边三角形有一个特殊的角60∘ ,所以当等边三角形出现高时,往往会结合直
角三角形30∘ 角的性质.
3.等边三角形判断方法的选择
(1)若已知三边关系,则考虑运用等边三角形的定义进行判定;
(2)若已知三角关系,则根据“三个角都相等的三角形是等边三角形”进行
∠ = ∠,
在△ 和△ 中, ∠ = ∠,
= ,
∴△ ≌△ ,∴ = , = ,
∴ ∠ = ∠,∴ ∠ = ∠,∴ = ,即△ 是等
腰三角形.
中考总复习·数学
◁上一页
下一页▷
∠AQC = 3∠B,求∠B的度数.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12
M
N
E
典型例题
例1.如图1,在△ABC中, BD平分∠ABC交AC于点D,
DE∥CB交AB于点E.
(1)△BDE是什么三角形?请说明理由;
(2)增加条件∠A=90°,点D在边BC的垂直平分线上
(如图2),求∠C的度数;
(3)在(2)的条件下,若ABD′=1,求△BDC的面积; 3
(4)在图3中作出Rt△ABC(满足(2)中所有条件)
基本知识:
1.三角形三边关系; 2.三角形内角和定理; 3.三角形的中线、高、角平分线; 4.等腰三角形的性质和判定; 5.等边三角形的性质判定;
6.垂直平分线、角平分线.
数学思想: 1.分类讨论; 2.数形结合; 3.数学建模; 4.转化思想.
练习反馈
1.实数x,y满足|x-6|+ x 8 =0,则以x、
(3)已知等腰△ABC中,∠A=50°,则 ∠B =__6_5__°__或__5_0_°__或__8_0__°_.
等腰三角形中,给出的一个角可能指顶角,
也可能指底角,因此我们必须分类讨论.
典型例题
例3. 底(边1长)为已y知.等则腰y三关角于形x的周函长数为关16系,式若是腰_长y_=_为-_2_xx_,+_1_6, 自4变<量x<x的8 取值范围为____________;
练习反馈
3.如图,在四边形ABCD中,AD∥BC,E是AB的中点, 连接DE并延长交CB的延长线于点F,点G在边BC上,且 ∠GDF=∠ADF. (1)求证:△ADE≌△BFE; (2)连接EG,判断EG与DF的位置关系,并说明理由.
课后精炼
完成导学稿(24):“课后精炼”.
谢谢!
关于直线AC的对称△AC B′,判断△BCB′的形
状并说明理由.
线段垂直平
分线→等腰
三角形
C 30°
A
角平分线、
1
D
E 平行线→
等腰三角形
H
1 2
B
( (图图231))
辨一辨:
例2. (1)已知等腰三角形的一个内角为100°,
则这个等腰三角形的底角为__4_0_°_;
(2)已知等腰三角形的一个内角为50°, 则这个等腰三角形的底角为_5_0_°__或___6_5°;
y为两边长的等腰三角形的周长是( A )
A.20或22 B.20
C.22
D.以上答案均不对
2.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,
AB的垂直平分线交BC于点M、交AB于点E,AC的垂直平
分线交BC于点N、交AC于点F,则MN的长为C( )
A.4cm B.3cm
C.2cm D.1cm
欢迎指导!
第24课时 三角形的基本概念 等腰三角形
泰兴市
课前热身
5.如图,△ABC中,AD垂直平分BC,垂足为点D, 点E在AD上,且EM⊥AB于点M,EN⊥AC于点N. 你能得到相等的线段有:________________、 相等的角(直角除外)有:______________.
答案: 1.C 2.D 3.B 4.D
(2)方程x2﹣9x+18=0的两个根是等腰三角形的 底和腰,则这个等腰三角形的周长为__1_5___; 变一变:
等腰三角形的边长是方程x2﹣9x+18=0的根,
则等腰三角形的周长为
15或9或18.
等腰三角形中,给出的边可能是腰,也可能是 底,所以我们必须分类讨论.
典型例题
减
少
条
件
→
例4.在等腰△ABC中,AB=AC,AD⊥BC
1
于点D,且AD= BC,则△ABC底角
2
度数为_4_5_4°_5_°或__7_5_°__或__1_5_°.
三角形中,作出的高的位置不确定时,我们也必 须分类讨论.
总之,当条件给出不明确时,都要进行分类讨论 .
典型例题
Байду номын сангаас
例5.如图,在Rt△ABC中,∠B=90°,AB=6m,
BC=8m,动点P以2m/s的速度从点A出发,沿AC向
点C移动,同时动点Q以1m/s的速度从点C出发,
沿CB向点B移动,当其中一点到达终点时,另一
点随之停止运动,设P、Q两点运动时间为t,问:
当△PCQ为等腰三角形时,t为何值?
等腰三角形中 A
常作辅助线: 底边上的高 6
2t
通过相似或勾股定
P 10 理建立方程模型
P
E
B Q 8 QF t C
你的收获‥‥‥