数学九年级北师大版 1 锐角三角函数

合集下载

北师大版数学九年级下册1.1《锐角三角函数》教案1

北师大版数学九年级下册1.1《锐角三角函数》教案1

北师大版数学九年级下册1.1《锐角三角函数》教案1一. 教材分析北师大版数学九年级下册1.1《锐角三角函数》是学生在初中阶段学习三角函数的起点,起着承前启后的作用。

本节课主要介绍了锐角三角函数的定义及概念,通过生活中的实例让学生感受锐角三角函数在实际生活中的应用,培养学生运用数学知识解决实际问题的能力。

教材以实例引入,引导学生探究锐角三角函数的定义,并通过自主学习、合作交流的方式,让学生掌握锐角三角函数的基本概念和性质。

二. 学情分析九年级的学生已经具备了一定的函数知识,对函数的概念有一定的理解。

但是,对于锐角三角函数的理解还需要通过具体的实例和生活情境来引导学生。

学生在学习过程中,需要通过合作交流、自主探究的方式,掌握锐角三角函数的定义和性质。

此外,学生还需要在学习过程中,培养运用数学知识解决实际问题的能力。

三. 教学目标1.理解锐角三角函数的定义,掌握锐角三角函数的基本概念和性质。

2.能够运用锐角三角函数解决实际问题,提高运用数学知识解决实际问题的能力。

3.培养学生的合作交流、自主探究能力,提高学生的数学素养。

四. 教学重难点1.教学重点:锐角三角函数的定义及概念。

2.教学难点:锐角三角函数的性质和运用。

五. 教学方法1.实例引入:通过生活中的实例,引导学生感受锐角三角函数在实际生活中的应用。

2.自主学习:引导学生通过自主学习,掌握锐角三角函数的定义和性质。

3.合作交流:学生进行合作交流,分享学习心得和解决问题的方法。

4.实践操作:让学生通过实际操作,加深对锐角三角函数的理解。

六. 教学准备1.教学课件:制作精美的教学课件,辅助讲解和展示。

2.实例素材:收集生活中的实例,用于引导学生感受锐角三角函数的应用。

3.练习题库:准备一定数量的练习题,用于巩固所学知识。

七. 教学过程导入(5分钟)1.利用实例引入:展示一些生活中的实例,如测量国旗的高度、计算房屋的面积等,引导学生感受锐角三角函数在实际生活中的应用。

北师大版九年级下册第一章直角三角形的边角关系锐角三角函数教案

北师大版九年级下册第一章直角三角形的边角关系锐角三角函数教案

1、1、1锐角三角函数一、教材依据本节为九年级(下)第一章《直角三角形的边角关系》的第一节《从梯子的倾斜程度谈起》第一课时、直角三角形的边角关系是现实世界中应用最广泛的关系之一,锐角三角函数在解决现实问题中有着重要的应用。

通过本节的学习,学生将进一步感受数形结合的思想,体会数形结合的方法。

也将为学生学习正弦、余弦等三角函数知识及进一步学习其他数学知识奠定了基础。

二、设计思路从新课标中让我们明白:“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。

教学应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探究和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验、学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者、"基于课标,我运用导学稿,采纳自主探究、合作交流等形式完成了本节课的教学、三、教学准备(一)学生知识状况分析本节课从生活实例出发,让学生观察多种梯子倾斜的情况,关于梯子的倾斜问题学生在生活中也有一定的生活经验,能够特别容易通过观察分析出简单的梯子倾斜情况,但关于倾斜角度特别接近的情况,就需要通过本节课的学习利用直角三角形三边的关系来判断、(二)教学任务分析教学目标知识与技能1。

经历探究直角三角形中边角关系的过程。

理解正切的意义和与现实生活的联系。

2、能够用tanA表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,能够用正切进行简单的计算。

过程与方法1。

经历观察、猜想等数学活动过程,发展合情推理能力,能有条理地,清楚地阐述自己的观点。

2、体验数形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题,提高解决实际问题的能力。

3、体会解决问题的策略的多样性,发展实践能力和创新精神。

情感态度与价值观1。

积极参与数学活动,对数学产生好奇心和求知欲、2。

形成实事求是的态度以及独立考虑的习惯。

教学重点1、从现实情境中探究直角三角形的边角关系。

北师大版数学九年级下册1.1锐角三角函数第1课时课件

北师大版数学九年级下册1.1锐角三角函数第1课时课件
+4=0的两个正整数根之一,且另两边长为BC=4,AB=6,求
tan A.
合作探究
解:设方程x2+mx+4=0的两根分别为x1,x2,
根据根与系数的关系可知x1·x2=4,
∵x1、x2为正整数解,∴x1、x2可为1、4或2、2.
又∵BC=4,AB=6,∴2<AC<10,∴AC=4,∴AC=BC
=4,∴△ABC为等腰三角形.
过点C作CD⊥AB(如图),∴AD=3,∴CD= ,tan A=


= .


合作探究
方法归纳交流 求解图形中有关角的正切值,在直角三角
形中可直接运用正切的定义求值,无直角三角形的要作辅助线
构造直角三角形求值.
合作探究
1.如图,在Rt△ABC中,∠C=90°,CD是斜边AB上的高,
如果CD=3,BD=2.求tan A的值.
◎重点:正切、倾斜程度、坡度的数学意义.
预习导学
激趣导入
如图,这是上海东方明珠塔的图片,它于1994年10月1日建
成.在各国广播电视塔的排名榜中,当时其高度列亚洲第一、世
界第三,与外滩的“万国建筑博览群”隔江相望.在塔顶俯瞰上
海风景,美不胜收.你能测出东方明珠塔的高度吗?那么就开始
本章的学习之旅吧!
A.
B.
C.
D.
合作探究
在Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、
∠C的对边,若b=2a,则tan A=


.
直角三角形两边的比为3∶4,则最小角的正切为




.
若某人沿坡度i=3∶4的斜坡前进10米,则他所在的位
置比本来的位置升高了 6 米.

北师大版数学九年级下册1.1.1《锐角三角函数》说课稿

北师大版数学九年级下册1.1.1《锐角三角函数》说课稿

北师大版数学九年级下册1.1.1《锐角三角函数》说课稿一. 教材分析北师大版数学九年级下册1.1.1《锐角三角函数》是本册教材的起始章节,主要介绍了锐角三角函数的概念、定义及其应用。

通过本节课的学习,学生能够理解锐角三角函数的定义,掌握特殊角的三角函数值,并能运用三角函数解决实际问题。

本节课的内容主要包括以下几个部分:1.锐角三角函数的定义:正弦、余弦、正切函数在锐角范围内的定义及图象。

2.特殊角的三角函数值:30°、45°、60°角的正弦、余弦、正切值。

3.三角函数的性质:单调性、周期性、奇偶性。

4.三角函数在实际问题中的应用。

二. 学情分析九年级的学生已经具备了一定的数学基础,对函数的概念有一定的了解。

但是,对于锐角三角函数的定义及其应用,学生可能较为陌生。

因此,在教学过程中,需要注重引导学生从实际问题中抽象出锐角三角函数的概念,并通过大量的例子让学生加深对特殊角三角函数值的理解。

三. 说教学目标1.知识与技能:理解锐角三角函数的定义,掌握特殊角的三角函数值,能运用三角函数解决实际问题。

2.过程与方法:通过观察、实验、探究等方法,让学生体会数学与生活的联系,培养学生的动手操作能力和创新能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识,使学生感受到数学在生活中的重要性。

四. 说教学重难点1.教学重点:锐角三角函数的定义,特殊角的三角函数值。

2.教学难点:三角函数的性质,三角函数在实际问题中的应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作法等。

2.教学手段:多媒体课件、实物模型、黑板、粉笔等。

六. 说教学过程1.导入:通过生活中的实例,如测量物体的高度、角度的计算等,引出锐角三角函数的概念。

2.新课讲解:讲解锐角三角函数的定义,特殊角的三角函数值,并通过示例让学生理解三角函数的性质。

3.课堂练习:让学生运用三角函数解决实际问题,如测量国旗的高度等。

北师大版数学九年级下册 第1章 1 锐角三角函数

北师大版数学九年级下册 第1章 1 锐角三角函数

1.1 锐角三角函数(二)教学目标及制定依据:课标依据:1.经历探索直角三角形中边角关系的过程,理解正弦和余弦的意义.2.能够运用sinA、cosA表示直角三角形两边的比.3.能根据直角三角形中的边角关系,进行简单的计算.4.理解锐角三角函数的意义.学情分析:1.经历类比、猜想等过程.发展合情推理能力,能有条理地、清晰地阐述自己的观点.2.体会数形结合的思想,并利用它分析、解决问题,提高解决问题的能力.教材分析:1.积极参与数学活动,对数学产生好奇心和求知欲.2.形成合作交流的意识以及独立思考的习惯.教学重点1.理解锐角三角函数正弦、余弦的意义,并能举例说明.2.能用sinA、cosA表示直角三角形两边的比.3.能根据直角三角形的边角关系,进行简单的计算.教学难点用函数的观点理解正弦、余弦和正切.教学方法探索——交流法.教具准备多媒体演示.教学过程Ⅰ.创设情境,提出问题,引入新课[师]我们在上一节课曾讨论过用倾斜角的对边与邻边之比来刻画梯子的倾斜程度,并且得出了当倾斜角确定时,其对边与斜边之比随之确定.也就是说这一比值只与倾斜角有关,与直角三角形的大小无关.并在此基础上用直角三角形中锐角的对边与邻边之比定义了正切.现在我们提出两个问题:[问题1]当直角三角形中的锐角确定之后,其他边之间的比也确定吗?[问题2]梯子的倾斜程度与这些比有关吗?如果有,是怎样的关系?Ⅱ.讲授新课1.正弦、余弦及三角函数的定义多媒体演示如下内容:想一想:如图(1)直角三角形AB 1C 1和直角三角形AB 2C 2有什么关系?(2) 2112AC AC B A B A 和有什么关系? 221112B C B C B A B A和呢? (3)如果改变B 2在梯子AB 1上的位置呢?你由此可得出什么结论?(4)如果改变梯子AB 1的倾斜角的大小呢?你由此又可得出什么结论?请同学们讨论后回答.[生]∵AC 1⊥B 1C 1,AC 2⊥B 2C 2,∴B 1C 1//B 2C 2.∴Rt △B 1AC 1∽Rt △B 2AC 2.2211=AC AC B A B A221112=B C B C B A B A(相似三角形对应边成比例). 由于B 2是梯子AB 1上的任意—点,所以,如果改变B 2在梯子AB 1上的位置,上述结论仍成立.由此我们可得出结论:只要梯子的倾斜角确定,倾斜角的对边.与斜边的比值,倾斜角的邻边与斜边的比值随之确定.也就是说,这一比值只与倾斜角有关,而与直角三角形大小无关.[生]如果改变梯子AB 1的倾斜角的大小,如虚线的位置,倾斜角的对边与斜边的比值,邻边与斜边的比值随之改变.[师]我们会发现这是一个变化的过程.对边与斜边的比值、邻边与斜边的比值都随着倾斜角的改变而改变,同时,如果给定一个倾斜角的值,它的对边与斜边的比值,邻边与斜边的比值是唯一确定的.这是一种什么关系呢?[生]函数关系.[师]很好!上面我们有了和定义正切相同的基础,接着我们类比正切还可以有如下定义:(用多媒体演示)在Rt △ABC 中,如果锐角A 确定,那么∠A 的对边与斜边的比、邻边与斜边的比也随之确定.如图,∠A 的对边与邻边的比叫做∠A 的正弦(sine),记作sinA ,即sinA =斜边的对边A ∠ ∠A 的邻边与斜边的比叫做∠A 的余弦(cosine),记作cosA ,即cosA=斜边的邻边A ∠ 锐角A 的正弦、余弦和正切都是∠A 的三角函数(trigonometricfunction).[师]你能用自己的语言解释一下你是如何理解“sinA 、cosA 、tanA 都是之A 的三角函数”呢?[生]我们在前面已讨论过,当直角三角形中的锐角A 确定时.∠A 的对边与斜边的比值,∠A 的邻边与斜边的比值,∠A 的对边与邻边的比值也都唯一确定.在“∠A 的三角函数”概念中,∠A 是自变量,其取值范围是0°<A<90°;三个比值是因变量.当∠A 变化时,三个比值也分别有唯一确定的值与之对应.2.梯子的倾斜程度与sinA 和cosA 的关系[师]我们上一节知道了梯子的倾斜程度与tanA 有关系:tanA 的值越大,梯子越陡.由此我们想到梯子的倾斜程度是否也和sinA 、cosA 有关系呢?如果有关系,是怎样的关系?[生]如图所示,AB =A 1B 1,在Rt △ABC 中,sinA=ABBC ,在Rt △A 1B 1C 中,sinA 1=111B A C B . ∵AB BC <111B A C B , 即sinA<sinA 1,而梯子A 1B 1比梯子AB 陡,所以梯子的倾斜程度与sinA 有关系.sinA 的值越大,梯子越陡.正弦值也能反映梯子的倾斜程度.[生]同样道理cosA=ABAC cosA 1=111B A C A , ∵AB=A 1B 1 ABAC >111B A C A 即cosA>cosA 1, 所以梯子的倾斜程度与cosA 也有关系.cosA 的值越小,梯子越陡.[师]同学们分析得很棒,能够结合图形分析就更为妙哉!从理论上讲正弦和余弦都可以刻画梯子的倾斜程度,但实际中通常使用正切.3.例题讲解多媒体演示.[例1]如图,在Rt △ABC中,∠B=90°,AC =200.sinA =0.6,求BC 的长.分析:sinA 不是“sin”与“A”的乘积,sinA 表示∠A 所在直角三角形它的对边与斜边的比值,已知sinA =0.6,ACBC =0.6. 解:在Rt △ABC 中,∠B =90°,AC =200.sinA =0.6,即ACBC =0.6,BC =AC×0.6=200×0.6=120. 思考:(1)cosA =?(2)sinC =? cosC =?(3)由上面计算,你能猜想出什么结论?解:根据勾股定理,得AB=2222120200-=-BCAC=160.在Rt△ABC中,CB=90°.cosA=54200160==ACAB=0.8,sinC=54200160==ACAB=0.8,cosC=53200120==ACBC=0.6,由上面的计算可知sinA=cosC=O.6,cosA=sinC=0.8.因为∠A+∠C=90°,所以,结论为“一个锐角的正弦等于它余角的余弦”“一个锐角的余弦等于它余角的正弦”.[例2]做一做:如图,在Rt△ABC中,∠C=90°,cosA=1312,AC=10,AB等于多少?sinB呢?cosB、sinA呢?你还能得出类似例1的结论吗?请用一般式表达.分析:这是正弦、余弦定义的进一步应用,同时进一步渗透sin(90°-A)=cosA,cos(90°-A)=sinA.解:在Rt△ABC中,∠C=90°,AC=10,cosA=1312,cosA=ABAC,∴AB=1013651012cos12613ACA==⨯=,sinB=12cos13ACAAB==根据勾股定理,得BC2=AB2-AC2=(665)2-102=2222625366065=-∴BC =625. ∴cosB =1356525665625===AB BC , sinA =135=AB BC 可以得出同例1一样的结论.∵∠A+∠B=90°,∴sinA :cosB=cos(90-A),即sinA =cos(90°-A);cosA =sinB =sin(90°-A),即cosA =sin(90°-A).Ⅲ.随堂练习多媒体演示1.在等腰三角形ABC 中,AB=AC =5,BC=6,求sinB ,cosB ,tanB.分析:要求sinB ,cosB ,tanB ,先要构造∠B 所在的直角三角形.根据等腰三角形“三线合一”的性质,可过A 作AD ⊥BC ,D 为垂足.解:过A 作AD ⊥BC ,D 为垂足.∴AB=AC ,∴BD=DC=21BC=3. 在Rt △ABD 中,AB =5,BD=3,∴AD =4.sinB =54=AB AD cosB =53=AB BD , tanB=34=BD AD . 2.在△ABC 中,∠C =90°,sinA =54,BC=20,求△ABC 的周长和面积. 解:sinA=AB BC ,∵sinA=54,BC =20,∴AB =5420sin =A BC ==25. 在Rt △BC 中,AC =222025-=15,∴ABC 的周长=AB+AC+BC =25+15+20=60,△ABC 的面积:21AC×BC=21×15×20=150. 3. (补充练习)在△ABC 中.∠C=90°,若tanA=21, 则sinA= .解:如图,tanA=AC BC =21. 设BC=x ,AC=2x ,根据勾股定理,得 AB=x x x 5)2(22=+.∴sinA=55515===x x AB BC . Ⅳ.课时小结本节课我们类比正切得出了正弦和余弦的概念,用函数的观念认识了三种三角函数,即在锐角A 的三角函数概念中,∠A 是自变量,其取值范围是0°<∠A<90°;三个比值是因变量.当∠A 确定时,三个比值分别唯一确定;当∠A 变化时,三个比值也分别有唯一确定的值与之对应.类比前一节课的内容,我们又进一步思考了正弦和余弦的值与梯子倾斜程度之间的关系以及用正弦和余弦的定义来解决实际问题.Ⅴ.课后作业习题1.2第1、3、4、5题Ⅵ.活动与探究已知:如图,CD 是Rt △ABC 的斜边AB 上的高,求证:BC 2=AB·BD.(用正弦、余弦函数的定义证明)A[过程]根据正弦和余弦的定义,在不同的直角三角形中,只要角度相同,其正弦值(或余弦值)就相等,不必只局限于某一个直角三角形中,在Rt △ABC 中,CD ⊥AB.所以图中含有三个直角三角形.例如∠B 既在Rt △BDC 中,又在Rt △ABC 中,涉及线段BC 、BD 、AB ,由正弦、余弦的定义得cosB =AB BC ,cosB= BCBD . [结果]在Rt △ABC 中,cosB =AB BC 又∵CD ⊥AB.∴在Rt △CDB 中,cosB =BC BD ∴AB BC =BCBD BC 2=AB·BD. 板书设计1.1 锐角三角函数(二)1.正弦、余弦的定义在Rt △ABC 中,如果锐角A 确定.sinA =斜边的对边A ∠ cosA =斜边的对边A ∠ 2.梯子的倾斜程度与sinA 和cosA 有关吗?sinA 的值越大,梯子越陡cosA 的值越小,梯子越陡3.例题讲解4.随堂练习。

北师大版初三下册数学 1.1 锐角三角函数 教案(教学设计)

北师大版初三下册数学 1.1  锐角三角函数 教案(教学设计)

1.1 锐角三角函数第1课时锐角的正切函数教学目标1.经历探索直角三角形中边角关系的过程,理解正切的意义和与现实生活的联系.2.能够用tan A表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,能够用正切进行简单的计算.重点从现实情境中探索直角三角形的边角关系;理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系.难点难点理解正切的意义,并用它来表示两边的比.教学过程一、创设情境,导入新课用FLASH课件动画演示本章的章头图,提出问题,问题从左到右分层次出现:问题1:在直角三角形中,知道一边和一个锐角,你能求出其他的边和角吗?问题2:随着改革开放的深入,上海的城市建设正日新月异地发展,幢幢大楼拔地而起.70年代位于南京西路的国际饭店还一直是上海最高的大厦,但经过多少年的城市发展,“上海最高大厦”的桂冠早已被其他高楼取代,你们知道目前上海最高的大厦叫什么名字吗?你能应用数学知识和适当的途径得到金茂大厦的实际高度吗?通过本章的学习,相信大家一定能够解决.二、合作交流,探究新知用多媒体演示如下内容:[师]梯子是我们日常生活中常见的物体.我们经常听人们说这个梯子放的“陡”,那个梯子放的“平缓”,人们是如何判断的?“陡”或“平缓”是用来描述梯子什么的?请同学们看下图,并回答问题(用多媒体演示).(1)在图中,梯子AB和EF哪个更陡?你是怎样判断的?你有几种判断方法?[生]梯子AB 比梯子EF 更陡.[师]你是如何判断的?[生]从图中很容易发现∠ABC >∠EFD ,所以梯子AB 比梯子EF 陡.[生]我觉得是因为AC =ED ,所以只要比较BC ,FD 的长度即可知哪个梯子陡.BC <FD ,所以梯子AB 比梯子EF 陡.[师]我们再来看一个问题(用多媒体演示)(2)在下图中,梯子AB 和EF 哪个更陡?你是怎样判断的?[师]我们观察上图直观判断梯子的倾斜程度,即哪一个更陡,就比较困难了.能不能从第(1)问中得到什么启示呢?[生]在第(1)问的图形中梯子的垂直高度即AC 和ED 是相等的,而水平宽度BC 和FD 不一样长,由此我想到梯子的垂直高度与水平宽度的比值越大,梯子应该越陡.[师]这位同学的想法很好,的确如此,在第(2)问的图中,哪个梯子更陡,应该从梯子AB 和EF 的垂直高度和水平宽度的比的大小来判断.那么请同学们算一下梯子AB 和EF 哪一个更陡呢?[生]AC BC =41.5=83,ED FD =3.51.3=3513.∵83<3513, ∴梯子EF 比梯子AB 更陡.想一想:如图,小明想通过测量B 1C 1及AC 1,算出它们的比,来说明梯子的倾斜程度;而小亮则认为,通过测量B 2C 2及AC 2,算出它们的比,也能说明梯子的倾斜程度.你同意小亮的看法吗?(1)直角三角形AB 1C 1和直角三角形AB 2C 2有什么关系?(2)B 1C 1AC 1和B 2C 2AC 2有什么关系? (3)如果改变B 2在梯子上的位置呢?由此你能得出什么结论?[师]我们已经知道可以用梯子的垂直高度和水平宽度的比描述梯子的倾斜程度,即用倾斜角的对边与邻边的比来描述梯子的倾斜程度.下面请同学们思考上面的三个问题,再来讨论小明和小亮的做法.[生]在上图中,我们可以知道Rt△AB 1C 1,和Rt△AB 2C 2是相似的.因为∠B 2C 2A =∠B 1C 1A =90°,∠B 2AC 2=∠B 1AC 1,根据相似的条件,得Rt△AB 1C 1∽Rt△AB 2C 2.[生]由图还可知:B 2C 2⊥AC 2,B 1C 1⊥AC 1,得 B 2C 2∥B 1C 1,Rt△AB 1C 1∽Rt△AB 2C 2.[生]相似三角形的对应边成比例,得B 1C 1B 2C 2=AC 1AC 2,即B 1C 1AC 1=B 2C 2AC 2. 如果改变B 2在梯子上的位置,总可以得到Rt△B 2C 2A ∽Rt△B 1C 1A ,仍能得到B 1C 1AC 1=B 2C 2AC 2.因此,无论B 2在梯子的什么位置(除A 外), B 1C 1AC 1=B 2C 2AC 2总成立. [师]也就是说无论B 2在梯子的什么位置(A 除外),∠A 的对边与邻边的比值是不会改变的.现在如果改变∠A 的大小,∠A 的对边与邻边的比值会改变吗?[生]∠A 的大小改变,∠A 的对边与邻边的比值会改变.[师]你又能得出什么结论呢?[生]∠A 的对边与邻边的比只与∠A 的大小有关系,而与它所在直角三角形的大小无关.也就是说,当直角三角形中的一个锐角确定以后,它的对边与邻边之比也随之确定.[师]这位同学回答得很棒,现在我们再返回去看一下小明和小亮的做法,你作何评价?[生]小明和小亮的做法都可以说明梯子的倾斜程度,因为图中直角三角形中的锐角A 是确定的,因此它的对边与邻边的比值也是唯一确定的,与B 1,B 2在梯子上的位置无关,即与直角三角形的大小无关.[生]但我觉得小亮的做法更实际,因为要测量B 1C 1的长度,需攀到梯子的最高端,危险并且复杂,而小亮只需站在地面就可以完成.[师]这位同学能将数学和实际生活紧密地联系在一起,值得提倡.我们学习数学就是为了更好地应用数学.由于直角三角形中的锐角A 确定以后,它的对边与邻边之比也随之确定,因此我们有如下定义:(多媒体演示)如图,在Rt△ABC 中,如果锐角A 确定,那么∠A 的对边与邻边之比便随之确定,这个比叫做∠A 的正切(tangent),记作tan A ,即tan A =∠A 的对边∠A 的邻边. 注意:(1)tan A 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”.(2)tan A 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比.(3)tan A 不表示“tan”乘以“A ”.(4)初中阶段,我们只学习直角三角形中锐角的正切.思考:(1)∠B 的正切如何表示?它的数学意义是什么?(2)前面我们讨论了梯子的倾斜程度,课本图1—3,梯子的倾斜程度与tan A 有关系吗?[生](1)∠B 的正切记作tan B ,表示∠B 的对边与邻边的比值,即tan B =∠B 的对边∠B 的邻边. (2)我们用梯子的倾斜角的对边与邻边的比值刻画了梯子的倾斜程度,因此,在教材图1—3中,梯子越陡,tan A 的值越大;反过来,tan A 的值越大,梯子越陡.三、运用新知,深化理解例1(教材示例) 如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?分析:比较甲、乙两个自动电梯哪一个陡,只需分别求出tan α、tan β的值,比较大小,越大,扶梯就越陡.解:甲梯中, tan α= ∠α的对边∠α的邻边=48=12. 乙梯中,tan β=∠β的对边∠β的邻边=5132-52=512. 因为tan α>tan β,所以甲梯更陡.[师]正切在日常生活中的应用很广泛,例如建筑,工程技术等.正切经常用来描述山坡、堤坝的坡度.如图,有一山坡在水平方向上每前进100 m ,就升高60 m ,那么山坡的坡度(即坡角α的正切tan α)就是tan α=60100=35. 这里要注意区分坡度和坡角.坡面的铅直高度与水平宽度的比即坡角的正切称为坡度.坡度越大,坡面就越陡.例2 已知:如图,在由边长为1的小正方形组成的网格中,点A ,B ,C ,D ,E 都在小正方形的顶点上,求tan∠ADC 的值.分析:先证明△ACD ≌△BCE ,再根据tan∠ADC =tan∠BEC 即可求解.解:根据题意可得AC =BC =12+22=5,CD =CE =12+32=10,AD =BE =5,∴△ACD ≌△BCE (SSS).∴∠ADC =∠BEC .∴tan∠ADC =tan∠BEC =13. 例3 已知一水坝的横断面是梯形ABCD ,下底BC 长14 m ,斜坡AB 的坡度为3∶3,另一腰CD 与下底的夹角为45°,且长为4 6 m ,求它的上底的长(精确到0.1 m ,参考数据:2≈1.414,3≈1.732).分析:过点A 作AE ⊥BC 于点E ,过点D 作DF ⊥BC 于点F ,根据已知条件求出AE =DF 的值,再根据坡度求出BE ,最后根据EF =BC -BE -FC 求出AD .解:过点A 作AE ⊥BC ,过点D 作DF ⊥BC ,垂足分别为E ,F .∵CD 与BC 的夹角为45°,∴∠DCF =45°,∴∠CDF =45°.∵CD =4 6 m ,∴DF =CF =4 62=4 3(m),∴AE =DF =4 3 m .∵斜坡AB 的坡度为3∶3,∴tan∠ABE =AE BE =33=3,∴BE =4 m .∵BC =14 m ,∴EF =BC -BE -CF =14-4-43=10-4 3(m).∵AD =EF ,∴AD =10-4 3≈3.1(m).所以,它的上底的长约为3.1 m.四、课堂练习,巩固提高1.教材P4“随堂练习”.2.《探究在线·高效课堂》相关作业.五、反思小结,梳理新知本节课经历了探索直角三角形中的边角关系,得出了在直角三角形中的锐角确定之后,它的对边与邻边之比也随之确定,并以此为基础,在“直角三角形”中定义了tan A =∠A 的对边∠A 的邻边.接着,我们研究了梯子的倾斜程度,工程中的问题坡度与正切的关系,了解了正切在现实生活中是一个具有实际意义的很重要的概念.第2课时正弦、余弦1. 认识锐角三角函数——正弦、余弦.2. 用sinA,cosA表示直角三角形中直角边与斜边的比, 用正弦、余弦进行简单的计算.二、教学目标知识与技能1. 能利用相似的直角三角形,探索并认识锐角三角函数——正弦、余弦,理解锐角的正弦与余弦和梯子倾斜程度的关系.2. 能够用sinA,cosA表示直角三角形中直角边与斜边的比,能够用正弦、余弦进行简单的计算.过程与方法1. 经历类比、猜想等过程.发展合情推理能力,能有条理地、清晰地阐述自己的观点.2、体会解决问题的策略的多样性,发展实践能力和创新精神.情感态度与价值观1. 积极参与数学活动,对数学产生好奇心和求知欲,学有用的数学.2、形成实事求是的态度以及交流分享的习惯.三、重点与难点重点:理解正弦、余弦的数学定义,感受数学与生活的联系.难点:体会正弦、余弦的数学意义,并用它来解决生活中的实际问题.四、复习引入设计意图:以练代讲,让学生在练习中回顾正切的含义,避免死记硬背带来的负面作用(大脑负担重,而不会实际运用),测量旗杆高度的问题引发学生的疑问,激起学生的探究欲望.五、探究新知探究活动1(出示幻灯片4):如图,请思考:(1)Rt △AB 1C 1和Rt △AB 2C 2的关系是 ; (2)的关系是和222111AB C B AB C B ; (3)如果改变B 2在斜边上的位置,则的关系是和222111AB C B AB C B ; 思考:从上面的问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值__________,根据是______________________________________. 它的邻边与斜边的比值呢?设计意图:1、在相似三角形的情景中,让学生探究发现:当直角三角形的一个锐角大小确定时,它的对边与斜边的比值也随之确定了.类比学习,可以知道,当直角三角形的一个锐角大小确定时,它的邻边与斜边的比值也是不变的.2、在探究活动中发现的规律,学生能记忆得更加深刻,这比老师帮助总结,学生被动接受和记忆要有用得多.归纳概念1、正弦的定义:如图,在Rt △ABC 中,∠C =90°,我们把锐角∠A 的对边BC 与斜边AB 的比叫做∠A 的正弦,记作sinA ,即sinA =________.2、余弦的定义:如图,在Rt △ABC 中,∠C =90°,我们把锐角∠A 的邻边AC 与斜边AB 的比叫做∠A 的余弦,记作cosA ,即cosA=_ _____.3、锐角A 的正弦,余弦,正切和余切都叫做∠A 的三角函数.温馨提示B 1B 2AC 1 C 2(1)sinA,cosA是在直角三角形中定义的,∠A是一个锐角;(2)sinA,cosA中常省去角的符号“∠”.但∠BAC的正弦和余弦表示为: sin∠BAC,cos∠BAC.∠1的正弦和余弦表示为: sin∠1,cos∠1;(3)sinA,cosA没有单位,它表示一个比值;(4)sinA,cosA是一个完整的符号,不表示“sin”,“cos”乘以“A”;(5)sinA,cosA的大小只与∠A的大小有关,而与直角三角形的边长没有必然的关系.设计意图:1、类比正切的定义,让学生理解正弦和余弦的含义;2、让学生了解:求一个角的三角函数,是指求这个角的正切、正弦和余弦,不是单指某一个值;3、正弦和余弦容易出现一些不规范的表示方法,在这里先进行明确,可以减少日后不必要的错误.探究活动2:我们知道,梯子的倾斜程度与tanA有关系,tanA越大,梯子越陡,那么梯子的倾斜程度与sinA和cosA有关系吗?是怎样的关系?设计意图:在探究中进一步让学生理解正弦和余弦的含义,体会正弦和余弦的生活意义,避免数学知识的枯燥无味,通过利用正弦和余弦来描述梯子的倾斜程度拓展了学生思维,感受到从不同角度去解释一件事物的合理性,感受数学与生活的联系.探索发现:梯子的倾斜程度与sinA,cosA的关系:sinA越大,梯子;cosA越,梯子越陡.探究活动3:如图,在Rt△ABC中,∠C=90°,AB=20,sinA=0.6,求BC和cosB.B通过上面的计算,你发现sinA与cosB有什么关系呢? sinB与cosA呢?在其它直角三角形中是不是也一样呢?请举例说明.小结规律:在直角三角形中,一个锐角的正弦等于另一个锐角的.设计意图:在探究中进一巩固正弦和余弦的定义,同时发现直角三角形中两个锐角的三角函数值之间存在一定的关系,拓展学生的知识储备.六、归类提升类型一:已知直角三角形两边长,求锐角三角函数值例1、在Rt△ABC中,∠C=90°, BC=3,AB=5,求A的三个三角函数值.类型二:利用三角函数值求线段的长度例2、如图,在Rt△ABC中,∠B=90°,AC=200,sinA=0.6 ,求BC的长七、总结延伸1、锐角三角函数定义:sinA= ,cosA= ,tanA= ;2、温馨提示:(1)sinA,cosA,tanA,是在直角三角形中定义的,∠A是锐角(注意数形结合,构造直角三角形);(2)sinA,cosA,tanA是一个完整的符号,表示∠A的正切,习惯省去“∠”号;(3)sinA,cosA,tanA都是一个比值,注意区别,且sinA,cosA,tanA均大于0,无单位;(4)sinA,cosA,tanA的大小只与∠A的大小有关,而与直角三角形的边长没有必然关系;(5)角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等.精品文档用心整理3、在用三角函数解决一般三角形或四边形的实际问题中,应注意构造直角三角形.设计意图:课堂小结,检查学生掌握情况,同时能对知识进行及时梳理,有利于学生归纳和消化,特别对于重要的方法提示和要注意的细节,能再次呈现,使学生印象深刻.八、课堂小结1.sinA,cosA,tanA, 是在直角三角形中定义的, ∠A是锐角(注意数形结合,构造直角三角形).2.sinA,cosA,tanA, 是一个完整的符号,表示∠A的正切,习惯省去“∠”号;3.sinA,cosA,tanA, 是一个比值.注意比的顺序,且sinA,cosA,tanA, 均﹥0,无单位.4.sinA,cosA,tanA, 的大小只与∠A的大小有关,而与直角三角形的边长无关.5.角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等.资料来源于网络仅供免费交流使用。

北师大版数学九年级下册1.1《锐角三角函数》教案

北师大版数学九年级下册1.1《锐角三角函数》教案
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“锐角三角函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解锐角三角函数的基本概念。锐角三角函数是描述直角三角形中角度与边长关系的数学工具。它们在解决实际问题中具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例。通过测量树的影子长度和角度,我们可以利用锐角三角函数计算出树的高度,展示其在实际中的应用。
其次,学生在小组讨论环节表现积极,但部分学生在分析问题和解决问题时仍显得不够自信。在今后的教学中,我要更加关注这部分学生的需求,多给予鼓励和指导,提高他们的自信心和解决问题的能力。
此外,实践活动环节,学生对实验操作表现出浓厚兴趣,但也有一ቤተ መጻሕፍቲ ባይዱ小组在操作过程中出现了一些错误。我觉得在下次实验操作前,可以提前进行一次简短的模拟演示,让学生更清楚地了解操作步骤和注意事项,从而提高实验的成功率。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了锐角三角函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对锐角三角函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.增强学生的数据分析观念:通过解决直角三角形计算问题,引导学生对数据进行整理、分析和处理,培养学生数据分析的思维方式和方法,提高解决实际问题的能力。

北师大版初三数学9年级下册 第1章 1.1.1 锐角三角函数(第1课时) 课件(共24张PPT)

北师大版初三数学9年级下册 第1章 1.1.1 锐角三角函数(第1课时)  课件(共24张PPT)

课堂练习
1.一个直角三角形中,如果各边的长度都扩大为原来 的2倍,那么它的两个锐角的正切值( )
A.都没有变化
B.都扩大为原来的2倍
C.都缩小为原来的一半 D.不能确定是否发生变化
2.以下对坡度的描述正确的是(
)
A.坡度是指倾斜角的度数
B.坡度是指斜坡的铅直高度与水平宽度的比
C.坡度是指斜坡的水平宽度与铅直高度的比
2. 当倾斜角确定时,其对边与邻边之比随之确定,这一比
值只与倾斜角的大小有关,而与物体的长度无关.
例题讲解 例3 如图表示甲、乙两个自动扶梯,哪一个自动扶梯比较陡?
解:甲梯中,tan
4 8
1 2
.
乙梯中, tan
因为tanα>tanβ,所以甲梯更陡.
5
5
.
132 52 12
总结:(1)倾斜程度,其本意指倾斜角的大小,一般来说,倾 斜角较大的物体,就说它放得更“陡”. (2)利用物体与地面夹角的正切值来判断物体的倾斜程度,因为 夹角的正切值越大,则夹角越大,物体放置得越“陡”.
探究新知 知识点一 正切
梯子AB和CD哪个更陡?你是怎样判断的?你有几种 判断办法?
倾斜角越大——梯子越陡
A
E
B
C
F
D
问题2 如图,梯子AB和EF哪个更陡?你是怎样判断的? 当铅直高度一样,水平宽度越小,梯子越陡 当水平宽度一样,铅直高度越大,梯子越陡
乙 甲
问题3 如图,梯子AB和EF哪个更陡?你是怎样判断的?
┌ A ∠A的邻边b C
谢谢聆听
其实就是坡角的正切.
例题讲解 例4 如图所示,梯形护坡石坝的斜坡AB的坡度为1∶3,坝高 BC=2米,则斜坡AB的长是( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.已知 tan( ∠A+20°)= ,求锐角A .
4. cos245°+ tan60°cos30°
2、求适合下列各式的锐角α
4、如图,△ABC中,∠C=900,BD平分∠ABC, BC=12,BD= ,求∠A的度数及AD的长.
A
D
B
C
谈收获
1.特殊角的三角函数值。
2、已知一个锐角的正弦、余弦或正切、 余切 的特殊值能说出这个角的度数。 3、顺口溜。
达标测试
1. 若
且∠B=90°- ∠A,则sinB=____________
数学九年级北师大版 1 锐角三角函数
2020/8/18
正弦:记作 余弦:记作 正切:记作 锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.
⑴ 能推导并熟记30°、45°、60°角 的三角函数值,并能根据这些值说出 对应的锐角度数。 ⑵能熟练计算含有30°、45°、60° 角的三角函数值 sin45°= cos45°=
tan45°=
新知探索:60°角的三角函数值 sin60°= cos60°= tan60°=
特殊角三角函数值
仔细观察,说说你发现 这张表有哪些规律?
锐角α 三角函数
30°
45°
60°
sinα
cosα
tanα
规律:(从左至右,从sinα至cosα)二分之根号一、二、三、三、二、 一、根三比三、一、根三
1
1
自己的学习工具— 1
2
—一副三角尺,思
考并回答下列问题
1、这两块三角尺各有几个锐角?它们分别等于多少度?
30° 60°
45° 45°
2、每块三角尺的三边之间有怎样的特殊关系?如 果设每块三角尺较短的边长为1,请你标出未知边 的长度。
新知探索:30°角的三角函数值 sin30°= cos30°= tan30°=
例3求下列各式的值: (1)cos260°+sin260°
(2)
小试牛刀 求下列各式的值:
B
例4 (1)如图,在Rt△ABC中,∠C
=90°,

求∠A的度数.
A
C
A
(2)如图,已知圆锥的高AO等于圆
锥的底面半径OB的 倍,求 a .
O
B
B
1、在Rt△ABC中,∠C=90°,

A
C
求∠A、∠B的度数.
相关文档
最新文档