初中九年级数学竞赛培优讲义全套专题27 数形结合_答案[精品]

合集下载

初中数学竞赛培优讲义 含答案 共70讲 01:数的整除一)

初中数学竞赛培优讲义 含答案 共70讲 01:数的整除一)

初中数学竞赛培优讲义含答案共70讲01:数的整除(一)装订线初中数学竞赛培优讲义初中数学竞赛练习(1)数的整除(一)一、内容提要:如果整数A除以整数B(B≠0)所得的商A/B是整数,那么叫做A被B整除. 0能被所有非零的整数整除. 一些数的整除特征除数2或5 4或25 3或9 能被整除的数的特征末位数能被2或5整除末两位数能被4或25整除各位上的数字和被3或9整除(如771,54324) 奇数位上的数字和与偶数位上的数和相减,其差能被11整除(如143,1859,1287,908270等) 8或125 末三位数能被8或125整除11 7,11,13 从右向左每三位为一段,奇数段的各数和与偶数段的各数和相减,其差能被7或11或13整除.(如1001,22743,17567,21281等) 能被7整除的数的特征:①抹去个位数②减去原个位数的2倍③其差能被7整除。

如1001 100-2=98(能被7整除)又如7007 700-14=686,68-12=56(能被7整除)能被11整除的数的特征:①抹去个位数②减去原个位数③其差能被11整除如1001 100-1=99(能11整除)又如10285 1028-5=1023 102-3=99(能11整除)1 二、例题例1已知两个三位数328和2x9的和仍是三位数5y7且能被9整除。

求x,y解:x,y都是0到9的整数,∵5y7能被9整除,∴y=6.∵328+2x9=567,∴x=3例2己知五位数1234x能被12整除,求X解:∵五位数能被12整除,必然同时能被3和4整除,当1+2+3+4+X能被3整除时,x=2,5,8当末两位4X能被4整除时,X=0,4,8∴X=8例3求能被11整除且各位字都不相同的最小五位数解:五位数字都不相同的最小五位数是10234,但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行调整末两位数为30,41,52,63,均可,∴五位数字都不相同的最小五位数是10263。

重点高中自招必备 九年级 专题27 数形结合

重点高中自招必备 九年级 专题27 数形结合

专题27 数形结合阅读与思考数学研究的对象是现实世界中的数量关系与空间形式,简单地说就是“数”与“形”,对现实世界的事物,我们既可以从“数”的角度来研究,也可以从“形”的角度来探讨,我们在研究“数”的性质时,离不开“形”;而在探讨“形”的性质时,也可以借助于“数”.我们把这种由数量关系来研究图形性质,或由图形的性质来探讨数量关系,即这种“数”与“形”的相互转化的解决数学问题的思想叫作数形结合思想.数形结合有下列若干途径:1.借助于平面直角坐标系解代数问题; 2.借助于图形、图表解代数问题;3.借助于方程(组)或不等式(组)解几何问题; 4.借助于函数解几何问题.现代心理学表明:人脑左半球主要具有言语的、分析的、逻辑的、抽象思维的功能;右半球主要具有非言语的、综合的、直观的、音乐的、几何图形识别的形象思维的功能.要有效地获得知识,则需要两个半球的协同工作,数形结合分析问题有利于发挥左、右大脑半球的协作功能.代数表达及其运算,全面、精确、入微,克服了几何直观的许多局限性,正因为如此,笛卡尔创立了解析几何,用代数方法统一处理几何问题.从而成为现代数学的先驱.几何问题代数化乃是数学的一大进步.例题与求解【例l 】设1342222+-+++=x x x x y ,则y 的最小值为___________.(罗马尼亚竞赛试题)解题思路:若想求出被开方式的最小值,则顾此失彼.()()921122+-+++=x x y =()()()()2222302101-+-+-++x x ,于是问题转化为:在x 轴上求一点C (x ,0),使它到两点A (-1,1)和B (2,3)的距离之和(即CA +CB )最小.【例2】直角三角形的两条直角边之长为整数,它的周长是x 厘米,面积是x 平方厘米,这样的直角三角形 ( )A .不存在B .至多1个C .有4个D .有2个(黄冈市竞赛试题) 解题思路:由题意可得若干关系式,若此关系式无解,则可推知满足题设要求的直角三角形不存在;若此关系式有解,则可推知这样的直角三角形存在,且根据解的个数,可确定此直角三角形的个数.【例3】如图,在△ABC 中,∠A =090,∠B =2∠C ,∠B 的平分线交AC 于D ,AE ⊥BC 于E ,DF ⊥BC 于F . 求证:BEAE BF AE DF BD ⋅+⋅=⋅111. (湖北省竞赛试题)解题思路:图形中含多个重要的基本图形,待证结论中的代数迹象十分明显.可依据题设条件,分别计算出各个线段,利用代数法证明.FEDBAC【例4】 当a 在什么范围内取值时,方程a x x =-52有且只有相异的两实数根? (四川省联赛试题) 解题思路:从函数的观点看,问题可转化为函数x x y 52-=与函数a y =(a ≥0)图象有且只有相异两个交点.作出函数图象,由图象可直观地得a 的取值范围.【例5】 设△ABC 三边上的三个内接正方形(有两个顶点在三角形的一边上,另两个顶点分别在三角形另两边上)的面积都相等,证明:△ABC 为正三角形. (江苏省竞赛试题) 解题思路:设△ABC 三边长分别为a ,b ,c ,对应边上的高分别为a h ,b h ,c h ,△ABC 的面积为S ,则易得三个内接正方形边长分别为a h a S +2,b h b S +2,ch c S+2,由题意得c b a h c h b h a +=+=+,即L cSc b S b a S a =+=+=+222.则a ,b ,c 适合方程L x S x =+2.【例6】设正数x ,y ,z 满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+=++1693253222222x zx z z y y xy x ,求zx yz xy 32++的值. (俄罗斯中学生数学竞赛试题)能力训练1. 不查表可求得tan 015的值为__________.2. 如图,点A ,C 都在函数xy 33=(0>x )的图象上,点B ,D 都在x 轴上,且使得△OAB ,△BCD 都是等边三角形,则点D 的坐标为______________. (全国初中数学联赛试题) 3.平面直角坐标系上有点P (-1,-2)和点Q (4,2),取点R (1,m ),当=m ________时,PR +RQ 有最小值.4.若0>a ,0<b ,要使b a b x a x -=-+-成立,x 的取值范围是__________.5.已知AB 是半径为1的⊙O 的弦,AB 的长为方程012=-+x x 的正根,则∠AOB 的度数是______________. (太原市竞赛试题) 6. 如图,所在正方形的中心均在坐标原点,且各边与x 轴或y 轴平行,从内到外,它们的边长依 次为2,4,6,8,…,顶点依次用1A ,2A ,3A ,4A ,…表示,则顶点55A 的坐标是( )A . (13,13)B .(-13,-13) C.(14,14) D. (-14,一14)yxDBOACyxOA 2A 1A 3A 4A 6A 5A 8A 7A 10A 9A 12A 117.在△ABC 中,∠C =090,AC =3,BC =4.在△ABD 中,∠A =090,AD =12.点C 和点D 分居AB 两侧,过点D 且平行于AC 的直线交CB 的延长线于E .如果nmDB DE =,其中,m ,n 是互质的正整数,那么n m += ( )A. 25B.128C.153D.243E.256 (美国数学统一考试题) 8.设a ,b ,c 分别是△ABC 的三边的长,且cb a ba b a +++=,则它的内角∠A ,∠B 的关系是( ) A .∠B >2∠A B .∠B=2∠A C .∠B <2∠A D .不确定 9.如图,a S AFG 5=∆,a S ACG 4=∆,a S BFG 7=∆,则=∆AEG S ( ) A .a 1127 B .a 1128 C .a 1129 D .a 113010. 满足两条直角边边长均为整数,且周长恰好等于面积的整数倍的直角三角形的个数有( ) A. 1个 B .2个 C .3个 D .无穷多个11.如图,关于x 的二次函数m mx x y --=22的图象与x 轴交于A (1x ,0),B (2x ,0)两点(2x >0>1x ),与y 轴交于C 点,且∠BAC =∠BCO . (1) 求这个二次函数的解析式;(2) 以点D (2,0)为圆心⊙D ,与y 轴相切于点O ,过=抛物线上一点E (3x ,t )(t >0,3x <0)作x 轴的平行线与⊙D 交于F ,G 两点,与抛物线交于另一点H .问是否存在实数t ,使得EF +GH =CF ?如果存在,求出t 的值;如果不存在,请说明理由. (武汉市中考题)y xA HG F BCDO E12.已知正数a ,b ,c ,A ,B ,C 满足a +A =b +B =c +C =k . 求证:a B 十b C +c A <2k .13.如图,一个圆与一个正三角形的三边交于六点,已知AG =2,GF =13,FC =1,HI =7,求DE . (美国数学邀请赛试题)第13题图F E DGHA OI BC14.射线QN 与等边△ABC 的两边AB ,BC 分别交于点M ,N ,且AC //QN ,AM =MB = 2cm ,QM = 4cm .动点P 从点Q 出发,沿射线QN 以每秒1cm 的速度向右移动,经过t 秒,以点P 为圆心,3cm 为半径的圆与△ABC 的边相切(切点在边上).请写出t 可以取的一切值:_______________(单位:秒).第14题图NMBA CQ15. 如图,已知D 是△ABC 边AC 上的一点,AD :DC =2:1,∠C =045,∠ADB =060. 求证:AB 是△BCD 的外接圆的切线.(全国初中数学联赛试题)16.如图,在△ABC 中,作一条直线l ∥BC ,且与AB 、AC 分别相交于D ,E 两点,记△ABC ,△BED 的面积分别为S ,K .求证:K ≤S 41. (长春市竞赛试题)l第16题图DBCA E17.如图,直线OB 是一次函数x y 2 的图象,点A 的坐标为(0,2). 在直线OB 上找点C ,使得△ACO 为等腰三角形,求点C 的坐标. (江苏省竞赛试题)y x第17题图y =2x O BA专题27数形结合例1 5提示:作出B 点关于x 轴的对称点B '(2,-3),连结AB '交x 轴于C ,则AB '=AC 十CB ' 为所要求的最小值.例2 D 提示:设两直角边长为a ,b ,斜边长为c ,由题意得a +b +c =x ,x ab =21,又222c b a =+,得().424b b a --=.因a ,h 为边长且是整数.故当⎩⎨⎧>->-,04,02b b 得b<2,取34,1==a b 不是整数;当⎩⎨⎧<-<-,04,02b b 得b>4,要使a ,b 为整数,只有两种取法:若b =5时,a =12(或b = 12,a =5);若b =8时,a =6(或b =6,a =8). 例3设AB =x ,则BC =2x ,AC =x 3, BE =x 21,DF =DA=.32,31x BD x =.在Rt △AEB 中求得AE=,,23x BF x =代入证明即可. 例4如图,作出函数x x y 52-=图象,由图象可以看出:当a =0时,y =0与x x y 52-=有且只有相异二个交点;当4250<<a 时,y =a 与x x y 52-=图象有四个不同交点;当425=a 时,y =a 与x x y 52-=图象有三个不同交点,当425>a 时,y =a 与x x y 52-=图象有且只有相异二个交点. 例5由L c s cb s b a s a =+=+=+222 ①,知正数c b a ,,适合方程.2L xsx =+当0≠x 时,有022=+-s Lx x ②,故c b a ,,是方程②的根.但任何二次方程至多只有两个相异的根,所以c b a ,,中的某两数必相同.设b a =,若a c ≠,由①得()()c a ac sa c s c a -=⎪⎭⎫⎝⎛-=-2112,则ac =2s =a a h ,这样△ABC 就是以∠B 为直角的直角三角形,b >a ,矛盾,故a =c ,得证. 例6,ABC AOC BOC AOB S S S S ∆∆∆∆=++,3421120sin 21321150sin 321⨯⨯=+∙+∙∙∴ xz y z y x 即,6232132121321=∙+∙+⨯∙xz y z y x 化简得.32432=++zx yz xy 能力训练1.32- 提示:构造含 15的Rt △ABC .2.()062,提示:如图,分别过点A ,C 作x 轴的垂线,垂足分别为E , F .设OE =a , BF =b ,则AE =a 3, CF =b 3,所以点A ,C 的坐标为()().3,2,3,b b a a a +()⎩⎨⎧=+=∴,3323,3332b a b a 解得⎩⎨⎧-==.36,3b a ∴点D 坐标为()0,62. 3.52- 提示:当R ,P ,Q 三点在一条直线上时,PR +RQ 有最小值. 4.a x b ≤≤5. 36提示:由012=-+x x 得21x x -=<1,则有AB <OB .在OB 上截取OC =AB =x ,又由012=-+x x 得x x x 11=-,即ABOABC AB =,则OAB ∆∽△ABC ,AB =AC =OC . 6. C 提示:由题所给的数据结合坐标系可得,55A 是第14个正方形上的第三个顶点,位于第一象限,所以55A 的横纵坐标都是14. 7. A8. B 提示:由条件,22b ab ac ab a +=++即()bca abc a a b +=∴+=,2,延长CB 至D ,使BD =AB ,易证△ABC ∽△DAC ,得∠ABC =∠D +∠BAD =2∠D =2∠BAC .9. D10. C 提示:设直角三角形的两条直角边长为(),,b a b a ≤则ab k b a b a 2122∙=+++ (k b a ,,均为正整数),化简得()()⎩⎨⎧=-=-⎩⎨⎧=-=-∴=--44,2484,14,844kb ka kb ka kb ka 或解得 ⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===8,6,14,3,212,5,1b a k b a k b a k 或或即有3组解.11. (1)122--=x x y (2)过D 作DM ⊥ EH 于M ,连结DG ,2,===DO DG t DM ,.2222t MG FG -==若EF +GH =FG 成立,则EH = 2FG .由EF //x 轴,设H 为()t x ,4,又∵E ,H 为抛物线上的两个点,,12323t x x =--∴,12424t x x =--即43,x x 是方程t x x =--122的两个不相等的实数根,()t x x x x +-==+∴1,24343,()2432433422222,224t t t x x x x x x EH -∙=+∴+=-+=-=,解得8197,819711+-=-=t t (舍去). 12.a 十A =b +B =c 十C =k ,可看作边长为k 的正三角形,而从2k 联想到边长为k 的正方形的面积.如图,将aB +bC +cA 看作边长分别为a 与B ,b 与C ,c 与A 的三个小矩形面积之和,将三个小矩形不重叠地嵌入到边长为k 的正方形中,显然aB +bC +cA <k 2.13. AC =AG +GF +FC =16,由AH ·AI =AG ·AF ,得AH(AH +7)=2×(2+13),解得AH =3,从而HI =7,BI =6.设BD =x ,CE =y ,则由圆幂定理得⎩⎨⎧CE •CD =CF •CG BD •BE =BI •BH ,即⎩⎨⎧y (16-x )=1×14x (16-y )=6×13.解得⎩⎪⎨⎪⎧x =10-22y =6-22 .故DE =16-(x +y )=222. 14. t =2或3≤t ≤7或t =8. 提示:本题通过点的移动及直线与圆相切,考查分类讨论思想.由题意知∠AMQ =60°,MN =2.当t =2时,圆P 与AB 相切;当3≤t ≤7时,点P 到AC 的距离为3,圆P 与AC 相切;当t =8时,圆P 与BC 相切.15.设AD =2,DC =1,作BE ⊥AC ,交AC 于E .又设ED =x ,则BE =3x ,BE =EC =3x .又1+x =3x ,∴x =3+12,BE =3+32,AE =AD -ED =2-x =3-32,AB 2 =AE 2+BE 2=(3-32)2+(3+32)2=6,而AD •AC =6.∴AB 2 =AD •AC .故由切割线定理逆定理知,AB 是△BCD 的外接圆的切线. 16.设AD AB =AE AC =m (0≤m ≤1).∵S △ABE S △ABC =AE AC =m ,∴S △ABE =m S △ABC .又∵S △BDE S △ABE =BD AB=AB -ADAB =1-m ,∴S △BDE =(1-m )• S △ABE =m (1-m )• S △ABC .即K =(1-m )•mS ,整理得Sm 2-Sm +K =0,由△≥0得K ≤14S .17.分以下几种情况:①若此等腰三角形以OA 为一腰,且∠BAC 为顶角,则AO =AG =2.设C 1(―x ,2x ), 则x 2+(2x -2)2=22,解得x =85,得C 1(85,165).②若此等腰三角形以OA 为一腰,且O 为顶角顶点,则OC 2=OC 3=OA =2.设C 2(x ′,2x ′), 则x ′2+(2x ′)2=22,解得x ′=255,得C 2(255,455). 又由点C 2与C 3关于原点对称,得C 3(―255,―455).③若等腰三角形以OA 为底边,则C 4的纵坐标为1,其横坐标为12,得C 4 (12,1).所以,满足题意的点C 有4个,坐标分别为:(85,165),(255,455),(―255,―455),(12,1).。

初三数学培优试题(含答案)

初三数学培优试题(含答案)

初三数学培优试题一学校: 班级: 姓名: 分数:一.选择题1、下列函数:① 3y x =-,②21y x =-,③()10y x x=-<,④223y x x =-++ 其中y 的值随x 值的增大而增大的函数有( )(A )4个 (B )3个 (C )2个 (D )1个2.(2018济南,9,4分)如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,将△ABC 绕点P 顺时针方向旋转90°,得到△A ′B ′C ′,则点P 的坐标为( )A .(0,4)B .(1,1)C .(1,2)D .(2,1)xy–1–2–3–412341234567BCA A'C 'B'O3、按下面的程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件的x 的不同值最多有( )(A )2个 (B )3个 (C )4个 (D )5个4、已知关于x 的不等式组12x a x a ->-⎧⎨-<⎩的解集中任意一个x 的值均不..在04x ≤≤的范围内,则a 的取值范围是( )(A )5a >或2a <- (B )25a -≤≤ (C )25a -<< (D )5a ≥或2a ≤-5、如图所示,已知点A 是半圆上一个三等分点,点B 是AN 的中点,点P 是半径ON 上的动点。

若O 的半径长为,则AP BP +的最小值为( )(A )2 (B )3 (C )2 (D )6.(3分)如图,矩形ABCD 中,E 是AB 的中点,将△BCE 沿CE 翻折,点B 落在点F 处,tan ∠DCE=.设AB=x ,△ABF 的面积为y ,则y 与x 的函数图象大致为( )A .B .C .D .P B A二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程)7.已知一组数据:12.10.8.15.6.8.则这组数据的中位数是。

初三数学培优之数形结合

初三数学培优之数形结合

初三数学培优之数形结合阅读与思考数学研究的对象是现实世界中的数量关系与空间形式,简单地说就是“数”与“形”,对现实世界的事物,我们既可以从“数”的角度来研究,也可以从“形”的角度来探讨,我们在研究“数”的性质时,离不开“形”;而在探讨“形”的性质时,也可以借助于“数”.我们把这种由数量关系来研究图形性质,或由图形的性质来探讨数量关系,即这种“数”与“形”的相互转化的解决数学问题的思想叫作数形结合思想.数形结合有下列若干途径:1.借助于平面直角坐标系解代数问题; 2.借助于图形、图表解代数问题;3.借助于方程(组)或不等式(组)解几何问题; 4.借助于函数解几何问题.现代心理学表明:人脑左半球主要具有言语的、分析的、逻辑的、抽象思维的功能;右半球主要具有非言语的、综合的、直观的、音乐的、几何图形识别的形象思维的功能.要有效地获得知识,则需要两个半球的协同工作,数形结合分析问题有利于发挥左、右大脑半球的协作功能.代数表达及其运算,全面、精确、入微,克服了几何直观的许多局限性,正因为如此,笛卡尔创立了解析几何,用代数方法统一处理几何问题.从而成为现代数学的先驱.几何问题代数化乃是数学的一大进步.例题与求解【例l 】设1342222+-+++=x x x x y ,则y 的最小值为___________.(罗马尼亚竞赛试题)解题思路:若想求出被开方式的最小值,则顾此失彼.()()921122+-+++=x x y =()()()()2222302101-+-+-++x x ,于是问题转化为:在x 轴上求一点C (x ,0),使它到两点A (-1,1)和B (2,3)的距离之和(即CA +CB )最小.【例2】直角三角形的两条直角边之长为整数,它的周长是x 厘米,面积是x 平方厘米,这样的直角三角形 ( )A .不存在B .至多1个C .有4个D .有2个(黄冈市竞赛试题) 解题思路:由题意可得若干关系式,若此关系式无解,则可推知满足题设要求的直角三角形不存在;若此关系式有解,则可推知这样的直角三角形存在,且根据解的个数,可确定此直角三角形的个数.【例3】如图,在△ABC 中,∠A =090,∠B =2∠C ,∠B 的平分线交AC 于D ,AE ⊥BC 于E ,DF ⊥BC 于F . 求证:BEAE BF AE DF BD ⋅+⋅=⋅111. (湖北省竞赛试题)解题思路:图形中含多个重要的基本图形,待证结论中的代数迹象十分明显.可依据题设条件,分别计算出各个线段,利用代数法证明.DAC【例4】 当a 在什么范围内取值时,方程a x x =-52有且只有相异的两实数根? (四川省联赛试题) 解题思路:从函数的观点看,问题可转化为函数x x y 52-=与函数a y =(a ≥0)图象有且只有相异两个交点.作出函数图象,由图象可直观地得a 的取值范围.【例5】 设△ABC 三边上的三个内接正方形(有两个顶点在三角形的一边上,另两个顶点分别在三角形另两边上)的面积都相等,证明:△ABC 为正三角形. (江苏省竞赛试题) 解题思路:设△ABC 三边长分别为a ,b ,c ,对应边上的高分别为a h ,b h ,c h ,△ABC 的面积为S ,则易得三个内接正方形边长分别为a h a S +2,b h b S +2,ch c S+2,由题意得c b a h c h b h a +=+=+,即L cSc b S b a S a =+=+=+222.则a ,b ,c 适合方程L x S x =+2.【例6】设正数x ,y ,z 满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+=++1693253222222x zx z z y y xy x ,求zx yz xy 32++的值. (俄罗斯中学生数学竞赛试题)能力训练1. 不查表可求得tan 015的值为__________.2. 如图,点A ,C 都在函数xy 33=(0>x )的图象上,点B ,D 都在x 轴上,且使得△OAB ,△BCD 都是等边三角形,则点D 的坐标为______________. (全国初中数学联赛试题) 3.平面直角坐标系上有点P (-1,-2)和点Q (4,2),取点R (1,m ),当=m ________时,PR +RQ 有最小值.4.若0>a ,0<b ,要使b a b x a x -=-+-成立,x 的取值范围是__________.5.已知AB 是半径为1的⊙O 的弦,AB 的长为方程012=-+x x 的正根,则∠AOB 的度数是______________. (太原市竞赛试题) 6. 如图,所在正方形的中心均在坐标原点,且各边与x 轴或y 轴平行,从内到外,它们的边长依 次为2,4,6,8,…,顶点依次用1A ,2A ,3A ,4A ,…表示,则顶点55A 的坐标是( )A . (13,13)B .(-13,-13) C.(14,14) D. (-14,一14)第2题图 第6题图7.在△ABC 中,∠C =090,AC =3,BC =4.在△ABD 中,∠A =090,AD =12.点C 和点D 分居AB 两侧,过点D 且平行于AC 的直线交CB 的延长线于E .如果nmDB DE =,其中,m ,n 是互质的正整数,那么n m += ( )A. 25B.128C.153D.243E.256 (美国数学统一考试题) 8.设a ,b ,c 分别是△ABC 的三边的长,且cb a ba b a +++=,则它的内角∠A ,∠B 的关系是( ) A .∠B >2∠A B .∠B=2∠A C .∠B <2∠A D .不确定 9.如图,a S AFG 5=∆,a S ACG 4=∆,a S BFG 7=∆,则=∆AEG S ( ) A .a 1127 B .a 1128 C .a 1129 D .a 113010. 满足两条直角边边长均为整数,且周长恰好等于面积的整数倍的直角三角形的个数有( ) A. 1个 B .2个 C .3个 D .无穷多个11.如图,关于x 的二次函数m mx x y --=22的图象与x 轴交于A (1x ,0),B (2x ,0)两点(2x >0>1x ),与y 轴交于C 点,且∠BAC =∠BCO . (1) 求这个二次函数的解析式;(2) 以点D (2,0)为圆心⊙D ,与y 轴相切于点O ,过=抛物线上一点E (3x ,t )(t >0,3x <0)作x 轴的平行线与⊙D 交于F ,G 两点,与抛物线交于另一点H .问是否存在实数t ,使得EF +GH =CF ?如果存在,求出t 的值;如果不存在,请说明理由. (武汉市中考题)y xA HG F BCDO E12.已知正数a ,b ,c ,A ,B ,C 满足a +A =b +B =c +C =k . 求证:a B 十b C +c A <2k .13.如图,一个圆与一个正三角形的三边交于六点,已知AG =2,GF =13,FC =1,HI =7,求DE . (美国数学邀请赛试题)第13题图BC14.射线QN 与等边△ABC 的两边AB ,BC 分别交于点M ,N ,且AC //QN ,AM =MB = 2cm ,QM = 4cm .动点P 从点Q 出发,沿射线QN 以每秒1cm 的速度向右移动,经过t 秒,以点P 为圆心,3cm 为半径的圆与△ABC 的边相切(切点在边上).请写出t 可以取的一切值:_______________(单位:秒).第14题图15. 如图,已知D 是△ABC 边AC 上的一点,AD :DC =2:1,∠C =045,∠ADB =060. 求证:AB 是△BCD 的外接圆的切线.(全国初中数学联赛试题)16.如图,在△ABC 中,作一条直线l ∥BC ,且与AB 、AC 分别相交于D ,E 两点,记△ABC ,△BED 的面积分别为S ,K .求证:K ≤S 41. (长春市竞赛试题)l第16题图DBCE17.如图,直线OB 是一次函数x y 2 的图象,点A 的坐标为(0,2). 在直线OB 上找点C ,使得△ACO 为等腰三角形,求点C 的坐标. (江苏省竞赛试题)y x第17题图=2x O BA。

初三数学知识点专题讲解与训练27---数形结合(培优版)

初三数学知识点专题讲解与训练27---数形结合(培优版)

, C.(14 14)
- ,一 D. ( 14 14)
y
y A
C
x
O
BD
第 2 题图
A10 A6 A2
O A1 A5 A9
A11 A7 A3
x
A4 A8 A12
第 6 题图
3 / 10
7.在△ABC 中,∠C=900 ,AC=3,BC=4.在△ABD 中,∠A=900 ,AD=12.点 C 和点 D 分居 AB
得a =
4(2 − b)..因
a,h
2 − b > 0,
为边长且是整数.故当

b<2,取 b = 1, a =
4 不是整数;当
4−b
4 − b > 0,
3
2 − b < 0, 得 b>4,要使 a,b 为整数,只有两种取法:若 b=5 时,a=12(或 b= 12,a=5);若 b=8 4 − b < 0,
三角【形另例两5】边上设)△的A面BC积三都边相上等的,三证个明内:接△正AB方C形为(正有三两角个形顶.点在三角形的一(边江上苏,省另竞两赛个试顶题点)分别在 解题思路:设△ABC 三边长分别为a ,b ,c ,对应边上的高分别为ha ,hb , hc ,△ABC 的面积
为 S ,则易得三个内接正方形边长分别为 2S , 2S , 2S ,由题意得 , a + ha = b + hb = c + hc a + ha b + hb c + hc
专题 27 数形结合答案
例 1 5 提示:作出 B 点关于 x 轴的对称点 B'(2,-3),连结 AB'交 x 轴于 C,则 AB'=AC 十 CB' 为

人教版九年级下册数学第二十七章培优试题含答案

人教版九年级下册数学第二十七章培优试题含答案

人教版九年级下册数学第二十七章培优试题一、单选题1.如图,DE∥BC,EF∥AB,则下列结论中错误的是()A.AD AEBD EC=B.AD DEAB BC=C.AD BFBD FC=D.CF EFDE AB=2.如图,l1∥l2∥l3,AB=a,BC=b,52DEEF=,则a bb-的值为()A.32B.23C.25D.523.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.AD AEAB EC=B.AG AEGF BD=C.GE ADFC AB=D.AG ACAF EC=4.下列图形中,形状一定相同的两个图形是()A.两个直角三角形B.两个正三角形C.两个矩形D.两个梯形5.如图,△ABC与△ADE都是等腰直角三角形,且它们的底分别是BC=5,DE=3,则△ABC 与△ADE的面积比为()A B.25:9 C.5:3 D.6.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为()A.2:3 B.3:2 C.4:5 D.4:97.如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,若△CEF 的面积为18cm2,则S△DGF的值为()A.4cm2B.5cm2C.6cm2D.7cm28.如图,已知在△ABC中,点D,E,F分别是边AB,AC,BC上的点,DE∥BC,EF∥AB,且AD:DB=1:2,CF=6,那么BF等于()A.1 B.2 C.3 D.49.如图,AD是△ABC中BC边上的中线,当∠B=∠DAC,AC=BC的长为()A.2 B.4 C.6 D.810.如图,正方形ABCD中,E为CD的中点,AE的垂直平分线分别交AD,BC及AB的延长线于点F,G,H,连接HE,HC,OD,连接CO并延长交AD于点M.则下列结论中:①FG=2AO;②OD∥HE;③BH AMEC MD=;④2OE2=AH•DE;⑤GO+BH=HC正确结论的个数有()A.2 B.3 C.4 D.5 二、填空题11.若43xy=,则x yy+的值是_____.12.如果△ABC∽△DEF,且△ABC的面积为2cm2,△DEF的面积为8cm2,那么△ABC与△DEF相似比为_____.13.如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,点A,B,E在x轴上,若正方形BEFG的边长为6,则点C的坐标为________.14.如图,已知△ABC和△ADE都是等边三角形,点D在边BC上,且BD=4,CD=2,那么AF=_____.15.如图将△ABC沿BC平移得△DCE,连AD,R是DE上的一点,且DR:RE=1:2,BR 分别与AC,CD相交于点P,Q,则BP:PQ:QR=__.16.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2)延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,第2018个正方形的面积为_____.三、解答题17.如图,△ABC的面积为12,BC与BC边上的高AD之比为3:2,矩形EFGH的边EF 在BC上,点H,G分别在边AB、AC上,且HG=2GF.(1)求AD的长;(2)求矩形EFGH的面积.18.如图,已知平行四边形ABCD,过点A的直线交BC的延长线于E,交BD、CD于F、G.(1)若3AB =,4BC =,2CE =,求CG 的长;(2)证明:2AF FG FE =⋅.19.如图,在△ABC 中,∠C =90°,AC =8cm ,BC =6cm ,点P 从点A 沿AC 向C 以2cm/s 的速度移动,到C 即停,点Q 从点C 沿CB 向B 以1cm/s 的速度移动,到B 就停. (1)若P 、Q 同时出发,经过几秒钟S △PCQ =2cm 2;(2)若点Q 从C 点出发2s 后点P 从点A 出发,再经过几秒△PCQ 与△ACB 相似.20.如图1,在Rt △ABC 中,∠ACB =90°,AC =10cm ,BC =5cm ,点P 从点C 出发沿线段CA 以每秒2cm 的速度运动,同时点Q 从点B 出发沿线段BC 以每秒1cm 的速度运动.设运动时间为t 秒(0<t <5).(1)填空:AB = cm ;(2)t 为何值时,△PCQ 与△ACB 相似;(3)如图2,以PQ 为斜边在异于点C 的一侧作Rt △PEQ ,且34PE QE =,连结CE ,求CE .(用t 的代数式表示).21.如图①,在△ABC 中,AC =BC ,点D 是线段AB 上一动点,∠EDF 绕点D 旋转,在旋转过程中始终保持∠A=∠EDF,射线DE与边AC交于点M,射线DE与边BC交于点N,连接MN.(1)找出图中的一对相似三角形,并证明你的结论;(2)如图②,在上述条件下,当点D运动到AB的中点时,求证:在∠EDF绕点D旋转过程中,点D到线段MN的距离为定值.22.如图,AM是△ABC的中线,点D是线段AM上一点(不与点A重合).过点D作KD∥AB,交BC于点K,过点C作CE∥AM,交KD的延长线于点E,连接AE、BD.(1)求证:△ABM∽△EKC;(2)求证:AB•CK=EK•CM;(3)判断线段BD、AE的关系,并说明理由.23.如图,在正方形ABCD中,点M是边BC上的一点(不与B、C重合),点N在CD边的延长线上,且满足∠MAN=90°,联结MN、AC,N与边AD交于点E.(1)求证;AM=AN;(2)如果∠CAD=2∠NAD,求证:AM2=AC•AE.参考答案1.D【解析】根据相似三角形的判定定理和性质定理得到比例式,判断即可.【详解】∵DE∥BC,∴AD AEBD EC=,A正确,不符合题意;∵DE∥BC,∴△ADE∽△ABC,∴AD DEAB BC=,B正确,不符合题意;∵EF∥AB,∴AEEC=BFFC,∵ADDB=AEEC,∴AD BFBD FC=,C正确,不符合题意;∵EF∥AB,∴EF CFAB CB=,D错误,符合题意,故选D.本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.2.A【解析】【分析】根据平行线分线段成比例定理得到ab=52,根据比例的性质计算,得到答案.【详解】∵l1∥l2∥l3,∴ABBC=DEEF,即ab=52,∴a bb-=32,故选:A.【点睛】本题考查的是平行线分线段成比例定理,比例的性质,灵活运用平行线分线段成比例定理,找准对应关系是解题的关键.3.C【详解】试题解析:A、∵DE∥BC,∴△ADE∽△ABC,∴AD AEAB AC=,故A错误;B、∵DE∥BC,∴AG AEGF EC=,故B错误;C、∵DE∥BC,∴BD CEAD AE=,故C正确;D、∵DE∥BC,∴△AGE∽△AFC,∴AG AEAF AC=,故D错误;故选C点睛:本题考查了相似三角形的判定与性质,等高的三角形的面积的比等于底边的比,熟记相似三角形面积的比等于相似比的平方,用△BDE的面积表示出△ABC的面积是解题的关键.4.B【解析】根据相似图形的定义,对应边成比例,对应角相等,然后对各选项分析判断后利用排除法求解.【详解】解:A、两个直角三角形,对应角不一定相等,对应边不一定成比例,所以不一定相似,故本选项错误;B、两个正三角形,对应角都是60°,相等,对应边一定成比例,所以一定相似,故本选项正确;C、两个矩形,对应角对应相等,对应边不一定相等,所以不一定相似,故本选项错误;D、两个梯形,对应角不一定对应相等,对应边也不一定成比例,所以不一定相似,故本选项错误.故选B.【点睛】本题考查相似图形的定义,注意从对应角与对应边两方面考虑.5.B【解析】【分析】过A 作AG⊥BC于G,AH⊥DE于H,利用角平分线的性质得到∠GAH=90°,进而结合平行线的性质得出△AGC∽△EHA,再利用相似三角形的面积比等于相似比的平方即可得到结论【详解】解:过A 作AG⊥BC于G,AH⊥DE于H,∴AG平分∠BAC,AH平分∠DAE, ∴∠EAH=12∠DAE, ∠GAC=12∠BAC,∵∠DAE+∠BAC=180°, ∴∠EAH+∠DAE=90°, 即∠GAH=90°,∴∠GAH=∠AHE=90°,∴AG ∥DE, ∴∠GAC=∠AEH, ∵∠AGC=∠AHE=90°, ∴△AGC ∽△EHA, ∴AGC S∶AHE S =CG²∶EH²=25∶9, ∵2,2ABC AGC ADE EHA SS S S == , ∴ABC S ∶ADE S =25∶9故选B .【点睛】 本题考查了等腰三角形的性质、平行线的判定与性质及相似三角形的判定与性质,解题的关键是利用已知条件得出△AGC ∽△EHA .6.A【分析】根据位似的性质得△ABC ∽△A′B′C′,再根据相似三角形的性质进行求解即可得.【详解】由位似变换的性质可知,A′B′∥AB ,A′C′∥AC ,∴△A′B′C′∽△ABC ,∵△A'B'C'与△ABC 的面积的比4:9,∴△A'B'C'与△ABC 的相似比为2:3, ∴23OB OB '= , 故选A .【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.7.C【解析】【分析】作GH ⊥BC 于H 交DE 于M ,根据三角形中位线定理得到DE ∥BC ,DE =12BC ,证明△GDF ∽△GBC ,根据相似三角形的性质、三角形的面积公式计算.【详解】解:作GH ⊥BC 于H 交DE 于M ,∵DE是△ABC的中位线,∴DE∥BC,DE=12 BC,∵F是DE的中点,∴DF=14 BC,∵DF∥BC,∴△GDF∽△GBC,∴GMGH=DFBC=14,∴GMMH=13,∵DF=FE,∴S△DGF=13×△CEF的面积=6cm2,故选C.【点睛】本题考查的是相似三角形的判定和性质、三角形中位线定理,掌握相似三角形的判定定理和性质定理是解题的关键.8.C【分析】根据平行线分线段成比例定理列出比例式,得到AE:EC=AD:DB=1:2,BF:FC=AE:EC=1:2,计算即可.【详解】解:∵DE∥BC,∴AE:EC=AD:DB=1:2,∵EF∥AB,∴BF:FC=AE:EC=1:2,∵CF=6,∴BF=3,故选C.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.9.D【解析】【分析】由已知条件判定△ABC∽△DAC,结合该相似三角形的对应边成比例解答.【详解】∵∠B=∠DAC,∠ACB=DCA,∴△ABC∽△DAC,∴AC BC DC AC=,又AD是△ABC中BC边上的中线,∴DC=12BC,即:12AC BCACBC=,∴AC2=12BC2=()2,∴BC=8.故选:D.【点睛】考查了相似三角形的判定与性质,注意利用相似三角形的知识解题时,一定要找准对应边(角).10.B【分析】建立以B点位坐标原点的平面直角坐标系,分别求出相应直线的解析式和点的坐标,求出各线段的距离,可得出结论.【详解】解:如图,建立以B点为坐标原点的平面直角坐标系,设正方形边长为2,可分别得各点坐标,A(0,2),B(0,0),C(2,0),D(2,2), E 为CD 的中点,可得E 点坐标(2,1),可得AE 的直线方程,122y x =-+,由OF 为直线AE 的中垂线可得O 点为02213(,)(1,)222++=,设直线OF 的斜率为K ,得1()12k ⨯-=-,可得k=2,同时经过点O(31,2),可得OF 的直线方程:122y x =-,可得OF 与x 轴、y 轴的交点坐标G(14,0),H(0,12-),及F(54,2),同理可得:直线CO 的方程为:332y x =-+,可得M 点坐标(23,2),可得:①=,AO=1122AE =,故FG=2AO ,故①正确;②:由O 点坐标3(1,)2,D 点坐标(2,2),可得OD 的方程:112y x =+,由H 点坐标(0,12-),E 点坐标(2,1),可得HE 方程:3142y x =-,由两方程的斜率不相等,可得OD 不平行于HE ,故②错误;③由A(0,2),M (23,2),H(0,12-),E (2,1),可得:BH=12,EC=1,AM=23,MD=24233-=, 故BHAMEC MD ==12,故③正确;④:由O 点坐标3(1,)2,E (2,1),H(0,12-),D(2,2), 可得:222315(12)(1)1244OE =-+-=+=, AH=15222+=,DE=1,∴有2OE 2=AH•DE ,故④正确;⑤:由G(14,0),O 点坐标3(1,)2,H(0,12-),C(2,0),可得:GO =BH=12=可得:GO≠BH+HC,故正确的有①③④,故选B.【点睛】本题主要考查一次函数与矩形的综合,及点与点之间的距离公式,难度较大,灵活建立直角坐标系是解题的关键.11.7 3【分析】根据合比定理解答问题.【详解】解:∵xy=43∴yxy+=433+=73故答案为7 3 .【点睛】本题考查比例的性质.合比定理:如果a:b=c:d,那么(a+b):b=(c+d):d (b、d≠0).12.1: 2【解析】【分析】根据相似三角形比例性质,三角形相似比与三角形面积相似比相等进行求解.【详解】∵△ABC∽△DEF,且△ABC 的面积为2cm2,△DEF 的面积为8cm2,∴S△ABC:S△DEF=1: 4根据相似三角形的面积比等于相似比的平方可得△ABC 与△DEF相似比=1: 2,故答案为1: 2.【点睛】本题考查的是相似三角形比例性质,熟练掌握相似三角形比例性质是本题的解题关键. 13.(3,2)【解析】【分析】直接利用位似图形的性质结合相似比得出AB 的长,进而得出△OAD ∽△OBG ,进而得出AO 的长,即可得出答案.【详解】.∵正方形BEFG 的边长是6,∴6BE EF ==.∵两个正方形的相似比为13, ∴163CBCBEF ==.∴2AB BC ==,.∵AD ∥BG ,∴△OAD ∽△OBG , ∴13OAOB =,即213OB OB -=.∴3OB =.∴点C 的坐标为(3,2).【点睛】本题主要考查了位似变换以及相似三角形的判定与性质,正确得出AO 的长是解题关键. 14.143【分析】根据三角形的角性质定理、相似三角形的性质进行求解.【详解】∵△ABC 和△ADE 都是等边三角形,∴∠B=∠ADE=∠C=60°,∵∠B+∠BAD=∠ADF+∠FDC,∴∠BAD=∠FDC,∴△ABD ∽△FDC , ∴DCFCAB BD =,∵BD = 4,CD = 2,且△ABC 是等边三角形,∴AB=BC=BD+DC=6,∴2=6 DC FCAB BD=,∴FC=4 3 ,AF=AC-FC=14 3.【点睛】本题主要考查的是三角形的角性质定理、相似三角形的性质,熟练掌握是本题的解题关键. 15.2:1:1【解析】【分析】根据平移的性质得到AC∥DE,BC=CE,得到△BPC∽△BRE,根据相似三角形的性质得到PC=DR,根据△PQC∽△RQD,得到PQ=QR,即可求解.【详解】由平移的性质可知,AC∥DE,BC=CE,∴△BPC∽△BRE,∴BP PC BC BR RE BE==,∴PC=12RE,BP=PR,∵DR:RE=1:2,∴PC=DR,∵AC∥DE,∴△PQC∽△RQD,∴PQ PCQR DR==1,∴PQ=QR,∴BP:PQ:QR=2:1:1,故答案为2:1:1.【点睛】本题考查了相似三角形的判定和性质,平移的性质,掌握相似三角形的判定定理和性质定理是解题的关键.16.5×(94)2017.【解析】【分析】根据勾股定理求出AB ,证明△ABA 1∽△DOA ,根据相似三角形的性质求出A 1B ,计算求出A 1C ,根据正方形的面积公式求出正方形A 1B 1C 1C 的面积,总结规律,根据规律计算即可.【详解】∵点A 的坐标为(1,0),点D 的坐标为(0,2),∴OA=1,OD=2,∵∠AOD=90°,∴∠ODA+∠OAD=90°,∵四边形ABCD 是正方形,∴∠BAD=∠ABC=90°,S 正方形ABCD =5,∴∠ABA 1=90°,∠OAD+∠BAA 1=90°,∴∠ODA=∠BAA 1,∴Rt △ABA 1∽Rt △DOA , ∴1OA OD A B AB =,即11A B = 解得,A 1,∴A 1则正方形A 1B 1C 1C 的面积=)2=5×94, 同理,正方形A 2B 2C 2C 1的面积=5×(94)2, …则第2018个正方形的面积为5×(94)2017, 故答案为:5×(94)2017. 【点睛】本题考查的是相似三角形的性质,正方形的性质,求出正方形ABCD 和正方形A 1B 1C 1C 的面积,得出规律是解决问题的关键.17.(1)AD=4;(2)矩形EFGH的面积288 49.【分析】(1)设BC=3x,根据三角形的面积公式列式计算即可;(2)设GF=y,根据矩形的性质得到HG∥BC,得到△AHG∽△ABC,根据相似三角形的性质列出比例式,计算即可.【详解】(1)设BC=3x,则AD=2x,∵△ABC的面积为12,∴12×3x×2x=12,解得,x1=2,x2=﹣2(舍去),则AD的长=2x=4;(2)设GF=y,则HG=2y,∵四边形EFGH为矩形,∴HG∥BC,∴△AHG∽△ABC,∴HG AMBC AD=,即2464y y-=,解得,y=127,HG=2y=247,则矩形EFGH的面积=127×247=28849.【点睛】本题考查的是相似三角形的判定和性质,矩形的性质,掌握相似三角形的判定定理和性质定理是解题的关键.18.(1)CG=1;(2)见解析【分析】(1)根据平行四边形的性质得到AB∥CD,证明△EGC∽△EAB,根据相似三角形的性质列出比例式,代入计算即可;(2)分别证明△DFG∽△BFA,△AFD∽△EFB,根据相似三角形的性质证明即可.【详解】(1)解:∵四边形ABCD是平行四边形,∴AB∥CD,∴△EGC∽△EAB,∴CG ECAB EB=,即2324CG=+,解得,CG=1;(2)证明:∴AB∥CD,∴△DFG∽△BFA,∴FG DF FA FB=,∴AD∥CB,∴△AFD∽△EFB,∴AF DF FE FB=,∴FG AF FA FE=,即2AF FG FE=⋅.【点睛】本题考查了平行四边形的性质,相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.19.(1)则P、Q同时出发,经过(S△PCQ=2cm2;(2)点Q从C点出发2s后点P从点A出发,再经过1.6秒或2611秒秒△PCQ与△ACB相似.【分析】(1)根据题意用t表示出CQ,PC,根据三角形的面积公式列出方程,解方程即可;(2)分△PCQ∽△ACB,△PCQ∽△BCA两种情况列出比例式,计算即可.【详解】(1)由题意得:AP=2t,CQ=t,则PC=8﹣2t,由题意得:12×(8﹣2t)×t=2,整理得:t2﹣4t+2=0,解得:t,则P、Q同时出发,经过(S△PCQ=2cm2;(2)由题意得:AP=2t,CQ=2+t,则PC=8﹣2t,分两种情况讨论:①当△PCQ∽△ACB时,CPCA=CQCB,即828t-=26t+,解得:t=1.6;②当△PCQ∽△BCA时,CPCB=CQCA,即826t-=28t+,解得:t=2611.综上所述:点Q 从C 点出发2s 后点P 从点A 出发,再经过1.6秒或2611秒秒△PCQ 与△ACB 相似.【点睛】 本题考查了相似三角形的判定,一元二次方程的应用,掌握相似三角形的判定定理是解题的关键.20.(1);(2)当t=1或52秒时,△PCQ 与△ACB 相似;(3)CE=3+t ; 【分析】(1)利用勾股定理可求得AB.(2)分CQ PC CA BC =和CQ PC CB AC =两种情况讨论. (3) 过点E 作HE CE ⊥交AC 于H ,先说明△PEH ∽△QEC ,得到34HE PH PE CE QC QE ===,用含t 的代数式表示HE 、CH,最后用勾股定理求出CE.【详解】(1)AB=;(2)由题意可知:2PC t =,QB t =,QC=5-t∵∠PCQ=∠ACB∴当CQ PC CA BC =或CQ PC CB AC =时,△PCQ 与△ACB 相似 当CQ PC CA BC =时,52105t t -=,解得t=1; 当CQ PC CB AC =时,52510t t -=,解得t=52, 当t=1或52秒时,△PCQ 与△ACB 相似;(3)如图,过点E 作HE CE ⊥交AC 于H ,则=90HEP PEC ︒∠+∠90QEP ∠=︒即C C=90QE PE ︒∠+∠∴QEC PEH ∠∠=∵090EHP ECP QCE ECP ∠+∠∠+∠==∴EHP ECQ ∠∠=△PEH ∽△QEC ∴34HE PH PE CE QC QE === ∴34HE CE =,()33544PH QC t -== ∴()315552444CH t t t -+=+= 在Rt HEC ∆中,222EC EH HC +=, 即22234CE CE HC ⎛⎫+ ⎪⎝⎭= ∴54CE HC = ∴3CE t +=故答案为(1);(2)当t=1或52秒时,△PCQ 与△ACB 相似;(3)CE=3+t. 【点睛】本题考查三角形综合题、相似三角形的判定和性质、勾股定理.解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.21.(1)△ADM ∽△BND ,理由见解析;(2)在∠EDF 绕点D 旋转过程中,点D 到线段MN 的距离为定值.【分析】(1)根据相似三角形的判定解答即可;(2)作DG ⊥MN ,DH ⊥AM ,利用相似三角形的判定和性质解答即可.【详解】(1)△ADM ∽△BND ,理由如下:∵AC=BC ,∴∠A=∠B ,∵∠A+∠AMD=∠EDF+∠BDN ,∵∠A=∠EDF ,∴∠AMD=∠BDN ,∴△ADM ∽△BND ;(2)证明:作DG⊥MN于G,DH⊥AM于H,如图②,由(1)得,△ADM∽△BND,∴=,∵AD=BD,∴=,又∠A=∠EDF,∴△ADM∽△DNM,∴∠AMD=∠NMD,又DG⊥MN,DH⊥AM,∴DG=DH,即在∠EDF绕点D旋转过程中,点D到线段MN的距离为定值.【点睛】本题考查的是相似三角形的判定和性质、三角形外角的性质、角平分线的性质,掌握相似三角形的判定定理和性质定理是解题的关键.22.(1)证明见解析;(2)证明见解析;(3)BD∥AE,BD=AE.理由见解析.【解析】【分析】(1)根据平行线的性质得到∠ABC=∠EKC,∠AMB=∠ECK,得到△ABM∽△EKC;(2)根据相似三角形的性质得到比例式,计算即可;(3)根据相似三角形的性质得到DE=AB,得到四边形ABDE是平行四边形,根据平行是四边形的性质解答.【详解】(1)∵KD∥AB,∴∠ABC=∠EKC,∵CE∥AM,∴∠AMB=∠ECK,∴△ABM∽△EKC;(2)∵△ABM ∽△EKC , ∴AB BM EK CK=, ∴AB•CK =EK•BM ,∵AM 是△ABC 的中线,∴BM =CM ,∴AB•CK =EK•CM ;(3)解:BD ∥AE ,BD =AE ,∵CE ∥AM , ∴DE CM EK CK =, ∵AB CM EK CK=, ∴DE =AB ,∵DE ∥AB ,∴四边形ABDE 是平行四边形,∴BD ∥AE ,BD =AE .【点睛】本题考查的是相似三角形的判定和性质、平行四边形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.23.(1)证明见解析;(2)证明见解析.【分析】(1)根据正方形的性质、全等三角形的判定定理证明BAM ≌DAN ,根据全等三角形的性质证明;(2)证明AMC ∽AEN △,根据相似三角形的性质证明.【详解】证明:()1四边形ABCD 是正方形,AB AD ∴=,90BAD ∠=,又90MAN ∠=,BAM DAN ∴∠=∠,在BAM 和DAN 中,90B ADN AB AD BAM DAN ⎧∠=∠=⎪=⎨⎪∠=∠⎩,BAM∴≌DAN,∴=;AM AN()2四边形ABCD是正方形,CAD∴∠=,45CAD NAD∠=∠,BAM DAN2∠=∠,∴∠=,45MAC∴∠=∠,又45MAC EAN∠=∠=,ACM ANE∴∽AENAMC△,AM AC∴=,AE AN∴⋅=⋅,AN AM AC AE2∴=⋅.AM AC AE【点睛】本题考查的是正方形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.。

人教版 初三数学 竞赛专题:数形结合思想(含答案)

人教版 初三数学 竞赛专题:数形结合思想(含答案)【例l 】设1342222+-+++=x x x x y ,则y 的最小值为___________.【例2】直角三角形的两条直角边之长为整数,它的周长是x 厘米,面积是x 平方厘米,这样的直角三角形 ( )A .不存在B .至多1个C .有4个D .有2个【例3】如图,在△ABC 中,∠A =090,∠B =2∠C ,∠B 的平分线交AC 于D ,AE ⊥BC 于E ,DF ⊥BC 于F . 求证:BEAE BF AE DF BD ⋅+⋅=⋅111.【例4】 当a 在什么范围内取值时,方程a x x =-52有且只有相异的两实数根?【例5】 设△ABC 三边上的三个内接正方形(有两个顶点在三角形的一边上,另两个顶点分别在三角形另两边上)的面积都相等,证明:△ABC 为正三角形.【例6】设正数x ,y ,z 满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+=++1693253222222x zx z z y y xy x ,求zx yz xy 32++的值.能力训练1. 不查表可求得tan 015的值为__________. 2. 如图,点A ,C 都在函数xy 33=(0>x )的图象上,点B ,D 都在x 轴上,且使得△OAB ,△BCD 都是等边三角形,则点D 的坐标为______________.3.平面直角坐标系上有点P (-1,-2)和点Q (4,2),取点R (1,m ),当=m ________时,PR +RQ 有最小值.4.若0>a ,0<b ,要使b a b x a x -=-+-成立,x 的取值范围是__________.5.已知AB 是半径为1的⊙O 的弦,AB 的长为方程012=-+x x 的正根,则∠AOB 的度数是______________.6. 如图,所在正方形的中心均在坐标原点,且各边与x 轴或y 轴平行,从内到外,它们的边长依 次为2,4,6,8,…,顶点依次用1A ,2A ,3A ,4A ,…表示,则顶点55A 的坐标是( )A . (13,13)B .(-13,-13) C.(14,14) D. (-14,一14)第2题图 第6题图7.在△ABC 中,∠C =090,AC =3,BC =4.在△ABD 中,∠A =090,AD =12.点C 和点D 分居AB 两侧,过点D 且平行于AC 的直线交CB 的延长线于E .如果nmDB DE =,其中,m ,n 是互质的正整数,那么n m += ( )A. 25B.128C.153D.243E.256 8.设a ,b ,c 分别是△ABC 的三边的长,且cb a b a b a +++=,则它的内角∠A ,∠B 的关系是( ) A .∠B >2∠A B .∠B=2∠A C .∠B <2∠A D .不确定 9.如图,a S AFG 5=∆,a S ACG 4=∆,a S BFG 7=∆,则=∆AEG S ( )A .a 1127 B .a 1128 C .a 1129 D .a 113010. 满足两条直角边边长均为整数,且周长恰好等于面积的整数倍的直角三角形的个数有( ) A. 1个 B .2个 C .3个 D .无穷多个11.如图,关于x 的二次函数m mx x y --=22的图象与x 轴交于A (1x ,0),B (2x ,0)两点(2x >0>1x ),与y 轴交于C 点,且∠BAC =∠BCO . (1) 求这个二次函数的解析式;(2) 以点D (2,0)为圆心⊙D ,与y 轴相切于点O ,过=抛物线上一点E (3x ,t )(t >0,3x <0)作x 轴的平行线与⊙D 交于F ,G 两点,与抛物线交于另一点H .问是否存在实数t ,使得EF +GH =CF ?如果存在,求出t 的值;如果不存在,请说明理由.12.已知正数a ,b ,c ,A ,B ,C 满足a +A =b +B =c +C =k . 求证:a B 十b C +c A <2k .13.如图,一个圆与一个正三角形的三边交于六点,已知AG =2,GF =13,FC =1,HI =7,求DE .14.射线QN 与等边△ABC 的两边AB ,BC 分别交于点M ,N ,且AC //QN ,AM =MB = 2cm ,QM = 4cm .动点P 从点Q 出发,沿射线QN 以每秒1cm 的速度向右移动,经过t 秒,以点P 为圆心,3cm 为半径的圆与△ABC 的边相切(切点在边上).请写出t 可以取的一切值:_______________(单位:秒).15. 如图,已知D 是△ABC 边AC 上的一点,AD :DC =2:1,∠C =045,∠ADB =060.求证:AB 是△BCD 的外接圆的切线.16.如图,在△ABC 中,作一条直线l ∥BC ,且与AB 、AC 分别相交于D ,E 两点,记△ABC ,△BED 的面积分别为S ,K .求证:K ≤S 41.17.如图,直线OB 是一次函数x y 2 的图象,点A 的坐标为(0,2). 在直线OB 上找点C ,使得△ACO 为等腰三角形,求点C 的坐标.参考答案例1 5提示:作出B 点关于x 轴的对称点B '(2,-3),连结AB '交x 轴于C ,则AB '=AC 十CB ' 为所要求的最小值.例2 D 提示:设两直角边长为a ,b ,斜边长为c ,由题意得a +b +c =x ,x ab =21,又222c b a =+,得().424b b a --=.因a ,h 为边长且是整数.故当⎩⎨⎧>->-,04,02b b 得b<2,取34,1==a b 不是整数;当⎩⎨⎧<-<-,04,02b b 得b>4,要使a ,b 为整数,只有两种取法:若b =5时,a =12(或b = 12,a =5);若b =8时,a =6(或b =6,a =8). 例3设AB =x ,则BC =2x ,AC =x 3 , BE =x 21,DF =DA=.32,31x BD x = .在Rt △AEB 中求得AE=,,23x BF x =代入证明即可. 例4如图,作出函数x x y 52-=图象,由图象可以看出:当a =0时,y =0与x x y 52-=有且只有相异二个交点;当4250<<a 时,y =a 与x x y 52-=图象有四个不同交点;当425=a 时,y =a 与x x y 52-=图象有三个不同交点,当425>a 时,y =a 与x x y 52-=图象有且只有相异二个交点. 例5由L c s cb s b a s a =+=+=+222 ①,知正数c b a ,,适合方程.2L xsx =+当0≠x 时,有022=+-s Lx x ②,故c b a ,,是方程②的根.但任何二次方程至多只有两个相异的根,所以c b a ,,中的某两数必相同.设b a =,若a c ≠,由①得()()c a acsa c s c a -=⎪⎭⎫⎝⎛-=-2112,则ac =2s =a a h ,这样△ABC 就是以∠B 为直角的直角三角形,b >a ,矛盾,故a =c ,得证. 例6,ABC AOC BOC AOB S S S S ∆∆∆∆=++,3421120sin 21321150sin 321⨯⨯=+•+••∴ xz y z y x 即,6232132121321=•+•+⨯•xz y z y x 化简得.32432=++zx yz xy 能力训练1.32- 提示:构造含 15的Rt △ABC .2.()062,提示:如图,分别过点A ,C 作x 轴的垂线,垂足分别为E , F .设OE =a , BF =b ,则AE =a 3, CF =b 3,所以点A ,C 的坐标为()().3,2,3,b b a a a +()⎩⎨⎧=+=∴,3323,3332b a b a 解得⎩⎨⎧-==.36,3b a ∴点D 坐标为()0,62. 3.52- 提示:当R ,P ,Q 三点在一条直线上时,PR +RQ 有最小值. 4.a x b ≤≤5. 36提示:由012=-+x x 得21x x -=<1,则有AB <OB .在OB 上截取OC =AB =x ,又由012=-+x x 得x x x 11=-,即ABOABC AB =,则OAB ∆∽△ABC ,AB =AC =OC . 6. C 提示:由题所给的数据结合坐标系可得,55A 是第14个正方形上的第三个顶点,位于第一象限,所以55A 的横纵坐标都是14. 7. A8. B 提示:由条件,22b ab ac ab a +=++即()bca abc a a b +=∴+=,2,延长CB 至D ,使BD =AB ,易证△ABC ∽△DAC ,得∠ABC =∠D +∠BAD =2∠D =2∠BAC .9. D10. C 提示:设直角三角形的两条直角边长为(),,b a b a ≤则ab k b a b a 2122•=+++ (k b a ,,均为正整数),化简得()()⎩⎨⎧=-=-⎩⎨⎧=-=-∴=--44,2484,14,844kb ka kb ka kb ka 或解得 ⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===8,6,14,3,212,5,1b a k b a k b a k 或或即有3组解. 11. (1)122--=x x y (2)过D 作DM ⊥ EH 于M ,连结DG , 2,===DO DG t DM ,.2222t MG FG -==若EF +GH =FG 成立,则EH = 2FG .由EF //x 轴,设H 为()t x ,4,又∵E ,H 为抛物线上的两个点,,12323t x x =--∴,12424t x x =--即43,x x 是方程t x x =--122的两个不相等的实数根,()t x x x x +-==+∴1,24343,()2432433422222,224t t t x x x x x x EH -•=+∴+=-+=-=,解得8197,819711+-=-=t t (舍去). 12.a 十A =b +B =c 十C =k ,可看作边长为k 的正三角形,而从2k 联想到边长为k 的正方形的面积.如图,将aB +bC +cA 看作边长分别为a 与B ,b 与C ,c 与A 的三个小矩形面积之和,将三个小矩形不重叠地嵌入到边长为k 的正方形中,显然aB +bC +cA <k 2.13. AC =AG +GF +FC =16,由AH ·AI =AG ·AF ,得AH(AH +7)=2×(2+13),解得AH =3,从而HI =7,BI =6.设BD =x ,CE =y ,则由圆幂定理得⎩⎨⎧CE •CD =CF •CG BD •BE =BI •BH ,即⎩⎨⎧y (16-x )=1×14x (16-y )=6×13.解得.故DE =16-(x +y )=222. 14. t =2或3≤t ≤7或t =8. 提示:本题通过点的移动及直线与圆相切,考查分类讨论思想.由题意知∠AMQ =60°,MN =2.当t =2时,圆P 与AB 相切;当3≤t ≤7时,点P 到AC 的距离为3,圆P 与AC 相切;当t =8时,圆P 与BC 相切.15.设AD =2,DC =1,作BE ⊥AC ,交AC 于E .又设ED =x ,则BE =3x ,BE =EC =3x .又1+x =3x ,∴x =,BE =,AE =AD -ED =2-x =,AB 2 =AE 2+BE 2=()2+()2=6,而AD •AC =6.∴AB 2 =AD •AC .故由切割线定理逆定理知,AB 是△BCD 的外接圆的切线.16.设AD AB =AEAC =m (0≤m ≤1).∵S △ABE S △ABC =AE AC =m ,∴S △ABE =m S △ABC .又∵S △BDE S △ABE =BD AB =AB -AD AB =1-m ,∴S △BDE =(1-m )• S △ABE =m (1-m )• S △ABC .即K =(1-m )•mS ,整理得Sm 2-Sm +K =0,由△≥0得K ≤14S .17.分以下几种情况:①若此等腰三角形以OA 为一腰,且∠BAC 为顶角,则AO =AG =2.设C 1(―x ,2x ), 则x 2+(2x -2)2=22,解得x =85,得C 1(85,165).②若此等腰三角形以OA 为一腰,且O 为顶角顶点,则OC 2=OC 3=OA =2.设C 2(x ′,2x ′), 则x ′2+(2x ′)2=22,解得x ′=255,得C 2(255,455). 又由点C 2与C 3关于原点对称,得C 3(―255,―455).③若等腰三角形以OA 为底边,则C 4的纵坐标为1,其横坐标为12,得C 4 (12,1).所以,满足题意的点C 有4个,坐标分别为:(85,165),(255,455),(―255,―455),(12,1).。

初中七年级数学竞赛培优讲义全套专题27 以形借数——借助图形思考[精品]

专题27 以形借数——借助图形思考阅读与思考数学是研究数量关系与空间形式的科学,数与形以及数和形的关联与转化,这是数学研究的永恒主题,就解题而言,数与形的恰当结合,常常有助于问题的解决,美国数学家斯蒂恩说:“如果一个特定的问题可以被转化为一个图形,那么思维就整体地把握了问题,并且能创造性地思考问题的解法”.将问题转化为一个图形,把问题中的条件与结论直观地、整体地表示出来,是一个十分重要的解题方法,现阶段借助图形思考是指以下两个方面:1.从给定的图形获取解题信息数学问题的表述方法很多,既有用文字叙述的,也有通过图形(如数轴、图表、平面图形等)来呈现的,善于从给定的图形获取解题信息是一个重要技能.2.有意地画图辅助解题图形能直观、形象地表示数量及关系,解题中有意地画图(如画直线图、列表、构造图形等)能帮助分析理顺复杂数量关系,使问题获得简解.阅读与思考【例1】如图,圆周上均匀地钉了9枚钉子,钉尖朝上,用橡皮筋套住其中的3枚,可套得一个三角形,所有可以套出来的三角形中,不同形状的共有____________种。

(“五羊杯”竞赛试题)x y z则解题思路:圆周长保持不变,设圆周长为9,套成的三角形三边所对应的弧长分别为,,,++=。

不妨设x y z≤≤,借助图形分析,找出满足条件的整数解即可。

x y z9【例2】一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系。

根据图像进行一下探究:........信息读取(1)甲、乙两地之间的距离为___________km。

(2)请解释图中点B的实际意义。

图像理解(3)求慢车和快车的速度。

(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围。

问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同。

在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇。

(完整版)数学培优竞赛新方法(九年级)第26讲抛物线与直线形由动点生特殊斯四边行问题

§26抛物线与直线形(2)——由动点生成的特别四边形问题科学家的好奇心是永久知足不了的,由于跟着每一个进展,正如巴普洛夫所说:“我们打到了更高的水平,看到了更广阔的的天地,见到了原来在视线以外的东西。

”——贝弗里奇知识纵横抛物线与直线形的联合另一表现形式是以抛物线为载体,商讨能否存在一些点,使其能够成某些特别四边形,有以下常有的基本形式:(1 )抛物线上的点可否构成平行四边形;(2 )抛物线上的点可否构成矩形、菱形、正方形;(3 )抛物线上的点可否构成梯形;特别四边形的性质与判断是解这种问题的基础,而待定系数法、数形联合、分类议论是解这种问题的重点。

例题求解【例 1 】如图,抛物线y x22x 3 与x轴交 A, B 两点(A点在B点左边),直线l与抛物线交于 A,C 两点,此中C点的横坐标为2.(1)求 A, B 两点的坐标及直线AC 的函数表达式;(2) P 是线段 AC 上的一个动点,过 P 点作y轴的平行线交抛物线于 E 点,求线段 PE 长度的最大值;(3)点 G 抛物线上的动点,在x 轴上能否存在点 F ,使A,C , F ,G这样的四个点为极点的四边形是平行四边形?假如存在,求出全部知足条件的 F 点坐标;假如不存在,请说明理由.(义乌市中考题)思路点拨对于( 3 ),AF可能为平行四边形的边或对角线,故四个点能构成四边形的情况由多种,需全面议论。

7【例 2 】如图,对称轴为直线x的抛物线经过点 A 6,0 和 B 0,4 .2(1 )求抛物线分析式及极点坐标;(2 )设点 E x, y是抛物线上一动点,且位于第四象限,四边形OEAF是以 OA 为对角线的平行四边形,求平行四边形OEAF 的面积S 与 x 之间的函数关系式,并写出自变量x 的取值范围;①当平行四边形OEAF 的面积为②能否存在点 E ,使平行四边形24 时,请判断平行四边形OEAFOEAF 为正方形?若存在,求出点能否为菱形?E 的坐标;若不存在,请说明原因.(河南省中考题)思路点拨对于( 2 ),若OE AE ,则平行四边形OEAF 为菱形;若OA EF 且OA EF ,则平行四边形OEAF 为正方形。

人教版 九年级数学 27.2 相似三角形 培优训练(含答案)

人教版 九年级数学 27.2 相似三角形 培优训练一、选择题(本大题共10道小题)1. (2020·永州)如图,在ABC 中,2//,3AE EF BC EB =,四边形BCFE 的面积为21,则ABC 的面积是( )A. 913B. 25C. 35D. 632. (2020·云南)如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,E是CD 的中点.则△DEO 与△BCD 的面积的比等于( )A .B .C .D .3. (2020·哈尔滨)如图,在△ABC中,点D 在BC 边上,连接AD ,点E 在AC 边上,过点E 作EF ∥BC ,交AD 于点F,过点E 作EG ∥AB ,交BC 于点G,则下列式子一定正确的是( )A .CDEF ECAE = B .ABEG CDEF = C .GCBG FDAF = D .AD AF BCCG =4. (2020·内江)如图,在ABC ∆中,D 、E 分别是AB 和AC 的中点,15BCED S =四边形,则ABC S ∆=( )A. 30B. 25C. 22.5D. 205. (2020·河南)如图,在△ABC中,∠ACB=90°,边BC在x轴上,顶点A,B 的坐标分别为(-2,6)和(7,0).将正方形OCDE沿x轴向右平移,当点E落在AB边上时,点D的坐标为()A. (32,2) B. (2,2) C. (114,2) D. (4,2)6. (2020·广西北部湾经济区)如图,在△ABC中,BC=120,高AD=60,正方形EFGH一边在BC上,点E,F分别在AB,AC上,AD交EF于点N,则AN 的长为()A.15 B.20 C.25 D.307. (2020·铜仁)已知△FHB∽△EAD,它们的周长分别为30和15,且FH=6,则EA的长为()A.3 B.2 C.4 D.58. (2020·营口)如图,在△ABC中,DE∥AB,且CDBD=32,则CECA的值为()A EA.3 5B.23C.45D.329. (2020·昆明)在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE(不含△ABC),使得△ADE∽△ABC(同一位置的格点三角形△ADE只算一个),这样的格点三角形一共有()A.4个B.5个C.6个D.7个ABC10. (2020·新疆)如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE 的面积为1,则BC的长为·······················································()A.25B.5 C.45D.10二、填空题(本大题共8道小题)11. (2020·吉林)如图,////AB CD EF.若12=ACCE,5BD=,则DF=______.12. (2020·南通)如图,在正方形网格中,每个小正方形的边长均为1,△ABC 和△DEF的顶点都在网格线的交点上,设△ABC的周长为C1,△DEF的周长为C2,则12CC的值等于▲ .ABCD EF13. (2020·盐城)如图,//,BC DE 且,4,10BC DE AD BC AB DE <==+=,则AEAC的值为.14. (2020·郴州)在平面直角坐标系中,将AOB∆以点O 为位似中心,32为位似比作位似变换,得到11OB A ∆.已知)3,2(A ,则点1A 的坐标是 .15.(2020·临沂)如图,在ABC ∆中,D ,E 为边AB 的三等分点,////EF DG AC ,H 为AF 与DG 的交点.若6AC =,则DH =_________.16. (2020·杭州)如图是一张矩形纸片,点E 在AB 边上,把BCE △沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,2AE =,则DF =______,BE =______.FDBE A C17. (2020·苏州)如图,在平面直角坐标系中,点A 、B 的坐标分别为()4,0-、()0,4,点()3,C n 在第一象限内,连接AC 、BC .已知2BCA CAO ∠=∠,则n =_________.18. (2019•辽阳)如图,平面直角坐标系中,矩形ABOC 的边BO CO ,分别在x 轴,y 轴上,A 点的坐标为(86)-,,点P 在矩形ABOC 的内部,点E 在BO 边上,满足PBE △∽CBO △,当APC △是等腰三角形时,P 点坐标为__________.三、解答题(本大题共4道小题)19. (2020·杭州)如图,在正方形ABCD 中,点E 在BC 边上,连接AE ,DAE ∠的平分线AG 与CD 边交于点G ,与BC 的延长线交于点F .设()0CEEBλλ=>. FCGEBDA(1)若2AB =,λ=1,求线段CF 的长. (2)连接EG ,若EG AF ⊥,①求证:点G 为CD 边的中点. ②求λ的值.20. 已知AB 是半径为1的圆O 直径,C 是圆上一点,D 是BC 延长线上一点,过D 点的直线交AC 于E 点,交AB 于F 点,且△AEF 为等边三角形. (1)求证:△DFB 是等腰三角形; (2)若DA =7AF ,求证CF ⊥AB.21. 如图,在平面直角坐标系xOy 中,直线y =-x +3与x 轴交于点C ,与直线AD 交于点A (43,53),点D 的坐标为(0,1).(1)求直线AD 的解析式; (2)直线AD 与x 轴交于点B ,若点E 是直线AD 上一动点(不与点B 重合),当△BOD 与△BCE 相似时,求点E 的坐标.22.(2020·泰州)如图,在ABC ∆中,90C ∠=︒,3AC =,4BC =,P 为BC 边上的动点(与B 、C 不重合),//PD AB ,交AC 于点D ,连接AP ,设CP x =,ADP ∆的面积为S .(1)用含x 的代数式表示AD 的长;(2)求S 与x 的函数表达式,并求当S 随x 增大而减小时x 的取值范围.人教版 九年级数学 27.2 相似三角形 培优训练-答案一、选择题(本大题共10道小题) 1. 【答案】B【详解】解:∵//EF BC ∴AEF B AFE C ∠=∠∠=∠, ∴AEF ABC ∽ ∵23AE EB = ∴25AE AB = ∴255242AEB ABCS S ⎛⎫==⎪⎝⎭ ∴421AEBBCFESS =四边形 ∵21BCFE S =四边形 ∴AEBS =4∴=25ABCS故选:B .2. 【答案】B .【解析】利用平行四边形的性质可得出点O 为线段BD 的中点,结合点E 是CD 的中点可得出线段OE 为△DBC 的中位线,利用三角形中位线定理可得出OE ∥BC ,OE =BC ,进而可得出△DOE ∽△DBC ,再利用相似三角形的面积比等于相似比的平分,即可求出△DEO 与△BCD 的面积的比为1:4.3. 【答案】C 【解析】本题考查了平行线分线段成比例和由平行判定相似,∵EF∥BC ,∴EC AE FD AF =,∵EF ∥BC ,∴ECAE GC BG =,∴GC BGFD AF =因此本题选C .4. 【答案】D【解析】本题考查了相似三角形的判定与性质,解答本题的关键是得出DE 是中位线,从而判断△ADE ∽△ABC ,然后掌握相似三角形的面积比等于相似比的平方即可求解本题.首先判断出△ADE ∽△ABC ,然后根据相似三角形的面积比等于相似比的平方即可求出△ABC 的面积.根据题意,点D 和点E 分别是AB 和AC 的中点,则DE ∥BC 且DE=12BC ,故可以判断出△ADE ∽△ABC,根据相似三角形的面积比等于相似比的平方,可知ADE S ∆:ABC S ∆=1:4,则BCED S 四边形:ABC S ∆=3:4,题中已知15BCED S =四边形,故可得ADE S ∆=5,ABC S ∆=20,因此本题选D .5. 【答案】B【解析】∵点A ,B 的坐标分别为(-2,6)和(7,0),∴OC=2,AC=6,OB=7, ∴BC=9,正方形的边长为2.将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,设正方形与x 轴的两个交点分别为G 、F ,∵EF ⊥x 轴,EF=GF=DG=2,∴EF ∥AC ,D ,E 两点的纵坐标均为2, ∴EF BF AC BC ,即269BF ,解得BF=3.∴OG=OB-BF-GF=7-3-2=2,∴ D 点的横坐标为2,∴点D 的坐标为 (2,2).6. 【答案】B【解析】设正方形EFGH 的边长EF =EH =x , ∵四边EFGH 是正方形,∴∠HEF =∠EHG =90°,EF ∥BC , ∴△AEF ∽△ABC , ∵AD 是△ABC 的高, ∴∠HDN =90°, ∴四边形EHDN 是矩形, ∴DN =EH =x , ∵△AEF ∽△ABC , ∴(相似三角形对应边上的高的比等于相似比),∵BC =120,AD =60, ∴AN =60﹣x , ∴,解得:x =40,∴AN =60﹣x =60﹣40=20.因此本题选B .7. 【答案】A【解析】相似三角形的周长之比等于相似比,所以△FHB和△EAD 的相似比为30∶15=2∶1,所以FH∶EA=2∶1,即6∶EA=2∶1,解得EA=3.因此本题选A.8. 【答案】 A【解析】利用平行截割定理求CECA的值.∵DE∥AB,∴CEAE=CDBD=32,∵CE+AE=AC,∴CECA=35.9. 【答案】A【解析】本题考查了相似三角形的判定.符合条件的三角形有四个,如图所示:ABC因此本题选A.10. 【答案】A【解析】本题考查了相似三角形的判定与性质,三角形的中位线定理.如答图,过点E作EG⊥BC于G,过点A作AH⊥BC于H.又因为DF⊥BC,所以DF∥AH∥EG,四边形DEGF是矩形.所以△BDF∽△BAH,DF=EG,所以DFAH =BDBA,因为D为AB中点,所以BDBA=12,所以DFAH=12.设DF=EG=x,则AH=2x.因为∠BAC=90°,所以∠B+∠C=90°,因为EG⊥BC,所以∠C+∠CEG=90°,所以∠B=∠CEG,又因为∠BHA=∠CGE=90°,AB=CE,所以△ABH≌△CEG,所以CG=AH=2x.同理可证△BDF∽△ECG,所以BFEG=BDEC,因为BD=12AB=12CE,所以BF=12EG=1 2x.在R t△BDF中,由勾股定理得BD22DF BF+221()2x x+5x,所以AD5x,所以CE=AB=2AD5x.因为DE∥BC,所以AEAC=ADAB=12,所以AE=12AC=CE5x.在R t △ADE 中,由勾股定理得DE =22AD AE +=225()(5)2x x +=52x .因△DEF 的面积为1,所以12DE ·DF =1,即12×52x ·x =1,解得x =255,所以DE =52×255=5,因为AD =BD ,AE =CE ,所以BC =2DE =25,因此本题选D .二、填空题(本大题共8道小题) 11. 【答案】10【解析】∵////AB CD EF ,∴AC BDCE DF=, 又∵12=AC CE ,5BD =,∴512DF =,∴10DF =,故答案为:10.12. 【答案】22【解析】由图形易证△ABC 与△DEF 相似,且相似比为1:2,所以周长比为1:2.故答案为:2.13. 【答案】2【解析】∵BC ∥DE ,∴△ADE ∽△ABC ,∴AE AD DEAC AB BC ==,设DE =x ,则AB =10-x ∵AD =BC =4,∴4104AE x AC x ==-,∴x 1=8 ,x 2=2(舍去), 824AE AC ==,此本题答案为2 .14. 【答案】(,2)【解析】∵将△AOB 以点O 为位似中心,为位似比作位似变换,得到△A 1OB 1,A (2,3),∴点A 1的坐标是:(×2,×3),即A 1(,2).故答案为:(,2).15. 【答案】1【解析】 ∵D 、E 为边AB 的三等分点, ∴BE=ED=AD=13AB.∵////EF DG AC ,∴123EF AC ==∴112DH EF ==.16. 【答案】2 5-1 【解析】设BE =x ,则AB =AE +BE =2+x .∵四边形ABCD 是矩形,∴CD =AB =2+x ,AB ∥CD ,∴∠DCE =∠BEC .由折叠得∠BEC =∠DEC ,EF =BE =x ,∴∠DCE =∠DEC .∴DE =CD =2+x .∵点D ,F ,E 在同一条直线上,∴DF =DE -EF =2+x -x =2.∵AB ∥CD ,∴△DCF ∽△EAF ,∴DC EA =DF EF .∴22x +=2x ,解得x 1=5-1,x 2=-5-1.经检验,x 1=5-1,x 2=-5-1都是分式方程的根.∵x >0,∴x =5-1,即BE =5-1.17. 【答案】145或2.8【解析】本题考查了平面直角坐标系中点的坐标特征,等腰三角形的性质,相似三角形的判定和性质,过点C 作CD ⊥y 轴于点D ,设AC 交y 轴于点E ,∴CD ∥x 轴,∴∠CAO=∠ACD, △DEC ∽△OEA ,∵2BCA CAO ∠=∠,∴∠BCD=∠ACD, ∴BD=DE,设BD=DE=x ,则OE=4-2x ,∴DC AO =DE EO ,即34=x4-2x ,解得x =1.2.∴OE=4-2x =1.6,∴n =OD=DE+OE=1.2+1.6=2.8.18. 【答案】326()55-,或(43)-, 【解析】∵点P 在矩形ABOC 的内部,且APC △是等腰三角形,∴P 点在AC 的垂直平分线上或在以点C 为圆心AC 为半径的圆弧上; ①当P 点在AC 的垂直平分线上时,点P 同时在BC 上,AC 的垂直平分线与BO 的交点即是E ,如图1所示,∵PE BO ⊥,CO BO ⊥,∴PE CO ∥,∴PBE △∽CBO △,∵四边形ABOC 是矩形,A 点的坐标为(86)-,, ∴点P 横坐标为﹣4,6OC =,8BO =,4BE =,∵PBE △∽CBO △,∴PE BE CO BO =,即468PE =, 解得:3PE =,∴点(43)P -,. ②P 点在以点C 为圆心AC 为半径的圆弧上,圆弧与BC 的交点为P , 过点P 作PE BO ⊥于E ,如图2所示,∵CO BO ⊥,∴PE CO ∥,∴PBE △∽CBO △,∵四边形ABOC 是矩形,A 点的坐标为(86)-,, ∴8AC BO ==,8CP =,6AB OC ==, ∴22228610BC BO OC +=+=,∴2BP =,∵PBE △∽CBO △, ∴PE BE BP CO BO BC ==,即:26810PE BE ==, 解得:65PE =,85BE =, ∴832855OE =-=, ∴点326()55P -,, 综上所述:点P 的坐标为:326()55-,或(43)-,, 故答案为:326()55-,或(43)-,. 三、解答题(本大题共4道小题)19. 【答案】解:(1)∵四边形ABCD 是正方形,∴AD ∥BC ,AB =BC =2,∴∠DAF =∠F .∵AG 平分∠DAE ,∴∠DAF =∠EAF ,∴∠EAF =∠F ,∴EA =EF .∵λ=1,∴BE=EC=1.在Rt△ABE中,由勾股定理得EA=5,∴CF=EF-EC=5-1.(2)①∵EA=EF,EG⊥AF,∴AG=GF.又∵∠AGD=∠FGC,∠DAG=∠F,所以△DAG≌△CFG,∴DG=CG,∴点G为CD边的中点.②不妨设CD=2,则CG=1.由①知CF=AD=2.∵EG⊥AF,∴∠EGF=90°.∵四边形ABCD是正方形,∴∠BCD=90°,∴∠BCD=∠FCG,∠EGC+∠CGF=90°,∠EGC+∠GEC=90°,∴∠CGF=∠GEC,∴△EGC∽△GFC,∴EC CG=CG CF=12,∴EC=12,∴BE=32,∴λ=13.20. 【答案】(1)证明:∵AB为直径,∴∠ACB=90°,∵△AEF是等边三角形,∴∠EAF=∠EFA=60°,∴∠ABC=30°,∴∠FDB=∠EFA-∠B=60°-30°=30°,(2分)∴∠ABC=∠FDB,∴FB=FD,∴△BDF是等腰三角形.(3分)(2)解:设AF=a,则AD=7a,解图如解图,连接OC,则△AOC是等边三角形,由(1)得,BF=2-a=DF,∴DE=DF-EF=2-a-a=2-2a,CE=AC-AE=1-a,在Rt△ADC中,DC=(7a)2-1=7a2-1,在Rt△DCE中,tan30°=CEDC=1-a7a2-1=33,解得a=-2(舍去)或a=12,(5分)∴AF=1 2,在△CAF和△BAC中,CA AF=BAAC=2,且∠CAF=∠BAC=60°,∴△CAF∽△BAC,∴∠CFA =∠ACB =90°,即CF ⊥AB.(6分)21. 【答案】解:(1)设直线AD 的解析式为y =kx +b(k≠0),将D(0,1)、A(43,53)代入解析式得⎩⎪⎨⎪⎧b =143k +b =53, 解得⎩⎪⎨⎪⎧b =1k =12, 解图∴直线AD 的解析式为y =12x +1.(3分)(2)直线AD 的解析式为y =12x +1,令y =0,得x =-2,∴B(-2,0),即OB =2.∵直线AC 的解析式为y =-x +3,令y =0,得x =3, ∴C(3,0),即BC =5,设E(x ,12x +1),①当E 1C ⊥BC 时,∠BOD =∠BCE 1=90°,∠DBO =∠E 1BC , ∴△BOD ∽△BCE 1,此时点C 和点E 1的横坐标相同,将x =3代入y =12x +1, 解得:y =52,∴E 1(3,52).(6分)②当CE 2⊥AD 时,∠BOD =∠BE 2C =90°,∠DBO =∠CBE 2, ∴△BOD ∽△BE 2C ,如解图,过点E 2作E 2F ⊥x 轴于点F ,则∠E 2FC =∠BFE 2=90°. ∵∠E 2BF +∠BE 2F =90°,∠CE 2F +∠BE 2F =90°,∴∠E 2BF =∠CE 2F ,∴△E 2BF ∽△CE 2F ,则E 2F BF =CF E 2F , 即E 2F 2=CF·BF ,(12x +1)2=(3-x)(x +2),解得:x 1=2,x 2=-2(舍去),∴E 2(2,2);(9分)③当∠EBC =90°时,此情况不存在.综上所述,点E 的坐标为E 1(3,52)或E 2(2,2).(10分)22. 【答案】解: (1)∵DP ∥AB∴△DCP ∽△ACB ∴CD CP AC CB= ∴34CD x = ∴34CD x =∴AD =3-34x (2)∵△DCP ∽△ACB,且相似比为x :4. ∴S △DCP :S △ACB =x 2:16∴S △ABC =13462⨯⨯=∴S △DCP =238x ∴S △APB =13(4)22PB AC x ⨯⨯=- ∴S =S △ABC -S △ABP -S △CDP22336(6)283382x x x x =---=-+ 当2x ≥ 时,S 随x 增大而减少.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题27数形结合
例1 5提示作出B 点关于轴的对称点B '(2,-3),连结AB '交轴于C ,则AB '=AC 十CB ' 为所要求的最小值.
例 2 D 提示设两直角边长为a ,b ,斜边长为c ,由题意得a +b +c =,x ab =21,又222c b a =+,得().424b b a --=.因a ,h 为边长且是整数.故当⎩⎨⎧>->-,04,02b b 得b<2,取34,1==a b 不是整数;当⎩⎨⎧<-<-,04,02b b 得b>4,要使a ,b 为整数,只有两种取法若b =5时,a =12(或b = 12,a =5);若b =8时,a =6(或b =6,a =8). 例3设AB =,则BC =2,AC =x 3, BE =
x 21,DF =DA=.32,31x BD x =.在Rt △AEB 中求得AE=,,23x BF x =代入证明即可.
例4如图,作出函数x x y 52-=图象,由图象可以看出当a =0时,y =0与
x x y 52-=有且只有相异二个交点;当4250<
<a 时,y =a 与x x y 52-=图象有四个不同交点;当425=
a 时,y =a 与x x y 52-=图象有三
个不同交点,当425>
a 时,y =a 与x x y 52-=图象有且只有相异二个交点. 例5由L c s c
b s b a s a =+=+=+222 ①,知正数
c b a ,,适合方程.2L x
s x =+当0≠x 时,有022=+-s Lx x ②,故c b a ,,是方程②的根.但任何二次方程至多只有两个相异的根,所以c b a ,,中的某两数必相同.设b a =,若a c ≠,由①得()()c a ac
s a c s c a -=⎪⎭⎫ ⎝⎛-=-2112,则ac =2s =a a h ,这样△ABC 就是以∠B 为直角的直角三角形,b >a ,矛盾,故a =c ,得证.
例6,ABC AOC BOC AOB S S S S ∆∆∆∆=++Θ
,3421120sin 21321150sin 321⨯⨯=+•+••∴οοxz y z y x 即,6232
132121321=•+•+⨯•xz y z y x 化简得.32432=++zx yz xy
能力训练1.32- 提示构造含ο15的Rt △ABC .
2.()062,提示如图,分别过点A ,C 作轴的垂线,垂足分别为
E ,
F .设OE =a , BF =b ,则AE =a 3, CF =b 3,所以点A ,C 的坐标为
()().3,2,3,b b a a a +()⎩⎨⎧=+=∴,3323,3332b a b a 解得
⎩⎨⎧-==.36,3b a ∴点D 坐标为()
0,62. 3.5
2- 提示当R ,P ,Q 三点在一条直线上时,PR +RQ 有最小值. 4.a x b ≤≤
5. ο36提示由012=-+x x 得21x x -=<1,则有AB <OB .在OB 上截取OC =AB =,又由012=-+x x 得x x x 11=-,即AB
OA BC AB =,则OAB ∆∽△ABC ,AB =AC =OC . 6. C 提示由题所给的数据结合坐标系可得,55A 是第14个正方形上的第三个顶点,位于第一象限,所以55A 的横纵坐标都是14.
7. A
8. B 提示:由条件,22b ab ac ab a +=++即()b
c a a b c a a b +=∴+=,2,延长CB 至D ,使BD =AB ,易证△ABC ∽△DAC ,得∠ABC =∠D +∠BAD =2∠D =2∠BAC .
9. D
10. C 提示设直角三角形的两条直角边长为(),,b a b a ≤则ab k b a b a 2
122•=+++ (k b a ,,均为正整数),化简得()()⎩⎨⎧=-=-⎩⎨⎧=-=-∴=--4
4,2484,14,844kb ka kb ka kb ka 或解得 ⎪⎩
⎪⎨⎧===⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===8,6,14,3,212,5,1b a k b a k b a k 或或即有3组解.
11. (1)122--=x x y (2)过D 作DM ⊥ EH 于M ,连结DG , 2,===DO DG t DM ,
.2222t MG FG -==若EF +GH =FG 成立,则EH = 2FG .由EF //轴,设H 为()t x ,4,又∵E ,H 为抛物线上
的两个点,,12323t x x =--∴,1242
4t x x =--即43,x x 是方程t x x =--122的两个不相等的实数根,()t x x x x +-==+∴1,24343, ()2432433422222,224t t t x x x x x x EH -•=+∴+=-+=
-=,解得8
197,819711+-=-=t t (舍去). 12.a 十A =b +B =c 十C =,可看作边长为的正三角形,而从2k 联想到边长为的正方形的面积.如图,将aB +bC +cA 看作边长分别为a 与B ,b 与C ,c 与A 的三个小矩形面积之和,将三个小矩形不重叠地嵌入到边长为的正方形中,显然aB +bC +cA <2
. 13. AC =AG +GF +FC =16,由AH ·AI =AG ·AF ,得AH
(AH +7)=2×(2+13),解得AH =3,从而HI =7,BI =6.设BD =,CE =y ,则由圆幂定理得
⎩⎨⎧CE •CD =CF •CG BD •BE =BI •BH ,即⎩⎨⎧y (16-x )=1×14x (16-y )=6×13.解得⎩⎪⎨⎪⎧x =10-22y =6-22 .故DE =16-(+y )=222. 14. t =2或3≤t ≤7或t =8. 提示:本题通过点的移动及直线与圆相切,考查分类讨论思想.由题意知∠AMQ =60°,MN =2.当t =2时,圆P 与AB 相切;当3≤t ≤7时,点P 到AC 的距离为3,圆P 与AC 相切;当t =8时,圆P 与BC 相切.
15.设AD =2,DC =1,作BE ⊥AC ,交AC 于E .又设ED =,则BE =3,BE =EC =3.又1+=3,∴=
3+12,BE =3+32,AE =AD -ED =2-=3-32,AB 2 =AE 2+BE 2=(3-32)2+(3+32
)2=6,而AD •AC =6.∴AB 2
=AD •AC .故由切割线定理逆定理知,AB 是△BCD 的外接圆的切线. 16.设AD AB =AE AC =m (0≤m ≤1).∵S △ABE S △ABC =AE AC =m ,∴S △ABE =m S △ABC .又∵S △BDE S △ABE =BD AB =AB -AD AB
=1-m ,∴S △BDE =
(1-m )• S △ABE =m (1-m )• S △ABC .即=(1-m )•mS ,整理得Sm 2-Sm +=0,由△≥0得≤14
S . 17.分以下几种情况:
①若此等腰三角形以OA 为一腰,且∠BAC 为顶角,则AO =AG =2.设C 1(―,2),
则2+(2-2)2=22,解得=85,得C 1(85,165
). ②若此等腰三角形以OA 为一腰,且O 为顶角顶点,则OC 2=OC 3=OA =2.设C 2(′,2′),
则′2+(2′)2=22,解得′=255,得C 2(255,45
5). 又由点C 2与C 3关于原点对称,得C 3(―255,―45
5). ③若等腰三角形以OA 为底边,则C 4的纵坐标为1,其横坐标为12,得C 4 (12
,1). 所以,满足题意的点C 有4个,坐标分别为:(85,165),(255,455),(―255,―455),(12
,1).。

相关文档
最新文档