求组合图形面积的基本解法与思路(下)
《组合图形的面积》教案优秀8篇

《组合图形的面积》教案优秀8篇《组合图形的面积》教案篇一一、知识要点在进行组合图形的面积计算时,要仔细观察,认真思考,看清组合图形是由几个基本单位组成的,还要找出图中的隐蔽条件与已知条件和要求的问题间的关系。
二、精讲精练【例题1】求图中阴影部分的面积(单位:厘米)。
【思路导航】如图所示的特点,阴影部分的面积可以拼成圆的面积。
62×3.14× =28.26(平方厘米)答:阴影部分的面积是28.26平方厘米。
练习1:1.求下面各个图形中阴影部分的面积(单位:厘米)。
2.求下面各个图形中阴影部分的面积(单位:厘米)。
3.求下面各个图形中阴影部分的面积(单位:厘米)。
【例题2】求图中阴影部分的面积(单位:厘米)。
【思路导航】阴影部分通过翻折移动位置后,构成了一个新的图形(如图所示)。
从图中可以看出阴影部分的面积等于大扇形的面积减去大三角形面积的一半。
3.14× -4×4÷2÷2=8.56(平方厘米)答:阴影部分的面积是8.56平方厘米。
练习2:1.计算下面图形中阴影部分的面积(单位:厘米)。
2.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
3.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
【例题3】如图19-10所示,两圆半径都是1厘米,且图中两个阴影部分的面积相等。
求长方形ABO1O的面积。
【思路导航】因为两圆的半径相等,所以两个扇形中的空白部分相等。
又因为图中两个阴影部分的面积相等,所以扇形的面积等于长方形面积的一半(如图19-10右图所示)。
所以3.14×12×1/4×2=1.57(平方厘米)答:长方形长方形ABO1O的面积是1.57平方厘米。
练习3:1.如图所示,圆的周长为12.56厘米,AC两点把圆分成相等的两段弧,阴影部分(1)的面积与阴影部分(2)的面积相等,求平行四边形ABCD的面积。
小学五年级数学《组合图形面积的计算》优秀教案三篇

小学五年级数学《组合图形面积的计算》优秀教案三篇组合图形面积的计算是平面图形知识在小学阶段的综合应用。
计算一个组合图形的面积,有时可以有多种方法,下面就是我给大家带来的小学五年级数学《组合图形面积的计算》优秀教案三篇,希望能帮助到大家!小学五年级数学《组合图形面积的计算》优秀教案一教学目标:1、知道求组合图形的面积就是求几个图形面积的和(或差);能正确地进行组合图形面积计算,并能灵活思考解决实际问题。
2、注重对组合图形的分析方法与计算技巧,有利于提高学生的识图能力、分析综合能力与空间想象能力。
教学方法:讲解法、演示法教学过程:一、割补法这类方法一般是从组合图形中分割成几种不同的基本图形,这类图形的阴影部分面积就是求几个基本图形面积之和(或者差)。
Ppt演示变化过程,并出示解题过程。
二、等积变形法。
这类方法是将题中的条件或问题替换成面积相等的另外的条件或问题,使原来复杂的图形变为简单明了的图形。
Ppt演示变化过程,并出示解题过程。
三、旋转法。
这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图。
Ppt演示变化过程,并出示解题过程。
四、小结方法求组合图形面积可按以下步骤进行1、弄清组合图形所求的是哪些部分的面积。
2、根据图中条件联想各种简单图形的特征,看组合图形可以分成几块什么样的图形,能否通过割补、等积变形、旋转等方法使图形化繁为简。
小学五年级数学《组合图形面积的计算》优秀教案二教学内容:《义务教育课程标准实验教科书数学》(人教版)五年级上册“组合图形的面积”教学目标:1、明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。
教学重点:在探索活动中,理解组合图形面积计算的多种方法,会利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。
小学五年级奥数第19讲 组合图形的面积(二)(含答案分析)

第19讲组合图形的面积(二)一、知识要点在组合图形中,三角形的面积出现的机会很多,解题时我们还可以记住下面三点:1.两个三角形等底、等高,其面积相等;2.两个三角形底相等,高成倍数关系,面积也成倍数关系;3.两个三角形高相等,底成倍数关系,面积也成倍数关系。
二、精讲精练【例题1】如图,ABCD是直角梯形,求阴影部分的面积和。
(单位:厘米)练习1:1.求下图中阴影部分的面积。
2.求图中阴影部分的面积。
(单位:厘米)3.下图的长方形是一块草坪,中间有两条宽1米的走道,求植草的面积。
【例题2】下图中,边长为10和15的两个正方体并放在一起,求三角形ABC (阴影部分)的面积。
练习2:1.下图中,三角形ABC的面积是36平方厘米,三角形ABE与三角形AEC的面积相等,如果AB=9厘米,FB=FE,求三角形AFE的面积。
2.图中两个正方形的边长分别是10厘米和6厘米,求阴影部分的面积。
3.图中三角形ABC的面积是36平方厘米,AC长8厘米,DE长3厘米,求阴影部分的面积(ADFC不是正方形)。
【例题3】两条对角线把梯形ABCD分割成四个三角形。
已知两个三角形的面积(如图所示),求另两个三角形的面积各是多少?(单位:平方厘米)练习3:1.如下图,图中BO=2DO,阴影部分的面积是4平方厘米,求梯形ABCD的面积是多少平方厘米?2.下图的梯形ABCD中,下底是上底的2倍,E是AB的中点。
那么梯形ABCD的面积是三角形BDE面积的多少倍?3.下图梯形ABCD中,AD=7厘米,BC=12厘米,梯形高8厘米,求三角形BOC的面积比三角形AOD的面积大多少平方厘米?【例题4】在三角形ABC中,DC=2BD,CE=3AE,阴影部分的面积是20平方厘米,求三角形ABC的面积。
练习4:1.把下图三角形的底边BC四等分,在下面括号里填上“>”、“<”或“=”。
甲的面积()乙的面积。
2.如图,在三角形ABC中,D是BC的中点,E、F是AC的三等分点。
组合图形面积计算方法

组合图形面积计算方法在几何学中,我们经常需要计算各种组合图形的面积,这些组合图形可能由多个不规则形状组成,因此需要运用一定的方法来求解其面积。
本文将介绍一些常见的组合图形面积计算方法,希望能够帮助大家更好地理解和运用几何知识。
首先,我们来看看如何计算由矩形和三角形组成的组合图形的面积。
对于这种情况,我们可以将组合图形分解为矩形和三角形两部分,分别计算它们的面积,然后将两部分的面积相加即可得到组合图形的总面积。
这种方法适用于各种不规则的组合图形,只要我们能够将其分解为简单的几何图形并计算出它们的面积。
其次,如果组合图形由圆形和矩形组成,我们可以运用类似的方法来计算其面积。
首先计算圆形的面积,然后计算矩形的面积,最后将两者相加即可得到组合图形的总面积。
需要注意的是,在计算圆形的面积时,我们需要运用圆的面积公式,πr²(其中r为圆的半径),这样才能得到准确的结果。
另外,有些组合图形可能由多个不规则形状组成,这时我们可以采用分割法来计算其面积。
具体做法是将组合图形分割为若干个简单的几何图形,然后分别计算它们的面积,最后将所有部分的面积相加即可得到组合图形的总面积。
这种方法在处理复杂的组合图形时非常有用,可以大大简化计算过程。
除了以上介绍的方法外,还有一些特殊的组合图形面积计算方法,比如梯形的面积计算、扇形的面积计算等。
这些方法都有其特定的计算公式,需要根据具体情况来选择合适的方法进行计算。
总的来说,计算组合图形的面积并不难,关键在于我们要灵活运用各种方法,根据具体情况选择合适的计算方式。
同时,我们还需要熟练掌握各种几何图形的面积公式,这样才能在实际应用中准确地计算出组合图形的面积。
希望本文介绍的组合图形面积计算方法能够对大家有所帮助,让大家能够更加轻松地处理各种几何计算问题。
通过不断的练习和实践,相信大家一定能够掌握这些方法,并且能够灵活运用到实际生活和工作中。
祝大家学习进步,工作顺利!。
组合图形面积计算技巧十法

组合图形面积计算技巧“十法"一、相加相减法【点拨】:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,相加求出整个图形的面积.或者将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.【例题1】:求组合图形的面积。
(单位:厘米)【分析与解答】:上图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了.4÷2=2(米)4×4+2×2×÷2=(平方厘米)【例题2】:长方形长6厘米,宽4厘米,求阴影部分的面积。
【分析与解答】:上图中,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可.4÷2=2(米)6×4-2×2×÷(平方厘米)二、用比例知识求面积【点拨】:利用图形之间的比例关系解题。
【例题3】一块长方形耕地,它由四个小长方形拼合而成,其中三个小长方形的面积分别为15、18、30公顷,图中阴影部分的面积是多少?【分析与解答】:因为阴影部分也是一长方形,所以只要求出它的长、宽是多少就行,为此设它的长、宽分别为a、b,面积为18公顷的长方形的长、宽分别为c、d.直接按比例关系来理解。
因为(a×c):(d×c)=(a×b):(d×b),a:d=15:18=阴影面积:30,阴影面积为15×30÷18=25(公顷)。
三、等分法【点拨】:根据所求图形的对称性,将所求图形面积平均分成若干份,先求出其中的一份面积,然后求总面积。
【例题4】:求阴影部分的面积(单位:厘米)【分析与解答】:把原图平均分成八分,就得到下图,先求出每个小扇形面积中的阴影部分:×22÷4-2×2÷2=(平方厘米)阴影部分总面积为:×8=(平方厘米)四、等积变形【点拨】:将题中的条件或问题替换成面积相等的另外的条件或问题,使原来复杂的图形变为简单明了的图形。
六年级数学思维:组合图形的面积计算,例题解析!

六年级数学思维:组合图形的面积计算,例题解析!主要题型:一、求不规则图形面积(阴影部分面积);二、求不能直接利用公式计算的图形面积;三、求规则图形的面积,但条件比较隐蔽,用常规思路无法解答。
基本解题思路:解题的基本思路是,先通过分割、切拼、旋转、平移、翻折、缩放、等积替换等方法,把不规则图形转化为规则图形(或规则图形面积的和差),让隐蔽条件明朗化,再合理运用面积公式,巧求不规则图形面积。
解题技巧:这一块分六讲,以后会陆续更新,每一块各有侧重地介绍了六种求面积的计算方法,但每一种解题方法并不是孤立存在的,在实际解题时一道题常常需要综合运用多种方法,才能巧妙解题。
例如加减法求面积常需要对图形进行割补,而用割补法求面积常需要添加辅助线、平移、旋转、进行加减运算等。
在解答图形面积问题时,关键就是要注意寻找不同图形或同一个图形的各个部分之间的内在联系,可以变换角度或适当添加辅助线帮助观察,特别要注意观察图形边角的形状、长度和角度,及是否隐藏有等底等高之类的条件。
从而根据图形的形状特征,合理地进行分割重组,化不规则为规则,巧妙地运用题目给出的各种条件。
小学阶段常见的面积公式:长方形的面积=长×宽S=ab正方形的面积=边长×边长S=a.a=a2三角形的面积=底×高÷2S=ah÷2平行四边形的面积=底×高S=ah梯形的面积=(上底+下底)×高÷2S=(a+b)h÷2圆的面积=圆周率×半径×半径S=πr2今天我们讲第一块内容:加减法求面积方法介绍:根据组合图形的形状特征,从整体上观察,将不规则图形分解转化成几个基本规则图形,分别计算它们的面积。
再变化角度思考,通过相加或相减求出所求图形的面积。
例题1:求下图中阴影部分的面积(最后结果保留一位小数)。
(单位:厘米)【解析】:上图阴影部分可以分割成3个完全相同的弓形,先求出其中一个弓形的面积,再求出3个弓形的总面积就是所求阴影部分的面积。
求组合图形面积的十种解法
求组合图形面积的十种解法
高建国
【期刊名称】《湖南教育:上旬》
【年(卷),期】1991(000)0Z1
【摘要】求组合图形面积的解题方法是多种多样的,归纳起来,主要有以下十种. 1.相加法.这种方法是将稍复杂的组合图形分解转化为若干基本图形,先计算每一个基本图形面积,后相加求出组合图形的面积. 例1 如图1,计算图形的面积.(单位:厘米) 分析此图可分割成一个长方形和一个三角形.长方形的面积是8×6=48平方厘米,三角形面积是(9-6)×(8-3)÷2=7.5平方厘米.将两个面积相加得组合图形面积为55.5平方厘米.除这种分割方法外,还可将图形分割成三个三角形、一个梯形和一个长方形、
【总页数】2页(P92-93)
【作者】高建国
【作者单位】常德市教科所
【正文语种】中文
【中图分类】G4
【相关文献】
1.搭建"脚手架",指明思考路r——以一道求组合图形面积的题目为例 [J], 黄明觉
2.思维火花的迸发——求组合图形面积一二例 [J], 张学明
3.求组合图形面积的基本解法与思路(上) [J], 沈家金
4.求组合图形面积的基本解法与思路(下) [J], 沈家金
5.渗透“变换”思想,让探究走向深度——以“求组合图形面积”一课为例 [J], 许亦甦
因版权原因,仅展示原文概要,查看原文内容请购买。
最新五年级组合图形面积解析及一题多解大全(重磅推出)
组合图形面积应知应会基础图形的面积:【1】平行四边形的面积=底×高,【2】三角形的面积=底×高用字母表示的三角形面积计算公式是:S=ah÷2【3】梯形的面积=(上底+下底)×高÷2s梯形=(a+b)×h÷2a=s梯形×2÷h-bb=s梯形×2÷h-ah=s梯形×2÷(a+b)二、组合图形(一)组合图形:计算时需转化成已学的基本图形,通过加、减进行计算。
(二)求组合图形的方法:1、分割法:将组合图形分成几个基本图形,通过加,求几个基本图形的和。
2、填补法:将组合图形补成一个基本图形,通过大面积减小面积,求两个基本图形的差。
组合图形的面积直接计算:根据公式计算图形的面积【1】分析:梯形的高等于三角形的高解:S阴影三角形=底×高÷2=14×12÷2=84(平方厘米)直接计算:S 阴影=S 三角形甲+S 三角形乙 【2】求阴影部分的面积。
解:S 阴影=S 三角形甲+S 三角形乙 =5×3÷2+3×3÷2 =7.5+4.5=12(平方厘米)直接计算:S 组合图形=S 平行四边形+S 三角形 【3】求组合图形的面积。
解:S 组合图形=S 平行四边形+S 三角形 =24×8+10×24÷2 =192+120 =312(平方米)直接计算:S 组合图形=S 平行四边形+S 三角形 【4】求组合图形的面积。
解:S 组合图形=S 平行四边形+S 三角形 =50×33+35×12÷2 =1650+210 =1860(平方米)直接计算:S 组合图形=S 长方形+S 三角形【5】下图为一个游泳馆的标识牌,求黄色标识牌的面积。
S 组合图形=S 长方形+S 三角形 =20×10+20×10÷ 253 甲乙单位:厘米=200+100=300(平方厘米)直接计算:S组合图形=S长方形+S三角形【6】下图为一个墙面的平面图,求这面墙面的面积。
圆的组合图形面积及重点标准答案
圆旳组合图形面积姓名:【知识与措施】要解决与圆有关旳题目,需要注意如下几点:1、纯熟掌握有关圆旳概念和面试公式:圆旳面积= 圆旳周长=扇形旳面积= 扇形旳弧长=(n是圆心角旳度数)2、掌握解题技巧和解题措施:加减法、分割重组法、旋转平移法、对折法、抵消法、等积变形法、等量代换法、添辅助线法。
例1.求阴影部分旳面积。
(单位:厘米)解:这是最基本旳措施:圆面积减去等腰直角三角形旳面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分旳面积。
(单位:厘米)解:这也是一种最基本旳措施用正方形旳面积减去圆旳面积。
设圆旳半径为r,由于正方形旳面积为7平方厘米,因此=7,因此阴影部分旳面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分旳面积。
(单位:厘米)解:最基本旳措施之一。
用四个圆构成一种圆,用正方形旳面积减去圆旳面积,因此阴影部分旳面积:2×2-π=0.86平方厘米。
例4.求阴影部分旳面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分旳面积。
(单位:厘米)解:这是一种用最常用旳措施解最常用旳题,为以便起见,我们把阴影部分旳每一种小部分称为“叶形”,是用两个圆减去一种正方形,π()×2-16=8π-16=9.12平方厘米此外:此题还可以当作是1题中阴影部分旳8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆旳3倍,问:空白部分甲比乙旳面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆与否相交、交旳状况如何无关)例7.求阴影部分旳面积。
(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5。
组合图形的面积计算技巧
【例题9】:如图:求阴影部分的面积。
【点拨】:这种方法是根据具 体情况在图形中添一条或若 干条辅助线,使不规则图形 转化成若干个基本规则图形, 然后再采用相加、相减法求 面积。 【分析与解答】:很显然,阴影部分是个不规则图形, 没有办法求出它的面积,但是如果添加几条辅助线,把 右边的阴影部分反折,正好能拼成一个三角形。 6×6÷2=18(平方厘米)
4×4×3.14÷4×2=25.12 (平方厘米) 25.12-4×4=9.12 (平方厘米)
【例题11】:在面积是80平方厘米的正方形中,有一 个最大的圆。这个圆的面积是多少平方厘米?
【点拨】:如果一个阴影部分所示的图形既不 是基本图形,也不能通过分解、隔离、组合、 平移、旋转和割补等方法 转化成基本图形或 其相加减的形式时,应该怎么求解呢?这时 可运用一些特殊的方法进行分析解答。 【分析与解答】:要求圆的面积,就要找出圆的半径或者直径, 通过观察我们知道,圆的直径和正方形的边长相等,就这道题, 要求正方形的边长,就要把80开方,小学阶段,我们还没有学 到开方。怎么办?换个角度思考,把大正方形平均分割成四个 小正方形,每个小正方形的边长正好是圆形的半径,小正方形 的面积就相等于半径×半径,也就是半径的平方,这个时候我 们就找到了求圆形面积的另一条途径:把半径的平方看做一个 整体求出来,再带入公式。 每个小正方形的面积是80÷4=20cm2圆的面积:3.14×20=62.8cm2
【分析与解答】:把原图 平均分成八分,就得到左 图,
先求出每个小扇形面积中的阴影部分: 3.14×22÷4-2×2÷2=1.14(平方厘米 ) 阴影部分总面积为: 1.14×8=9.12(平方厘米 )
【例题5】:计算下图中的阴影部分 面积。(单位:厘米)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果一个阴影部分所示的图形既不是基本图形,也不能通过分解、隔离、组合、平移、旋转和割补等方法转化成基本图形或其相加减的形式时,应该怎么求解呢?如前面所介绍的方框图所示,这时可运用一些特殊的方法进行分析解答。
倍分比较法有些求面积问题,往往已知甲图形的面积却要求乙图形的面积,这时,可通过寻找甲乙两图形之间存在的关系去求解。
这个关系就是两图形面积之间的倍率(几倍)或分率(几分之几)关系。
这种思路往往是通过添加合适的辅助线来构成等底等高的三角形(或其它面积有倍分关系的图形)来进行比较和解答的。
例1.如图1所示,三角ABC的面积为100平方厘米,D、E、F分别为三条边的四、五、六等分点。
求三角形DEF的面积。
(附图 {图})(1)分析解答:根据题中的已知条件我们可推想,所求面积与已知面积之间存在着一种倍分关系,因为“两三角形如等高,则其面积之比等于相对应底边长的比”。
所以,我们来“创造”这样的三角形来帮助解答。
连接 BD,由于AF=5/6AB,所以三角形AFD的面积占三角形ABD面积的5/6,而三角形ABD的面积又刚好是三角形 ABC面积的1/4(因为AD=1/4AC),所以,三角形AFD的面积占三角形ABC面积的分率为1/4×5/6=5/24。
同理,三角形FBE和三角形ECD所占分率分别为4/5×1/6=2/15,3/4×1/5=3/20。
因此,所求三角形DEF面积所占的分率为1-5/24-2/15-3/20=61/120,其面积为100×61/120=50.8(平方厘米)。
字母代换法有些问题直接用算术方法解答不方便,我们可以设字母来代换。
这些字母可以是所求量,也可以是中间量,它们有时只起媒介作用,在求解过程中,作为一个整体或一个数参加运算,在计算中互相抵销或被替代。
有时却需要通过比较、代换等简单代数运算求出它们所代表的数值后再寻求问题的答案。
例2.用一条长75分米的铁丝围成一个平行四边形的框架,要求它的两条高分别为14分米、16分米(如图2所示),这个平行四边形的面积是多少?(附图 {图})(2)分析解答:条件中告诉了两条高的长度。
因为在同一平行四边形中,由于面积一定,由“平行四边形面积=底×该底边上的高”可看出:高与对应的底边成反比例关系,所以可以用设字母等量代换的方法进行解答。
设与两条高相对应的底边分别长a分米和b分米,面积为S平方分米,可得a×14=b×16=S,a=S /14,b=S/16而“a +b”为周长的一半,等于75/2分米,所以有S/14+S/16=75/2,即 S×(1/14+1/16)=75/2;因此,所求平行四边形的面积为:(附图 {图})极端处置法一般来说,任何事物既遵循某种规律,又有其特殊性,而其特殊性往往反映出了它的普遍性规律。
在解答有些问题时,我们可以用变化的观点将图形设想于某一特殊情形来考虑,这样,往往能绝处逢生,找到解题途径。
例3.边长分别为4和3的两个正方形,如(附图 {图})(3)分析解答:此题是求两个正方形未重叠部分的面积之差是多少。
从图中可看出,空白部分可大可小,直接计算很难解答。
如果我们这样想:当这两个正方形完全分离时,它们的面积之差是4[2]-3[2]=7。
当它们重叠时,就等于两个正方形的面积都分别减去重叠部分的面积,由于减去的面积相同,故其差仍不变。
比例传递法如果两个长方形的长(或宽)相等,那么,它们的面积与它们的宽(或长)对应成比例。
根据这一性质,我们有时可以通过长度之间的比例关系将已知的面积数量传递给未知的面积,也可以通过面积的比例关系将已知线段的长度传递给未知线段。
例4.如图4所示,长方形被互相垂直的几条线段分成九块。
其中①~⑤号五块的面积数与它们所标的代号数相同,求这个长方形的面积。
(附图 {图})(4)分析解答:如果能求出⑥~⑨号四块图形的面积,问题就解决了。
由图可知:⑥~⑨号图形都与其相邻长方形或共长,或共宽。
如④号图形与⑨号图形的面积比等于②号图形与①号图形的面积比,等于2:1,即可求得⑨号图
形的面积为2。
同理可求出⑥~⑧号图形的面积分别为2.5、7.5和6。
所以,大长方形的面积为:1+2+3+4+5+2+2.5+7.5+6=33重叠法有些图形中的阴影部分是由若干个基本图形重叠而成的,且重叠遵循一定的规律,此类问题可用“重叠法”解答。
例5.求图5阴影部分的面积。
(附图 {图})(5)先将原图进行分解,可以看出:图中阴影部分是在直角三角形内,以两底角顶点为圆心,圆心角为45°的二个扇形的重叠部分构成的。
所以阴影部分面积可用两圆心角为45°扇形的面积和减去直角三角形面积的差来求得(如图6所示)。
由此可见,若甲、乙两图形共同填满丙图形并且有部分重叠或多余,那么,这一部分面积即为:甲面积+乙面积-丙面积。
再如图7,四个半圆填满正方形并重叠为“梅花瓣”状阴影,求此阴影部分面积即为:四个半圆面积之和减去正方形面积所得的差。