广东省揭阳一中、潮州金山中学2013届高三上学期联合摸底考试 数学文
广东省揭阳市2013届高三第一次模拟数学理试题(WORD解析版)

2013年广东省揭阳市高考数学一模试卷(理科)参考答案与试题解析一.选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•揭阳一模)已知复数z1,z2在复平面内对应的点分别为A(0,1),B(﹣1,3),则=()=2.(5分)(2013•揭阳一模)已知集合A={x|y=log2(x+1)},集合,则3.(5分)(2013•揭阳一模)在四边形ABCD中,“,且”是“四边形ABCD是菱形”,且4.(5分)(2013•泰安一模)当时,函数f(x)=Asin(x+φ)(A>0)取得最小值,则函数是()奇函数且图象关于点奇函数且图象关于直线偶函数且图象关于点(()+,﹣﹣﹣)+x=5.(5分)(2013•揭阳一模)一简单组合体的三视图及尺寸如图(1)示(单位:cm)则该组合体的体积为.()6.(5分)(2013•揭阳一模)已知等差数列{a n}满足,a1>0,5a8=8a13,则前n项和S n取最大值时,由条件可得,解得,可得7.(5分)(2013•揭阳一模)如图,阅读程序框图,任意输入一次x(0≤x≤1)与y(0≤y≤1),则能输出数对(x,y)的概率为()..A=dx=8.(5分)(2013•揭阳一模)已知方程在(0,+∞)有两个不同的解α,β(α<β),则下..C..,要使方程二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9-13题)(二)选做题(14、15题,考生只能从中选做一题)9.(5分)(2013•揭阳一模)计算:=2.=10.(5分)(2013•揭阳一模)若二项式的展开式中,第4项与第7项的二项式系数相等,则展开式中x6的系数为9.(用数字作答)解:由题意可得,的展开式的通项为==6=9到数据(单位均为cm)如上表,作出散点图后,发现散点在一条直线附近,经计算得到一些数据:,;某刑侦人员在某案发现场发现一对裸脚印,量得每个脚印长为26.5cm,则估计案发嫌疑人的身高为185.5cm.解:∵经计算得到一些数据:∴回归方程的斜率,,=7x12.(5分)(2013•揭阳一模)已知圆C经过直线2x﹣y+2=0与坐标轴的两个交点,又经过抛物线y2=8x的焦点,则圆C的方程为.三点的坐标代入圆的方程得:故答案为:13.(5分)(2013•揭阳一模)函数f(x)的定义域为D,若对任意的x1、x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为“非减函数”.设函数g(x)在[0,1]上为“非减函数”,且满足以下三个条件:(1)g(0)=0;(2);(3)g(1﹣x)=1﹣g(x),则g(1)=1、=.得得)中令得,∴,故,14.(2013•东莞二模)(坐标系与参数方程选做题)已知曲线C1:和曲线C2:,则C1上到C2的距离等于的点的个数为3.,可得圆上到直的点的个数.化为直角坐标方程得r==15.(5分)(2013•揭阳一模)如图所示,AB是⊙O的直径,过圆上一点E作切线ED⊥AF,交AF 的延长线于点D,交AB的延长线于点C.若CB=2,CE=4,则⊙O 的半径长为3;AD的长为.,所以..三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(12分)(2013•揭阳一模)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足.(1)求角C的大小;(2)求的最大值,并求取得最大值时角A,B的大小.acosC,结合正弦定理得,=cosC tanC=;B=﹣)sinA cosB=﹣cos sin sinA=sinA+A+,∴<A+<A+时,B+)取得最大值A=,B=17.(12分)(2013•揭阳一模)根据公安部最新修订的《机动车驾驶证申领和使用规定》:每位驾驶证申领者必须通过《科目一》(理论科目)、《综合科》(驾驶技能加科目一的部分理论)的考试.已知李先生已通过《科目一》的考试,且《科目一》的成绩不受《综合科》的影响,《综合科》三年内有5次预约考试的机会,一旦某次考试通过,便可领取驾驶证,不再参加以后的考试,否则就一直考到第5次为止.设李先生《综合科》每次参加考试通过的概率依次为0.5,0.6,0.7,0.8,0.9.(1)求在三年内李先生参加驾驶证考试次数ξ的分布列和数学期望;(2)求李先生在三年内领到驾驶证的概率.18.(14分)(2013•揭阳一模)如图(1),在等腰梯形CDEF中,CB、DA是梯形的高,AE=BF=2,,现将梯形沿CB、DA折起,使EF∥AB且EF=2AB,得一简单组合体ABCDEF如图(2)示,已知M,N,P分别为AF,BD,EF的中点.(1)求证:MN∥平面BCF;(2)求证:AP⊥DE;(3)当AD多长时,平面CDEF与平面ADE所成的锐二面角为60°?中点,∴,的一个法向量为,,,,.由题意得,,解得AK=,,即19.(14分)(2013•揭阳一模)如图,设点F1(﹣c,0)、F2(c,0)分别是椭圆的左、右焦点,P为椭圆C上任意一点,且最小值为0.(1)求椭圆C的方程;(2)若动直线l1,l2均与椭圆C相切,且l1∥l2,试探究在x轴上是否存在定点B,点B到l1,l2的距离之积恒为1?若存在,请求出点B坐标;若不存在,请说明理由.,可得向量,则有上,可得,可得因此,最小值为的方程为.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣其方程为12的距离之积为的距离之积为在20.(14分)(2013•揭阳一模)已知函数为常数),数列{a n}满足:,a n+1=f(a n),n∈N*.(1)当α=1时,求数列{a n}的通项公式;(2)在(1)的条件下,证明对∀n∈N*有:;(3)若α=2,且对∀n∈N*,有0<a n<1,证明:.是以,以及,说明[构造函数时,,两边取倒数,得是以为公差的等差数列,﹣.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣时,则与,时,[则21.(14分)(2013•揭阳一模)已知函数f(x)=lnx,g(x)=f(x)+ax2+bx,函数g(x)的图象在点(1,g(1))处的切线平行于x轴.(1)确定a与b的关系;(2)试讨论函数g(x)的单调性;(3)证明:对任意n∈N*,都有ln(1+n)>成立.,则,显然故只需证,令)﹣,则,)得=,即时,由,由得)在)上单调递增,在,即时,由或,上单调递增,在,即时,在(时,函数)单调递增,在单调递减;在时,函数时,函数)在上单调递增,在,则+.时,故只需证,,即证成立,)﹣,则,∴函数,∴即.。
2013届高三上学期联合摸底考试_理综资料

广东省揭阳一中、潮州金山中学2013届高三上学期联合摸底考试理综试题可能用到的相对原子质量:H 1 C 12 O 16 Na 23 S 32 Cl 35.5一、单项选择题:本题包括16小题,每小题4分,共64分。
每小题给出的四个选项中,只有一个选项符合题目要求,选对的得4分,选错或不答的得0分。
1.蛋白质与DNA是细胞内重要的化合物,以下描述正确的是A.合成的场所均含有磷脂分子B.均参与叶绿体、线粒体、核糖体等细胞器的活动C.DNA通过复制、转录、翻译来控制蛋白质的合成D.只有蛋白质和DNA也可构成生物2.某校生物兴趣小组以玉米为实验材料,研究不同条件下光合作用速率和呼吸作用速率,绘制了如甲、乙、丙、丁所示的四幅图。
除哪幅图外,其余三幅图中“a”点都可表示光合作用速率与呼吸作用速率相等3.下列关于变异与进化、物种形成的相关描述,错误的是A.同源染色体的非姐妹染色单体之间的交叉互换属于基因重组B.一个碱基对的缺失引起的变异属于基因突变C.生殖隔离的形成不一定需要通过地理隔离D.变异均能为生物进化提供原材料4.下列关于植物激素及应用的叙述,正确的是A.光影响生长素的合成,导致植物具有向光性生长的特点B.脱落酸能抑制马铃薯发芽C.细胞分裂素的主要作用是促进细胞伸长D.若儿童食用乙烯利催熟的水果则会导致性早熟5.如图表示某种生态系统中4种成分之间的关系,以下相关叙述中正确的是A.甲、乙和丙所包含的所有种群构成群落B.乙1的同化量越大,流向乙2的能量就越少C.丁的CO2含量增加将导致臭氧层被破坏D.丙不一定是原核生物6.通过胚胎移植技术,可以实现良种牛的快速繁殖。
下列相关叙述正确的是A.对供体和受体母牛都要用同一种雌性激素处理B.受精和胚胎的早期培养都需要在体外进行C.对冲卵获得的原肠胚检查合格后方可移植D.胚胎分割移植实现同卵多胎的成功率较低7.下列有关化学用语,表达正确的是A.Na2S的电子式:B.绝—137:137CsC.O2—的结构示意图:D.乙烯分子的球棍模型:8.设n A是阿伏加德罗常数的数值,下列说法正确的是A.标准状况下,22.4L HCl溶于水后溶液中含有n A个HCl分子B.常温常压下,16g O3气体含有n A个O3分子C.1L 0.1mol·L-1的Na2SO4溶液中含有0.1n A个Na+D.1molCl2与足量Fe反应,转移的电子数为2n A9.室温下,下列各组离子在指定溶液中一定能大量共存的是A.澄清透明的溶液中:Cu2+、NH+4、NO-3、Cl—B.使红色石蕊试纸变蓝的溶液中:CH3COO—、HCO—3、Na+、K+C.饱和氯水中:Cl—、NO—3、Na+、SO2-3D.含有较多Al3+的溶液:Na+、SO2-4、I—、CO2—310.X、Y、Z、W均为短周期元素,它们在元素周期表中的位置如图所示。
广东省揭阳一中、金山中学高三数学第三次模拟联考 理

数学( 理科 )一、选择题(本大题共8小题,每小题5分,共40分) 1.已知函数()f x =的定义域为M ,()ln(1)g x x =+的定义域为N ,则M N 等于( )A .{|1}x x >-B .{|1}x x <C .{|11}x x -<<D .∅2.若复数(1)(2)bi i ++是纯虚数(i 是虚数单位,b 是实数),则b 等于( )A .2B .12C .12-D .2-3.若函数21()sin ()2f x x x R =-∈,则()f x 是( ) A .最小正周期为2π的奇函数 B .最小正周期为π的奇函数 C .最小正周期为2π的偶函数D .最小正周期为π的偶函数4.已知向量(1,)a n =,(1,)b n =-,若2a b -与b 垂直,则a 等于( )A .1BC .2D .45.曲线xy e =在点2(2,)e 处的切线与坐标轴所围三角形的面积为( )A .294eB .22eC .2eD .22e6.已知某本个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( )A .340003cm B .380003cm C .32000cmD .34000cm侧视图7.设1F 、2F 分别是双曲线2219y x -=的左、右焦点,若点P 在双曲线上,且120PF PF ⋅=,则12PF PF +等于( )AB.CD.8.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等。
设四棱锥、三棱锥、三棱柱的高分别为1h 、2h 、h ,则12::h h h 等于( ) AB2:2 C2:D2二、填空题(本大题共7小题,每小题5分,共30分,其中9—13题为必做题,14、15为选做题,考生只选做一题) 9.在某项测量中,测量结果ξ服从正态分布2(1,),(0)N σσ>,若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为 。
广东省揭阳一中 潮州金山中学高三语文上学期联合摸底考试

广东揭阳一中、潮州金山中学2013届高三上学期联合摸底考试语文试题一、本大题4小题,每小题3分,共12分。
1.下列词语中加点的字,读音全都正确的一组是(3分)()A.曲.折(qǚ)场.(chǎng)院矣.欠(ǎi)乃庠.(xiáng)序之教B.倨.(jū)傲商贾.(gǔ)怃.(fǔ)然妍媸.(chī)毕露C.惶悚.(sǒng)编篡.(zuǎn)衅.(xìn)钟硝烟弥.(mí)漫D.忖.(cǚn)度欢谑.(xuè)徘徊.(huí)怙.(gǔ)恶不悛2. 下列各句中加点的成语使用正确的一项是(3分)()A.为迎接即将到来的灯会,夫子庙地区进行了改造,北口的一些商业楼被拆除,气宇..轩昂..的状元楼前辟出了一片绿地。
B.第79届奥斯卡颁奖日前揭晓,《满城尽带黄金甲》无功而返,《颖州的孩子》则拿下最佳纪录短片奖铩羽而归....。
C.在记者招待会上,看到英国首相布莱尔故作幽默的滑稽样子,一位女记者忍俊不...禁.地扑哧一声笑了出来。
D.美国近日决定在东欧的捷克和波兰部署反导系统,同时提出了一个匪夷所思....的理由即防范伊朗的威胁。
3. 下列各句中,没有语病的一句是(3分)()A.钓鱼岛及其附属岛屿自古以来就是中国的固有领土,中国对这些岛屿拥有无可争辩的主权。
中国政府维护钓鱼岛及其附属岛屿领土主权的意志和决心是坚定不移的。
B.今年我省对外招商的重点项目是在农村、交通、信息产业的技术改造方面,并将在改良投资环境的同时,注意在政策允许的范围内给予外来投资者适当的优惠。
C.古代戏曲继承了我国古代诗歌情景交融,注重意境美,并结合戏剧的特点,使写景抒情成为表达思想感情、塑造人物形象的重要手段。
D.居民小区中的进门升降平台、公交站牌导盲语音装置、地铁站里的斜拉式升降梯等无障碍城市设施越来越多地出现在上海,供残疾人和老年人生活之便。
4.填入下面一段文字中横线处的语句,与上下文衔接最恰当的一组是(3分)()人生何其短,。
广东省揭阳一中、金山中学高三数学三模联考试卷 文 新人教A版

2013—2014学年度两校三模联考数学科试题(文科)本试卷共4页,21题,满分150分.考试时间为l20分钟. 注意事项:1.答卷前,考生务必将自己的姓名、班级、座号写在答题卷密封线内. 2.非选择题必须用黑色字迹钢笔或签字笔作答.3. 答案一律写在答题区域内,不准使用铅笔和涂改液,不按以上要求作答的答案无效. 一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数2(32)(1)a a a i -++-是纯虚数,则实数a 的值为( ) A. 1 B. 2 C. 1或2 D. -1 2.设集合2{|2}A x y x x =-,{|2}x B y y ==,则A B =I( )A .02)(,B .[02],C .(1,2]D .02](, 3. 某校高三一班有学生54人,二班有学生42人,现在要用分层抽样的方法从两个班抽出16人参加军训表演,则一班和二班分别被抽取的人数是( ) A. 8,8 B. 10,6 C. 9,7D. 12,44.已知()1,2=→a ,52=→b ,且→a ∥→b ,则b →为( ) A.()2,4-B.()2,4C.()2,4-或()2,4-D.()2,4--或()2,45.“1k =”是“直线0x y k -+=与圆221x y +=相交”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件6.一个算法的程序框图如图所示,该程序输出的结果为( ) A .89 B .910 C .1011 D .11127.已知3x ≥,则11y x x=--的最小值为( ) A.2 B. 72C. 2238.数列{}n a 的前n 项和为n S ,首项为a ,且21()n n n S a a n N +=-+∈.若实数x y ,满足正视图 侧视图100x y x y x a ⎧-+⎪+⎨⎪⎩,,,≥≥≤则2z x y =+的最小值是( )A .-1B .12C .5D .19.已知函数()f x 是定义在R 上的奇函数,且当(],0x ∈-∞时,2()xf x eex a -=-+,则函数()f x 在1x =处的切线方程为( )A .0x y +=B .10ex y e -+-=C .10ex y e +--=D .0x y -=10.对于函数(),y f x x D =∈,若存在常数C ,对任意1x D ∈,存在唯一的2x D ∈,使得C =,则称函数()f x 在D 上的几何平均数为 C.已知(),[2,4]f x x D ==,则函数()f x 在D 上的几何平均数为( )A ..3 C .2D二.填空题:本大题共6小题,每小题5分,共30分,把答案填在答题卡相应横线上. (一)必做题(第11至13题为必做题,每道题目考生都必须作答.) 11.在ABC ∆中,a 、b 、c 分别是角A 、B 、C 所对的边,,13A a c π===,则ABC∆的面积S= ______.12.椭圆2221(1)x y a a +=>上存在一点P ,使得它对两个焦点1F ,2F 张角122F PF π∠=,则该椭圆的离心率的取值范围是13.已知某几何体的三视图如图所示,则该几何体的全面积为 . (二)选做题(14~15题,考生只能从中选做一题) 14.(坐标系与参数方程)在极坐标中,已知点P 为方程()cos sin 1ρθθ+=所表示的曲线上一动点⎪⎭⎫⎝⎛3,2πQ ,则PQ 的最小值为____________.15.(几何证明选讲)如图,以4AB =为直径的圆与△ABC 的两边CEF分别交于,E F 两点,60ACB ∠=o,则EF = .三、解答题:本大题共6小题,共80分. 解答应写出必要的文字说明、证明过程或演算步骤.16.(本小题满分12分)已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的最小正周期为π,且函数()f x 的图象过点,12π⎛⎫-⎪⎝⎭. (1)求ω和ϕ的值; (2)设()()()4g x f x f x π=+-,求函数()g x 的单调递增区间.17.(本小题满分12分)某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[)50,40,[)60,50…[]100,90后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求分数在[)70,80内的频率,并补全这个频率分布直方图; (2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(3)用分层抽样的方法在分数段为[)80,60的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[)80,70的概率.18.(本小题满分14分)如图,在三棱柱111ABC A B C -中,AB AC ⊥,顶点1A 在底面ABC 上的射影恰为点B , 且12AB AC A B ===.第17题(1)求证:11A C ⊥平面11AA B B ;(2)若P 为线段11B C 的中点,求四棱锥11P AA B B -的体积. 19.(本小题满分14分)在等比数列{a n }中,)(0*N n a n ∈>,公比)1,0(∈q ,且252825351=++a a a a a a ,又a 3与a 5的等比中项为2.(1)求数列{a n }的通项公式;(2)设n n a b 2log =,求数列{b n }的前n 项和S n. (3)是否存在*,k N ∈使得1212n S S S k n+++<L 对任意*n N ∈恒成立,若存在,求出k 的最小值,若不存在,请说明理由.20.(本小题满分14分)如图,抛物线21:8C y x =与双曲线22222:1(0,0)x y C a b a b-=>>有公共焦点2F ,点A是曲线12,C C 在第一象限的交点,且25AF =. (1)求双曲线2C 的方程;(2)以1F 为圆心的圆M 与双曲线的一条渐近线相切,圆N :22(2)1x y -+=.已知点(1,3)P ,过点P 作互相垂直且分别与圆M 、圆N 相交的直线1l 和2l ,设1l 被圆M 截 得的弦长为s ,2l 被圆N 截得的弦长为t . st是否为定值? 请说明理由.21.(本小题满分14分)已知函数x x a x x f --+=2)ln()(在点0=x 处取得极值. (1)求实数a 的值; (2)若关于x 的方程b x x f +-=25)(在区间[0,2]上有两个不等实根,求b 的取值范围;(3)证明:对于任意的正整数n ,不等式211ln nn n n +<+.2013—2014学年度两校三模联考数学科 (文科)参考答案及评分说明一.选择题:BDCDA BBABA 二.填空题:3,12. 2,1)2,13.1919+14.6三.解答题:16.解:(1)由图可知222T ππωπ===, ………………………………………………2分又由()12f π=-得,sin(2)12πϕ⋅+=-,得sin 1ϕ=Θ0ϕπ<<2πϕ∴=, …………4分(2)由(1)知:()sin(2)cos 22f x x x π=+= ………………………………6分因为()cos 2cos(2)cos 2sin 22g x x x x x π=+-=+2)4x π=+ …………9分 所以,222242k x k πππππ-≤+≤+,即3 (Z)88k x k k ππππ-≤≤+∈.………11分故函数()g x 的单调增区间为3, (Z)88k k k ππππ⎡⎤-+∈⎢⎥⎣⎦.…12分 17. 解:(1)分数在[)70,80内的频率为:1(0.0100.0150.0150.0250.005)10-++++⨯10.70.3=-=,故0.30.0310=,……2分如图所示: ----4分(求频率2分,作图2分) (2)平均分为:450.1550.15650.15750.3850.25950.0571x =⨯+⨯+⨯+⨯+⨯+⨯=.------------6分(3)由题意,[)60,70分数段的人数为:0.15609⨯=人; ----------------7分[)70,80分数段的人数为:0.36018⨯=人; ----------------8分∵在[)80,60的学生中抽取一个容量为6的样本,∴[)60,70分数段抽取2人,分别记为,m n ;[)70,80分数段抽取4人,分别记为,,,a b c d ; 设从样本中任取2人,至多有1人在分数段[)80,70为事件A ,则基本事件空间包含的基本事件有:(,)m n 、(,)m a 、(,)m b 、(,)m c 、(,)m d 、……、(,)c d 共15种, 则事件A 包含的基本事件有:(,)m n 、(,)m a 、(,)m b 、(,)m c 、(,)m d 、(,)n a 、(,)n b 、(,)n c 、(,)n d 共9种,-11分∴93()155P A ==. --------------------------------12分18.(1) 证明:1A B ⊥Q 平面ABC , …………………1分 AC ⊂平面ABC ,1AC A B ∴⊥ …………………2分又AC AB ⊥, ………………3分 AB ⊂平面11AA B B , 1A B ⊂平面11AA B B ,1A B AB B =I AC ∴⊥平面11AA B B…………5分又在三棱柱111ABC A B C -中,11AC A C //11A C ∴⊥平面11AA B B…………6分(2)解:111224AA B B S AB A B =⨯=⨯=Q 平行四边形………………8分取11A B 的中点R ,连结PR , 则11PR A C //,111PR AC 1==2………………10分又11A C ⊥平面11AA B B ,PR ∴⊥平面11AA B B………………12分 故点P 到平面11AA B B的距离1d =,11111433P AA B B AA B B V S d -∴=⨯⨯=平行四边形…………………14分19. 解:(1)252,252255323825151=++∴=++a a a a a a a a a a Θ,又5,053=+∴>a a a n , …………………………………………2分 又53a a 与的等比中项为2,453=∴a a , 而1,4,),1,0(5353==∴>∴∈a a a a q ,………3分n n n a a q --=⨯=∴==∴5112)21(16,16,21 , ……………………………5分 (2)n a b n n -==5log 2, 11-=-∴+n n b b ,4}{1=∴b b n 是以为首项,-1为公差的等差数列. …………… 7分(9)2n n n S -∴=, ……………9分 (3)由(2)知(9)9,22n n S n n n S n --=∴= 0,8>≤∴n S n n 时当;当0,9==n S n n 时;当0,9<>nSn n 时,.……………11分 31289,18123n S S S S n n∴=++++=L 当或时最大.…………………………13分 故存在*,k N ∈使得1212n S S S k n+++<L 对任意*n N ∈恒成立,k 的最小值为19.…14分20. 解:(1)∵抛物线21:8C y x =的焦点为2(2,0)F , (1)分∴双曲线2C 的焦点为1(2,0)F -、2(2,0)F , …………………………… 2分设00(,)A x y 在抛物线21:8C y x =上,且25AF =,由抛物线的定义得,025x +=,∴03x =, …………………………3分∴2083y =⨯,∴0y =±, ……………………… 4分∴1||7AF ==, ………………………… 5分 又∵点A 在双曲线上,由双曲线定义得,2|75|2a =-=,∴1a =, ……… 6分∴双曲线的方程为:2213y x -=. ……………………………………… 7分 (2)st为定值.下面给出说明. …………………… 8分设圆M 的方程为:222(2)x y r ++=,双曲线的渐近线方程为:y =,∵圆M 与渐近线y =相切,∴圆M 的半径为2r == (9)分故圆M :22(2)3x y ++=, ………………………… 10分设1l 的方程为(1)y k x -=-,即0kx y k -=,设2l 的方程为1(1)y x k=--,即10x ky +-=,∴点M 到直线1l 的距离为1d =,点N 到直线2l 的距离为2d =,…11分∴直线1l 被圆M 截得的弦长s == ……… 12分直线2l 被圆N 截得的弦长t == ………… 13分∴s t ==s t …………… 14分21. 解:(1)()()()12x x a x a f x x a-+-+'=+由题意, ()00f '= 解得1a = ………………………………2分(2)构造函数()[]()25()ln 10,22h x x x x x b x ⎛⎫=+----+∈ ⎪⎝⎭,则 ()()224545()2121x x x x h x x x --++-'==-++()()()45121x x x +-=+ 令 ()0h x '= 得 5114x x x =-=-=或或 又知[]0,2x ∈∴ 当01x ≤<时,函数()h x 单调递增,当12x <≤函数()h x 单调递减 方程5()2f x x b =-+在区间[]02,上有两个不同的实根,等价于函数()h x 在[]02,上有两个不同的零点,则只需()()()0031ln 21022ln 3430h b h b h b =-≤⎧⎪⎪=-+->⎨⎪⎪=-+-≤⎩ 即 01ln 22ln 31b b b ≥⎧⎪⎪<+⎨⎪≥-⎪⎩ ∴ 所求实数b 的取值范围是1ln 31ln 22b -≤<+…………………6分 (3)构造函数()2()ln 1g x x x x =+--,则 ()23()1x x g x x -+'=+ 令 ()0g x '= 解得 302x x ==-或 …………8分 当 10x -<< 时 ()0g x '>,()g x 是增函数当 0x > 时 ()0g x '<,()g x 是减函数 ……………………………10分 ∴ []()max ()00g x g == ∴ ()2ln 10x x x +--≤ 当0x ≠时,有 ()2ln 10x x x +--<取 1x n =,得 2111ln 10n n n⎛⎫⎛⎫+--< ⎪ ⎪⎝⎭⎝⎭ 即 211ln n n n n ++<.。
揭阳市2013年高中毕业班第一次高考模拟考试试题

主视图绝密★启用前揭阳市2013年高中毕业班第一次高考模拟考试试题数学(理科)本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上. 2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须填写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 参考公式:样本数据1122(,),(,),,(,)n n x y x y x y L 的回归方程为:y bx a ∧=+其中1122211()()()n niii ii i nni i i i x x y y x y nx yb x x x nx====---==--∑∑∑∑, 1212,n nx x x y y y x y n n++⋅⋅⋅+++⋅⋅⋅+==,a y bx =-.b 是回归方程得斜率,a 是截距.一.选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数12,z z 在复平面内对应的点分别为(0,1),(1,3)A B -,则21z z = A .13i -+ B .3i-- C .3i + D .3i -2.已知集合2{|log (1)}A x y x ==+,集合1{|(),0}2xB y y x ==>,则A B I = A .(1,)+∞ B .(1,1)-C .(0,)+∞D .(0,1) 3.在四边形ABCD 中,“AB DC =uu u r uuu r ,且0AC BD ⋅=u u u r”是“四边形ABCD 是菱形”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.当4x π=时,函数()sin()(0)f x A x A ϕ=+>取得最小值,则函数3()4y f x π=- A .是奇函数且图像关于点(,0)2π对称 B .是偶函数且图像关于点(,0)π对称C .是奇函数且图像关于直线2x π=对称 D .是偶函数且图像关于直线x π=对称5.一简单组合体的三视图及尺寸如图(1)示(单位: cm ) 则该组合体的体积为.俯视图A. 720003cmB. 640003cmC. 560003cm D. 440003cm 1) 6.已知等差数列{}n a 满足,18130,58a a a >=,则前n 项和n S 取最大值时,n 的值为A.20B.21C.22D.237.在图(2)的程序框图中,任意输入一次(01)x x ≤≤与(01)y y ≤≤, 则能输出数对(,)x y 的概率为 A .14 B .13 C .34 D . 238.已知方程sin xk x=在(0,)+∞有两个不同的解,αβ(αβ<),则下面结论正确的是: A .1tan()41πααα++=- B .1tan()41πααα-+=+ C .1tan()41πβββ++=- D .1tan()41πβββ-+=+ 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9-13题)9.计算:1122log sin15log cos15+o o = .10.若二项式(n x 的展开式中,第4项与第7项的二项式系数相等,则展开式中6x 的系数为 .(用数字作答)11.一般来说,一个人脚掌越长,他的身高就越高,现对10名成年人的脚掌长x 与身高y 进行测量,得到数据(单位均为cm )如上表,作出散点图后,发现散点在一条直线附近,经计算得到一些数据:101()()577.5iii x x y y =--=∑,1021()82.5i i x x =-=∑;某刑侦人员在某案发现场发现一对裸脚印,量得每个脚印长为26.5cm ,则估计案发嫌疑人的身高为 cm .12.已知圆C 经过直线220x y -+=与坐标轴的两个交点,且经过抛物线28y x =的焦点,则圆C 的方程为 .13.函数()f x 的定义域为D ,若对任意的1x 、2x D ∈,当12x x <时,都有12()()f x f x ≤,则称函数()f x 在D上为“非减函数”.设函数()g x 在[0,1]上为“非减函数”,且满足以下三个条件:(1)(0)0g =;(2)1()()32xg g x =;(3)(1)1()g x g x -=-,则(1)g = 、5()12g = .D C B A EFMNPFEA BCD图(3)(二)选做题(14、15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)已知曲线1C :ρ=2C :cos(ρθ2C 的距离等的点的个数为 .15.(几何证明选讲选做题)如图(3)所示,AB 是⊙O 的直径,过圆上一点E 作切线ED ⊥AF ,交AF 的延长线于点D ,交AB 的延长线于点C .若CB =2, CE =4,则AD 的长为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足sin cos c A C =. (1)求角C 的大小; (2sin()2A B π-+的最大值,并求取得最大值时角,A B 的大小.17. (本小题满分12分)根据公安部最新修订的《机动车驾驶证申领和使用规定》:每位驾驶证申领者必须通过《科目一》(理论科目)、《综合科》(驾驶技能加科目一的部分理论)的考试.已知李先生已通过《科目一》的考试,且《科目一》的成绩不受《综合科》的影响,《综合科》三年内有5次预约考试的机会,一旦某次考试通过,便可领取驾驶证,不再参加以后的考试,否则就一直考到第5次为止.设李先生《综合科》每次参加考试通过的概率依次为0.5,0.6,0.7,0.8,0.9.(1)求在三年内李先生参加驾驶证考试次数ξ的分布列和数学期望; (2)求李先生在三年内领到驾驶证的概率.18.(本小题满分14分)如图(4),在等腰梯形CDEF 中,CB 、DA 是梯形的高,2AE BF ==,AB =现将梯形沿CB 、DA 折起,使//EF AB 且2EF AB =,得一简单组合体ABCDEF 如图(5)示,已知,,M N P 分别为,,AF BD EF 的中点.(1)求证://MN 平面BCF ;(2)求证: AP ⊥DE ; (3)当AD 多长时,平面CDEF 与平面ADE 所成的锐二面角为60? 图(4) 图(5)19.(本小题满分14分)如图(6),设点)0,(1c F -、)0,(2c F 分别是椭圆)1(1:222>=+a y ax C的左、右焦点,P 为椭圆C 上任意一点,且12PF PF ⋅uuu r uuu r最小值为0. (1)求椭圆C 的方程;(2)若动直线12,l l 均与椭圆C 相切,且12//l l ,试探究在x 轴上是 否存在定点B ,点B 到12,l l 的距离之积恒为1?若存在,请求出点B 坐标; 若不存在,请说明理由. 20.(本小题满分14分)已知函数()(0,1xf x x x ααα=>+为常数),数列{}n a 满足:112a =,1()n n a f a +=,*n N ∈. (1)当1α=时,求数列{}n a 的通项公式;(2)在(1)的条件下,证明对*n N ∀∈有:12323412(5)12(2)(3)n n n n n a a a a a a a a a n n ++++++=++L ;(3)若2α=,且对*n N ∀∈,有01n a <<,证明:118n n a a +-<. 21.(本小题满分14分)已知函数()ln f x x =,2()()g x f x ax bx =++,函数()g x 的图象在点(1,(1))g 处的切线平行于x 轴. (1)确定a 与b 的关系;(2)试讨论函数()g x 的单调性;(3)证明:对任意*n N ∈,都有()211ln 1ni i n i =-+>∑成立.揭阳市2013年高中毕业班高考第一次模拟考数学(理科)参考答案及评分说明一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数. 一.选择题:CDCC BBDC 解析: 4.依题意可得3()sin 4y f x A x π=-=-,故选C. 5.由三视图知,该组合体由两个直棱柱组合而成,故其体积360401020405064000()V cm =⨯⨯+⨯⨯=,故选B.6.由81358a a =得115(7)8(12)a d a d +=+1361d a ⇒=-,由1(1)n a a n d =+- 113(1)()061a n a =+--≥6412133n ⇒≤=,所以数列{}n a 前21项都是正数,以后各项都是负数,故n S 取最大值时,n 的值为21,选B.7.依题意结合右图易得所求的概率为:120121133x dx -=-=⎰,选D.8.解析:sin |sin |x k x kx x =⇒=,要使方程sin (0)xk k x=>在(0,)+∞有两个不同的解,则|sin |y x =的图像与直线(0)y kx k =>有且仅有三个公共点,所以直线y kx =与|sin |y x =在3,2ππ⎛⎫ ⎪⎝⎭内相切,且切于点(,sin )ββ-,由sin cos tan βββββ--=⇒=,1tan()41πβββ+∴+=-,选C二.填空题:9.2;10.9; 11.185.5;12. 22115()()222x y -+-=[或2220x y x y +---=];13.1(2分)、12(3分);14.3;15. 245. 解析:10.根据已知条件可得:36369n n C C n =⇒=+=, 所以(n x +的展开式的通项为39921991()2rr rrr r r T C xC x --+==,令39622r r -=⇒=,所以所求系数为2291()92C =.11.回归方程的斜率1011021()()577.5782.5()iii ii x x y y b x x ==--===-∑∑,24.5x =,171.5y =,截距0a y bx =-=,即回归方程为7y x ∧=,当26.5x =,185.5y ∧=, 12.易得圆心坐标为11(,)22,半径为r =, 故所求圆的方程为22115()()222x y -+-=【或2220x y x y +---=. 】13.在(3)中令x=0得(0)1(1)0g g =-=,所以(1)1g =,在(1)中令1x =得111()(1)322g g ==,在(3)中令12x =得11()1()22g g =-,故11()22g =,因1513122<<,所以151()()()3122g g g ≤≤,故51()122g=. 14.将方程ρ=cos()4πρθ+化为直角坐标方程得222x y +=与20x y --=,知1C 为圆心在坐标原点,半径为 2C 为直线,因圆心到直线20xy --=3n =15.设r 是⊙O 的半径.由2CE CA CB =⋅,解得r =3.由CO OE CA AD =解得245AD =. 三.解答题:16.解:(1)由sin cos c A C =结合正弦定理得,sin sin a cA C==----2分从而sin C C =,tan C =-----------------------------------------------4分 ∵0C π<<,∴3C π=;--------------------------------------------------------------6分(2)由(1)知23B A π=--------------------------------------------------------------7分sin()cos 2A B A B π-+=----------------------------------------8分 2cos()3A A π=--22cos cos sin sin 33A A A ππ=--------9分1cos 2A A =+sin()6A π=+--------------10分∵203A π<<,∴5666A πππ<+<当62A ππ+=sin()2A B π-+取得最大值1,------------------------------11分此时,33A B ππ==.-----------------------------------------------------------------------12分17.解. (1) ξ的取值为1,2,3,4,5. -------------------------------1分 (1)0.5P ξ==,(2)(10.5)0.60.3P ξ==-⨯=(3)(10.5)(10.6)0.70.14P ξ==-⨯-⨯=(4)(10.5)(10.6)(10.7)0.80.048P ξ==-⨯-⨯-⨯=(5)(10.5)(10.6)(10.7)(10.8)0.012P ξ==-⨯-⨯-⨯-=--------------------6分【或(5)1(1)(2)(3)(4)0.012P P P P P ξξξξξ==-=-=-=-==】∴ξ的分布列为:∴10.520.330.1440.04850.012E ξ=⨯+⨯+⨯+⨯+⨯=1.772--------10分FMNPFEABCD(2)李先生在三年内领到驾照的概率为:1(10.5)(10.6)(10.7)(10.8)(10.9)0.9988P =--⨯-⨯-⨯-⨯-=-----------------12分18.(1)证明:连AC ,∵四边形ABCD 是矩形,N 为BD 中点,∴N 为AC 中点,--------------------------------------------------------------1分 在ACF ∆中,M 为AF 中点,故//MN CF --------------------------3分 ∵CF ⊂平面BCF ,MN ⊄平面BCF ,//MN ∴平面BCF ;---4分(其它证法,请参照给分) (2)依题意知,DA AB DA AE ⊥⊥ 且AB AE A =I ∴AD ⊥平面ABFE∵AP ⊂平面ABFE ,∴AP AD ⊥,------------------5分 ∵P 为EF中点,∴FP AB ==结合//AB EF ,知四边形ABFP 是平行四边形∴//AP BF ,2AP BF ==----------------------------------------------------7分而2,AE PE ==222AP AE PE += ∴90EAP ∠=,即AP AE ⊥-----8分又AD AE A =I ∴AP ⊥平面ADE ,∵DE ⊂平面ADE , ∴AP ⊥DE .------------------------------------------------9分 (3)解法一:如图,分别以,,AP AE AD 所在的直线为,,x y z 轴建立空间直角坐标系 设(0)AD m m =>,则(0,0,0),(0,0,),(0,2,0),(2,0,0)A D m E P易知平面ADE 的一个法向量为(2,0,0)AP =u u u r,-----------10分设平面DEF 的一个法向量为(,,)n x y z =r ,则0n PE n DE ⎧⋅=⎪⎨⋅=⎪⎩r uur r uuu r故22020x y y mz -+=⎧⎨-=⎩,即020x y y mz -=⎧⎨-=⎩ 令1x =,则21,y z m ==,故2(1,1,)n m =r ----------------------------------------11分∴cos ,||||AP n AP n AP n ⋅<>==uu u r ruu u r r uu u r r ,12=,m =,-------------------------------------------------------13分即AD =CDEF 与平面ADE 所成的锐二面角为60.------------------------14分 【解法二:过点A 作AM DE ⊥交DE 于M 点,连结PM ,则,DE PM ⊥∴AMP ∠为二面角A-DE-F 的平面角,---------------------------------------------------------11分由AMP ∠=600,AP=BF=2得AM tan 60AP ==o,-------------------------------------12分 又AD AE AM DE ⋅=⋅得2AD =,解得AD =AD =CDEF 与平面ADE 所成的锐二面角为60.----14分】 19.解:(1)设),(y x P ,则有),(1y c x P F +=,),(2y c x P F -=-------------1分[]a a x c x aa c y x PF PF ,,11222222221-∈-+-=-+=⋅ -----------------2分 由12PF PF ⋅uuu r uuu r 最小值为0得210122=⇒=⇒=-a c c ,-------------------3分∴椭圆C 的方程为1222=+y x .---------------------------------------------4分 (2)①当直线12,l l 斜率存在时,设其方程为,y kx m y kx n =+=+--------------------5分 把1l 的方程代入椭圆方程得222(12)4220k x mkx m +++-=∵直线1l 与椭圆C 相切,∴2222164(12)(22)0k m k m ∆=-+-=,化简得2212m k =+-------------------------------------------------------------------------------------7分同理,2212n k =+-----------------------------------------------------------------------------8分 ∴22m n =,若m n =,则12,l l 重合,不合题意,∴m n =------------------------9分 设在x 轴上存在点(,0)B t ,点B 到直线12,l l 的距离之积为1,则1=,即2222||1k t m k -=+,--------------------------------------10分 把2212k m +=代入并去绝对值整理,22(3)2k t -=或者22(1)0k t -=前式显然不恒成立;而要使得后式对任意的k R ∈恒成立则210t -=,解得1t =±;----------------------------------------------------------------------12分②当直线12,l l斜率不存在时,其方程为x =x =---------------------------13分定点(1,0)-到直线12,l l的距离之积为1)1=; 定点(1,0)到直线12,l l的距离之积为1)1=;综上所述,满足题意的定点B 为(1,0)-或(1,0) --------------------------------------------14分 20.解:(1)当1α=时,1()1n n n na a f a a +==+,两边取倒数,得1111n n a a +-=,----2分 故数列1{}n a 是以112a =为首项,1为公差的等差数列, 11nn a =+,11n a n =+,*n N ∈.------------------------------------------------------------4分(2)证法1:由(1)知11n a n =+,故对1,2,3...k = 121(1)(2)(3)k k k a a a k k k ++=+++111[]2(1)(2)(2)(3)k k k k =-++++-------------6分∴12323412......n n n a a a a a a a a a +++++1111111[()()...]223343445(1)(2)(2)(3)n n n n =-+-++-⨯⨯⨯⨯+⨯+++ 111[]223(2)(3)n n =-⨯++(5)12(2)(3)n n n n +=++.----------------------------------------9分. [证法2:①当n=1时,等式左边1123424==⨯⨯,等式右边1(15)112(12)(13)24⨯+==⨯+⨯+,左边=右边,等式成立;-----------------------------------------------------------------5分 ②假设当(1)n k k =≥时等式成立,即12323412(5)......12(2)(3)k k k k k a a a a a a a a a k k ++++++=++,则当1n k =+时12323412123(5)1......12(2)(3)(2)(3)(4)k k k k k k k k a a a a a a a a a a a a k k k k k ++++++++++=++++++32(5)(4)129201212(2)(3)(4)12(2)(3)(4)k k k k k k k k k k k k ++++++==++++++2(1)4(1)(23)(1)(2)(6)(1)[(1)5]12(2)(3)(4)12(2)(3)(4)12[(1)2][(1)3]k k k k k k k k k k k k k k k k k ++++++++++===++++++++++ 这就是说当1n k =+时,等式成立,-------------------------------------------------------8分 综①②知对于*n N ∀∈有:12323412(5)......12(2)(3)n n n n n a a a a a a a a a n n ++++++=++.----9分](3)当2α=时,122()1nn n na a f a a +==+ 则12221(1)11n nn n n n n n na a a a a a a a a ++-=-=-++,---------------------------------------------10分 ∵01n a <<, ∴2122111(1)()121n n n nn n n n n na a a a a a a a a a +++-+-=-≤⋅++--------------------------------11分 2114(1)2(1)2n n n a a a +=⋅+-++1124121nn a a =⋅++-+14≤=--------------------13分 ∵1n n a a =-与211n n a a +=+不能同时成立,∴上式“=”不成立, 即对*n N ∀∈,118n n a a +-<.-----------------------------------------------------------14分 【证法二:当2α=时,122()1nn n na a f a a +==+, 则3122211n n nn n n n na a a a a a a a +--=-=++----------------------------------------------------10分 又122(0,1),1,1n n n n a a a a +∈∴=>+Q *11,[,1),2n n n a a a n N +∴>∴∈∈------------------------------------------------------------------11分令321(),[,1),12x x g x x x -=∈+则422241(),(1)x x g x x --+'=+------------------------------------12分 当1[,1),()0,2x g x '∈<所以函数()g x 在1[,1)2单调递减,故当3211()1322[,1),()12101()2x g x -∈≤=<+所以命题得证----------- ks5u ------------------14分】 【证法三:当2α=时,122()1nn n na a f a a +==+,*11221(0,1),1,,[,1),12n n n n n n n a a a a a n N a a ++∈∴=>∴>∴∈∈+Q -------------------------11分 11112222112212()11(1)(1)n n n n n n n n n n n n a a a a a a a a a a a a --+-----=-=⋅-++++ 1112211124222()()1125(1)(1)22n n n n n n a a a a a a ----⋅<⋅-=-<-++∴数列1{}n n a a +-单调递减,1212121312121081()2n n a a a a +⋅∴-≤-=-=<+, 所以命题得证------------------------------------------------------------------------------------------14分】21.解:(1)依题意得2()ln g x x ax bx =++,则1'()2g x ax b x=++ 由函数()g x 的图象在点(1,(1))g 处的切线平行于x 轴得:'(1)120g a b =++= ∴21b a =---------------------------------------------------------------------------3分(2)由(1)得22(21)1'()ax a x g x x-++=(21)(1)ax x x --=----------------------4分∵函数()g x 的定义域为(0,)+∞∴当0a ≤时,210ax -<在(0,)+∞上恒成立,由'()0g x >得01x <<,由'()0g x <得1x >,即函数()g x 在(0,1)上单调递增,在(1,)+∞单调递减;-------------------------------5分当0a >时,令'()0g x =得1x =或12x a =, 若112a <,即12a >时,由'()0g x >得1x >或102x a <<,由'()0g x <得112x a<<, 即函数()g x 在1(0,)2a ,(1,)+∞上单调递增,在1(,1)2a单调递减;-----------------6分 若112a >,即102a <<时,由'()0g x >得12x a >或01x <<,由'()0g x <得112x a<<, 即函数()g x 在(0,1),1(,)2a +∞上单调递增,在1(1,)2a单调递减;------------7分 若112a =,即12a =时,在(0,)+∞上恒有'()0g x ≥, 即函数()g x 在(0,)+∞上单调递增,------------------------------------------------------------------8分综上得:当0a ≤时,函数()g x 在(0,1)上单调递增,在(1,)+∞单调递减; 当102a <<时,函数()g x 在(0,1)单调递增,在1(1,)2a 单调递减;在1(,)2a+∞上单调递增; 当12a =时,函数()g x 在(0,)+∞上单调递增, 当12a >时,函数()g x 在1(0,)2a 上单调递增,在1(,1)2a单调递减;在(1,)+∞上单调递增. -------------------------------------------------------------------------------------------------------------------9分(3)证法一:由(2)知当1a =时,函数2()ln 3g x x x x =+-在(1,)+∞单调递增,2ln 3(1)2x x x g ∴+-≥=-,即2ln 32(1)(2)x x x x x ≥-+-=---,------------11分 令*11,x n N n =+∈,则2111ln(1)n n n+>-,-------------------------------------12分2222111111111111ln(1)ln(1)ln(1)...ln(1)...123112233n n n∴++++++++>-+-+-++- 2222111111111111ln[(1)(1)(1)...(1)]...123112233n n n∴++++++>-+-+-++- 即()211ln 1n i i n i =-+>∑---------------------------------------------- ks5u -----------------------------14分【证法二:构造数列{}n a ,使其前n 项和ln(1)n T n =+,则当2n ≥时,111ln()ln(1)n n n n a T T n n -+=-==+,------ks5u-----------------------11分 显然1ln 2a =也满足该式, 故只需证221111ln(1)n n n n n -+>=---------------------------------------------------------12分 令1x n=,即证2ln(1)0x x x +-+>,记2()ln(1)h x x x x =+-+,0x > 则11(21)'()12120111x x h x x x x x x+=-+=-+=>+++, ()h x 在(0,)+∞上单调递增,故()(0)0h x h >=, ∴221111ln(1)n n n n n-+>=-成立,2222111111111111ln(1)ln(1)ln(1)...ln(1)...123112233n n n∴++++++++>-+-+-++- 即()211ln 1n i i n i =-+>∑.----------------------------------------------------------------------------14分】 【证法三:令211()ln(1)i n i i n n i ϕ==-=+-∑, 则2(1)()ln(2)ln(1)(1)n n n n n n ϕϕ+-=+--++2111ln(1)11(1)n n n =+-++++----10分 令11,1x n =++则(1,2]x ∈,*11,,1x n N n =-∈+ 记22()ln (1)(1)ln 32h x x x x x x x =--+-=+-+-----------------------12分 ∵1(21)(1)()230x x h x x x x--'=+-=>∴函数()h x 在(1,2]单调递增, 又(1)0,(1,2],()0,h x h x =∴∈>当时即(1)()0n n ϕϕ+->,∴数列()n ϕ单调递增,又(1)ln 20ϕ=>,∴()211ln 1n i i n i =-+>∑----------------------14分】。
广东省揭阳市第一中学、潮州市金山中学高三数学5月联考(三模)试题文
广东省揭阳市第一中学、潮州市金山中学高三数学5月联考(三模)试题文文科数学一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知i 为虚数单位,则复数131ii -=+A . 2i +B . 2i -C . 12i --D . 12i -+2.已知集合{}0,1,2P =,{}|3x Q y y ==,则P Q =A . {}0,1B . {}1,2C . {}0,1,2D . ∅3. 已知(1,),(,4)a k b k ==,那么“2k =-”是“,a b 共线”的 A .充分非必要条件 B .必要非充分条件 C .非充分非必要条件 D .充要条件4.先后抛掷两颗质地均匀的骰子,则两次朝上的点数之积为奇数的概率为A .112 B .16 C .14 D .135.在ABC △中,若C B A 222sin sin sin <+,则ABC △的形状是A.锐角三角形B.钝角三角形C.直角三角形D.不能确定 6.某几何体的三视图如图所示,则该几何体的体积为 A. 48 B.323C.16D. 327.已知偶函数f (x ),当[0,2)x ∈时,f (x )=2sinx , 当[2,)x ∈+∞时,()2log f x x =,则()43f f π⎛⎫-+= ⎪⎝⎭A .32+B .1C .3D .32-+8.曲线221259x y +=与曲线221(9)259x y k k k+=<--的A.长轴长相等B. 短轴长相等C.离心率相等D. 焦距相等9.指数函数xb y a ⎛⎫= ⎪⎝⎭与二次函数()22,y ax bx a R b R =+∈∈在同一坐标系中的图象可能的是10.对于集合A ,如果定义了一种运算“⊕”,使得集合A 中的元素间满足下列4个条件: (ⅰ),a b A ∀∈,都有a b A ⊕∈;(ⅱ)e A ∃∈,使得对a A ∀∈,都有e a a e a ⊕=⊕=; (ⅲ)a A ∀∈,a A '∃∈,使得a a a a e ''⊕=⊕=; (ⅳ),,a b c A ∀∈,都有()()a b c a b c ⊕⊕=⊕⊕,则称集合A 对于运算“⊕”构成“对称集”.下面给出三个集合及相应的运算“⊕”: ①{}A =整数,运算“⊕”为普通加法;②{}A =复数,运算“⊕”为普通减法; ③{}A =正实数,运算“⊕”为普通乘法.其中可以构成“对称集”的有 A.①② B.①③ C.②③ D.①②③ 二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题) 11.已知函数12)(-=x xx f ,则在点))2(,2(f 处的切线方程为 . 12.设y kx z +=,其中实数y x ,满足⎪⎩⎪⎨⎧≤--≥+-≥-+04204202y x y x y x ,若z 的最大值为12,则实数=k ________.13、在各项均为正项的等比数列{}n a ,已知1234512345111113131,16a a a a a a a a a a ++++=++++=,则3a = (二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)在梯形ABCD 中,AD ∥BC ,2AD =,5BC =,点E 、F分别在AB 、CD 上,且EF ∥AD ,若34AE EB =,则EF 的长为 . 15.(坐标系与参数方程选做题)在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :1,1x s y s =+⎧⎨=-⎩(s 为参数)和C :22,x t y t=+⎧⎨=⎩(t 为参数), 若l 与C 相交于A 、B 两点,则AB = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知函数()2sin 22cos 2,f x x x x R =+∈.(1)求()f x 的最大值和最小正周期;(2) 若3282f απ⎛⎫-=⎪⎝⎭,α是第二象限的角,求sin 2α.17.(本小题满分12分)近年来,我国许多省市雾霾天气频发,为增强市民的环境保护意识,某市面向全市征 召n 名义务宣传志愿者,成立环境保护宣传组织.现把该组织的成员按年龄分成5组: 第1组[)20,25,第2组[)25,30,第3组[)30,35,第4组[)35,40, 第5组[40,45], 得到的频率分布直方图如图所示,已知第2组有35人. (Ⅰ)求该组织的人数.(Ⅱ)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加某社区的宣传活动,应从第3,4,5组各抽取多少名志愿者?(Ⅲ)在(Ⅱ)的条件下,该组织决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第3组至少有一名志愿者被抽中的概率.18.(本小题满分14分)如图,三棱锥C ABD -中,2AB AD BD BC CD =====,O 为BD 的中点,120AOC ∠=, P 为AC 上一点,Q 为AO 上一点,且2AP AQPC QO==. (Ⅰ)求证:PQ ∥平面BCD ; (Ⅱ)求证:PO ⊥平面ABD ; (Ⅲ)求四面体ABCD 的体积。
广东省揭阳一中、潮州金山中学高三联合摸底考试数学(文)试题.pdf
Unit 2 They have seen the Pyramids 教学内容:Unit 2 They have seen the Pyramids. 课型:Reading and writing 教学目标: 1、正确使用下列词语和词组:move, send, Germany, France, tower, ancient, king, queen, Arabic, way, mix, miss, count, count down 2、能读懂描述经历的文章,理解语篇主题和细节。
3、能够简单的运用现在完成时叙述自己或他人的一次特别的旅行经历。
教学重难点: 理解短文细节,并能运用所学的知识描写自己的经历。
教学准备: 预习要求: 1、根据音标自学本课新单词; 2、查找相关资料,找出你认为本课较重要的语言点和短语。
教学过程: 教学步骤教师活动学生活动设计意图 Step One (5’) 1.Lead in Look and say : Look at some pictures about famous places in China and talk : ①Which interesting places in China have you visited ? ②Have you ever seen the Great Wall ? ③Have you ever visited another country ? 2. Ask the students to make dialogues with partners according to activity 4. Where you went When you went there Why it was special 1.Lead in Look and say : Look at some pictures about famous places in China and talk : ①Which interesting places in China have you visited ? ②Have you ever seen the Great Wall ? ③Have you ever visited another country ? Make dialogues with their partners according to activity 4. Where you went When you went there Why it was special 通过看图片回答问题,引导学生回顾上节课的内容通过,.也能从说句子中考验学生对Unit1知识的掌握程度,还训练了学生的反应。
广东省揭阳一中、潮州金山中学高三数学上学期期中试卷
高三级2013—2014学年度两校联合期中考试数学试题(文科)(测试时间120分钟,满分150分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知{}{}|10,2,1,0,1A x x B =+>=--,则()R C A B ⋂=( )A .{}2,1--B .{}2-C .{}1,0,1-D .{}0,12.212(1)ii +=- ( ) A .112i --B .112i -+C .112i +D .112i -3.设p 、q 是简单命题,则“p 或q 是假命题” 是 “非 p 为真命题”的( ) A . 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 非充分非必要条件 4.函数)1(lg 11)x (f x x++-= 的定义域是( ) .(,1).(1,).(1,1)(1,).(,)A B C D -∞-+∞-⋃+∞-∞+∞5. 已知向量()()()()1,1,2,2,,=m n m n m n λλλ=+=++⊥-若则( )A .4-B .3-C .-2D .-16. 函数xe ⋅=3)-(x f(x )的单调递增区间是( ).(,2).(0,3).(1,4).(2,)A B C D -∞+∞7. 如果1tan 20131-tan αα+=,那么=+αα2tan 2cos 1( )A .2010 B. 2011 C. 2012 D. 20138. 已知O 是坐标原点,点A(-1,1) ,若点 M(x,y) 为平面区域⎪⎩⎪⎨⎧≤≤≥+2y 12x y x 上的一个动点,则⋅ 的取值范围是( ) A. [-1,0] B. [0,1] C. [0,2] D. [-1,2]9. 下列说法,正确的是( ) A. 对于函数 x1(x)f =,因为0(1)f (-1)f <⋅,所以函数 f(x) 在区间 ( -1 , 1 )内必有零点;B. 对于函数x x x f -=2)(,因为f(-1) f(2)>0,所以函数 f(x) 在区间 ( -1, 2 )内没有零点C. 对于函数133)(23-+-=x x x x f ,因为f(0) f(2)<0,所以函数f(x) 在区间( 0 , 2 ) 内必有零点;D. 对于函数x x x 23(x )f 23+-=,因为 f(-1) f(3)<0,所以函数 f(x) 在区间( -1 , 3 ) 内有唯一零点10.设()f x 与()g x 是定义在同一区间[,]a b 上的两个函数,若函数()()y f x g x =-在[,]x a b ∈上有两个不同的零点,则称()f x 和()g x 在[,]a b 上是“关联函数”,区间[,]a b 称为“关联区间”.若2()34f x x x =-+与()2g x x m =+在[0,3]上是“关联函数”,则m 的取值范围为( )A. 9(,2]4--B.[1,0]-C.(,2]-∞-D.9(,)4-+∞二.填空题:本大题共6小题,每小题5分,共30分,把答案填在答题卡相应横线上. 11. 在△ABC 中,若a =3,b=3,∠A=3π,则∠C 的大小为_________ 12.如果等差数列{}n a 中,35712a a a ++=,那么129a a a ++•••+的值为13.已知函数()3sin 2f x x π⎛⎫=-⎪3⎝⎭的图象为C ,则下列说法: ①图象C 关于点(,0)π对称; ②图象C 关于直线1112x =π对称; ③函数()f x 在区间5ππ⎛⎫-⎪1212⎝⎭,内是增函数; ④由3sin 2y x =的图象向左平移π6个单位长度可以得到图象C .其中正确的说法的序号为 .14.已知函数()4(0,0)af x x x a x=+>>在3x =时取得最小值,则a =__________.三、解答题:本大题共6小题,共80分. 解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分12分)设数列{}n a 满足:11a =,13n n a a +=,n N +∈. (1)求{}n a 的通项公式及前n 项和n S(2)已知{}n b 是等差数列,n T 为前n 项和,且12b a =,3123b a a a =++,求20T .16.(本小题满分12分) 已知函数421,0()3,1c ccx x c f x x x c x +<<⎧=⎨+≤<⎩满足29()8f c = (1) 求常数c 的值; (2) 解不等式() 2.f x <17.(本小题满分14分)已知函数()2sin cos cos 2f x x x x =+(x ∈R ). (1) 求()f x 的最小正周期和最大值; (2) 若θ为锐角,且8f πθ⎛⎫+= ⎪⎝⎭,求tan 2θ的值.18.(本小题满分14分) 设函数 θθθθ其中角,cos sin 3)(+=f 的顶点与坐标原点重合,始边与 x 轴非负半轴重合,终边经过点P(x,y),且 .0πθ≤≤ (1) 若点P 的坐标为 的值;求)(,)23,21(θf (2) 若点P (x,y) 为平面区域 ⎪⎩⎪⎨⎧≤≤≥+Ω111:y x y x 上的一个动点,试确定角θ的取值范围,并求函数)(θf 的最小值和最大值.19.(本小题满分14分)设函数)0(3(x)f 23>+++=a d cx bx x a 其中,且方程/f ()90x x -= 的两个根分别为 1,4.(1)当 a=3 且曲线 y=f(x) 过原点时,求 f(x) 的解析式;(2)若 f(x) 在),(∞+∞-无极值点,求 a 的取值范围。
广东省揭阳一中、潮州金山中学2013-2014学年高三上学期期中联考文数学试卷(带word解析)
广东省揭阳一中、潮州金山中学2013-2014学年高三上学期期中联考文数学试卷(带word 解析)第I 卷(选择题)1.已知{}|10A xx =+>,{}2,1,0,1B =--,则()RA B = ð( )A .{}2,1--B .{}2-C .{}1,0,1-D .{}0,1 【答案】A【解析】试题分析:{}{}101A x xxx =+>=>- ,{}1R A x x ∴=≤-ð,(){}2,1R A B ∴=-- ð,故选A.考点:集合的基本运算 2.()2121ii +=- ( )A .112i --B .112i -+ C .112i +D .112i -【答案】B 【解析】 试题分析:()2121211221ii i i i ++==-+--,故选B. 考点:复数的四则运算3.设p 、q 是简单命题,则“p 或q 是假命题” 是 “非p 为真命题”的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.非充分非必要条件 【答案】A 【解析】试题分析:因为命题“p 或q 是假命题”,故命题p 和q 都是假命题,从而“非p ”为真命题;另一方面,“非p ”为真命题,只能说明命题p 为假命题,不能保证命题q 的真假性,从而命题“p 或q ”的真假性不确定,故“p 或q 是假命题” 是 “非p 为真命题”的充分而不必要条件,故选A.考点:1.简单的逻辑联结词;2.充分必要条件 4.函数()()1lg 11f x x x=++- 的定义域是 ( ) A.(),1-∞- B.()1,+∞ C.()()1,11,-+∞ D.(),-∞+∞【答案】C 【解析】试题分析:自变量x 满足1010x x -≠⎧⎨+>⎩,解得1x >-且1x ≠,故函数()()1lg 11f x x x=++- 的定义域是 ()()1,11,-+∞ ,故选C.考点:函数的定义域5.已知向量()1,1m λ=+ ,()2,2n λ=+ ,若()()m n m n +⊥-,则λ=( )A.4-B.3-C.2-D.1-【答案】B 【解析】试题分析:()()m n m n +⊥- ,()()0m n m n ∴+⋅-= ,即22m n = ,所以()()22221122λλ++=++,即263λλ=-⇒=-,故选B.考点:1.向量的垂直;2.向量的数量积6.函数()()3xf x x e =-⋅的单调递增区间是( )A.(),2-∞B.()0,3C.()1,4D.()2,+∞ 【答案】D 【解析】试题分析:()()3x fx x e =-⋅ ,()()()32x x x f x e x e x e '∴=+-⋅=-⋅,令()0f x '>,即20x ->,解得2x >,故函数()f x 的单调递增区间为()2,+∞,故选D. 考点:利用导数求函数的单调区间 7.如果1tan 20131tan αα+=-,那么1ta n 2cos2αα+= ( )A.2010B.2011C.2012D.2013 【答案】D 【解析】 试题分析:()()()222222221tan 1cos sin 2tan 1tan 2tan tan 2cos 2cos sin 1tan 1tan 1tan 1tan αααααααααααααα+++++=+==----+1tan 20131tan αα+==-,故选D.考点:1.二倍角;2.弦化切8.已知O 是坐标原点,点()1,1A -,若点(),M x y 为平面区域212x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,则OA OM ⋅的取值范围是( )A.[]1,0-B.[]0,1C.[]0,2D.[]1,2- 【答案】C 【解析】试题分析:OA OM x y ⋅=-+,令z x y =-+,则z 为直线:l z x y =-+在y 轴上的截距,作出不等式组212x y x y +≥⎧⎪≤⎨⎪≤⎩所表示的平面区域如下图所示,作直线:l z x y =-+,当直线l 经过平面区域内的点()1,1A ,此时,直线l 在y 轴上的截距最小,此时z 取最小值,即min 111z =-+=;当直线l 经过平面区域内的点()0,2B ,此时直线l 在y 轴上的截距最大,此时z 取最大值,即max022z =-+=,故OA OM ⋅的取值范围是[]0,2,故选C.考点:1.线性规划;2.平面向量的数量积 9.下列说法,正确的是( ) A. 对于函数()1f x x=,因为()()110f f -⋅<,所以函数()f x 在区间()1,1-内必有零点B. 对于函数()2f x x x =-,因为()()120f f -⋅>,所以函数()f x 在区间()1,2-内没有零点C. 对于函数()32331f x x x x =-+-,因为()()020f f ⋅<,所以函数()f x 在区间()0,2内必有零点D. 对于函数()3232f x x x x =-+,因为()()130f f -⋅<,所以函数()f x 在区间()1,3-内有唯一零点【答案】C 【解析】试题分析:函数()1f x x=的图象在区间()1,1-不是连续的,另一方面,当10x -<<,()0f x <,当01x <<时,()0f x >,故函数()f x 在区间()1,1-内无零点,故选项A 错误;令()0f x =,可得0x =或1x =,故()f x 在区间()1,2-内有两个零点,选项B 错误;由于函数()32331f x x x x =-+-的图象在区间()0,2内连续,且()()020f f ⋅<,所以函数()f x 在区间()0,2内必有零点,选项C 正确;对于函数()3232f x x x x =-+,因为()()130f f -⋅<,所以函数()f x 在区间()1,3-内有零点,另一方面,令()0f x =,即32320x x x -+=,即()()120x x x --=,解得0x =,1x =或2x =,即函数()f x 在区间()1,3-内有三个零点,选项D 错误,综上所述,选C.考点:零点存在定理10.设()f x 与()g x 是定义在同一区间[],a b 上的两个函数,若函数()()y f x g x =-在[],x a b ∈上有两个不同的零点,则称()f x 和()g x 在[],a b 上是“关联函数”,区间[],a b 称为“关联区间”.若()234f x x x =-+与()2g x x m =+在[]0,3上是“关联函数”,则m 的取值范围为( )A.9,24⎛⎤-- ⎥⎝⎦B.[]1,0-C.(],2-∞-D.9,4⎛⎫-+∞ ⎪⎝⎭【答案】A 【解析】试题分析:令()()0f x g x -=,得()()fx g x =,即2342x x x m -+=+,即254m x x =-+,若函数()234f x x x =-+与()2g x x m =+在[]0,3上是“关联函数”,则问题转化为直线y m =与曲线254y x x =-+在区间[]0,3上有两个交点,在同一坐标系中作出直线y m =与曲线254y x x =-+在区间[]0,3图象,由图象知,当924m -<≤-时,直线y m =与曲线254y x x =-+在区间[]0,3上有两个交点,故选A.考点:1.新定义;2.函数的零点第II 卷(非选择题)11.在ABC ∆中,若3a =,b =,3A π∠=,则C ∠的大小为_________.【答案】2π 【解析】试题分析:由正弦定理的sin 11sin sin sin 232a b b A B A B a =⇒===,a b > ,A B ∴>,故6B π∠=,因此()362C A B πππππ⎛⎫∠=-∠+∠=-+=⎪⎝⎭. 考点:1.正弦定理;2.三角形的内角和定理12.如果等差数列{}n a 中,35712a a a ++=,那么129a a a +++ 的值为 . 【答案】36 【解析】 试题分析:357553124a a a a a ++==⇒= ,()19129599362a a a a a a +∴+++=== .考点:等差数列的性质13.已知函数()3sin 2f x x π⎛⎫=- ⎪3⎝⎭的图象为C ,则下列说法: ①图象C 关于点(),0π对称; ②图象C 关于直线1112x π=对称; ③函数()f x 在区间51212ππ⎛⎫-⎪⎝⎭,内是增函数; ④由3sin 2y x =的图象向左平移6π个单位长度可以得到图象C .其中正确的说法的序号为 . 【答案】②③ 【解析】试题分析:()3sin 23sin 033f ππππ⎛⎫=-=-=≠ ⎪⎝⎭ ,故图象C 不关于点(),0π对称,命题①错误;111133sin 23sin 3121232f ππππ⎛⎫⎛⎫=⨯-==- ⎪ ⎪⎝⎭⎝⎭,函数()f x取到最小值,故图象C 关于直线1112x π=对称,命题②正确;当51212x ππ-<<,2232x πππ-<-<,故函数()f x 在区间51212ππ⎛⎫-⎪⎝⎭,内是增函数,命题③正确;将函数3sin 2y x =图象向左平移6π个单位长度得到函数()3sin 26h x x π⎛⎫=+ ⎪⎝⎭3sin 23x π⎛⎫=+ ⎪⎝⎭的图象,而不是曲线C ,故命题④错误.综上所述,正确的命题序号是②③.考点:1.三角函数的对称性;2.三角函数的单调性;3.三角函数图象变换 14.已知函数()()40,0af x x x a x=+>>在3x =时取得最小值,则a =__________. 【答案】36 【解析】试题分析:当0x >,0a >时,由基本不等式得()4a f x x x =+≥=当且仅当4ax x=,即当x =()f x 336a =⇒=.考点:基本不等式15.已知函数()()2sin cos cos 2f x x x x x R =+∈. (1)求()f x 的最小正周期和最大值;(2)若θ为锐角,且83f πθ⎛⎫+= ⎪⎝⎭,求tan 2θ的值.【答案】(1)函数()f x 的最小正周期为π2)tan 2θ=. 【解析】试题分析:(1)先将函数解析式化简为()24f x x π⎛⎫=+ ⎪⎝⎭,然后根据相应公式求出函数()f x 的最小正周期与最大值;(2)先利用83f πθ⎛⎫+= ⎪⎝⎭求出cos2θ的值,然后利用已知条件确定2θ的取值范围,进而确定sin 2θ的正负,并利用平方关系求出sin 2θ的值,最终求出tan 2θ的值.试题解析:(1)()2sin cos cos 2sin 2cos 224f x x x x x x x π⎛⎫=+=+=+ ⎪⎝⎭, 22T ππ∴==,即函数()f x 的最小正周期为π,()max f x =()f x;(2)22288423f ππππθθθθ⎡⎤⎛⎫⎛⎫⎛⎫+=++=+== ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,1cos 23θ∴=, θ 为锐角,所以02πθ<<,故02θπ<<,因此sin 20θ>,sin 2θ∴===sin 2tan 23cos 23θθθ∴===考点:1.三角函数的周期性与最值;2.同角三角函数的基本关系16.设函数()cos f θθθ=+,其中角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边经过点(),P x y ,且0θπ≤≤.(1)若点P的坐标为12⎛ ⎝⎭,求()f θ的值;(2)若点(),P x y 为平面区域1:11x y x y +≥⎧⎪Ω≤⎨⎪≤⎩上的一个动点,试确定角θ的取值范围,并求函数()f θ的最小值和最大值.【答案】(1)()2f θ=;(2)()max 2f θ=,()min 1f θ=. 【解析】试题分析:(1)先利用定义求出sin θ和cos θ的值,然后代入()f θ的表达式中求出()f θ的值;(2)先利用线性规划所表示的可行域求出角θ的取值范围,并将()f θ的表达式化为()2sin 6f πθθ⎛⎫∴=+⎪⎝⎭,结合角θ的取值范围求出6πθ+的取值范围,利用正弦函数的图象确定函数()f θ的最小值和最大值.试题解析:(1)由三角函数的定义知1cos 2θ=,sin 2θ=()1cos 222f θθθ∴=+=+=; (2)作出平面区域M (即三角形区域ABC ),如图所示,其中()1,0A 、()1,1B 、()0,1C ,于是02πθ≤≤,又()cos 2sin 6f πθθθθ⎛⎫∴=+=+⎪⎝⎭,且2663πππθ≤+≤, 当62ππθ+=时,即3πθ=时,()max 23f f πθ⎛⎫==⎪⎝⎭, 当66ππθ+=时,即0θ=时,()()min 01f f θ==.考点:1.三角函数的定义;2.三角函数的最值;3.线性规划 17.设函数()323a f x x bx cx d =+++(其中0a >),且方程()90f x x '-=的两个根分别为1、4.(1)当3a =且曲线()y f x =过原点时,求()f x 的解析式; (2)若()f x 在(),-∞+∞无极值点,求a 的取值范围.【答案】(1)()32312f x x x x =-+;(2)实数a 的取值范围是[]1,9.【解析】试题分析:(1)先将3a =代入函数()f x 的解析式,利用“曲线()y f x =过原点”先求出d 的值,然后求出二次函数()()9g x f x x '=-的解析式,利用“1、4为二次方程()90f x x '-=的两个根”并结合韦达定理求出b 、c 的值,最终确定函数()f x 的解析式;(2)先利用“1、4为二次方程()90f x x '-=的两个根”并结合韦达定理确定b 、c 与a 的关系,然后求出()f x ',对0a =与0a ≠进行分类讨论,将()f x 在(),-∞+∞无极值点进行转化,对0a =进行检验;当0a ≠时,得到0∆≤,从而求出实数a 的取值范围.试题解析:(1)当3a =时,()32f x x bx cx d =+++,由于曲线()y f x =过原点,则有()00f d ==,()32f x x bx cx ∴=++,()232f x x bx c '∴=++,令()()()29329g x f x x x b x c '=-=+-+,由题意知,1、4是二次函数()g x 的两个零点,由韦达定理得291433b b -+=-⇒=-, 14123cc ⨯=⇒=,()32312f x x x x ∴=-+; (2)()()()2929g x f x x ax b x c '=-=+-+,由于1、4是二次函数()g x 的两个零点,由韦达定理得2914b a -+=-,14ca⨯=, 解得952a b -=,4c a =,()3295432a a f x x x ax d -∴=+++, ()()2954f x ax a x a '∴=+-+,当0a =时,()9f x x '=,令()0f x '=,解得0x =,当0x <时,()0f x '<,当0x >,()0f x '>,此时0x =为函数()f x 的极小值点,不合乎题意;故0a ≠,由于函数()f x 在(),-∞+∞无极值点,则()295440a a a ∆=--⨯⨯≤,即()()9549540a a a a ---+≤,化简得()()9190a a --≤,解得19a ≤≤, 故实数a 的取值范围是[]1,9. 考点:1.导数;2.韦达定理 18.已知函数()()1ln f x a x a R x=-∈. (1)当1a =-时,试确定函数()f x 在其定义域内的单调性; (2)求函数()f x 在(]0,e 上的最小值;(3)试证明:()111 2.718,n e e n N n +*⎛⎫+>=∈ ⎪⎝⎭.【答案】(1)当1a =-时,函数()f x 的单调递减区间为()0,1,单调递增区间为()1,+∞;(2)()()min11,1ln ,aea e ef x a a a a e -⎧≥-⎪⎪=⎨⎪-+-<-⎪⎩;(3)详见解析. 【解析】试题分析:(1)先求出函数()f x 的定义域求出,然后将1a =-代入函数()f x 的解析式,求出导数()f x ',并利用导数求出函数()f x 的减区间与增区间 ;(2)求出()f x ',并求出方程()0f x '=的1x a =-,对a 的符号以及1a-是否在区间(]0,e 内进行分类讨论,结合函数()f x 的单调性确定函数()f x 在(]0,e 上的最小值;(3)利用分析法将不等式111n e n +⎛⎫+> ⎪⎝⎭等价转化为11ln 1n n n +>+,然后令1n x n +=,将原不等式等价转化为1ln 1x x+>在()1,+∞,利用(1)中的结论进行证明. 试题解析:(1)函数()f x 的定义域为()0,+∞,当1a =-时,()1ln f x x x =+,则()22111x f x x x x-'=-+=, 解不等式()0f x '<,得01x <<;解不等式()0f x '>,得1x >,故函数()f x 的单调递减区间为()0,1,单调递增区间为()1,+∞;(2)()1ln f x a x x =- ,()211a ax f x x x x+'∴=--=-, 当0a ≥时,()0,x e ∀∈,()0f x '<,此时函数()f x 在区间(]0,e 上单调递减, 函数()f x 在x e =处取得最小值,即()()min 11ln ae f x f e a e e e -==-=; 当0a <时,令()10f x x a '=⇒=-, 当1e a -≥时,即当10a e-≤<,()0,x e ∀∈,()0f x '<,此时函数()f x 在区间(]0,e 上单调递减,函数()f x 在x e =处取得最小值,即()()min 11ln ae f x f e a e e e-==-=; 当10e a <-<,即当1a e <-时,当10x a <<-,()0f x '<,当1x e a -<<时,()0f x '>,此时函数()f x 在1x a =-处取得极小值,亦即最小值, 即()()min 11ln ln f x f a a a a a a a ⎛⎫⎛⎫=-=---=-+- ⎪ ⎪⎝⎭⎝⎭, 综上所述,()()min 11,1ln ,ae a e e f x a a a a e -⎧≥-⎪⎪=⎨⎪-+-<-⎪⎩;(3)要证不等式111n e n +⎛⎫+> ⎪⎝⎭,即证不等式()11ln 11n n ⎛⎫++> ⎪⎝⎭,即证不等式11ln 11n n ⎛⎫+> ⎪+⎝⎭, 即证不等式11ln1n n n +>+, 令111n x n n +==+,则12x <≤ 则11n x =-,故原不等式等价于111ln 1111x x x x x ->==-+-, 即不等式1ln 10x x+->在(]1,2上恒成立, 由(1)知,当1a =-时,函数()1ln f x x x =+在区间()1,+∞上单调递增, 即函数()f x 在区间(]1,2上单调递增,故()()11f x f >=, 故有1ln 1x x +>,因此不等式1ln 10x x+->在(]1,2上恒成立,故原不等式得证, 即对任意n N *∈,111n e n +⎛⎫+> ⎪⎝⎭.考点:1.利用导数求函数的单调区间;2.函数的最值;3.分析法证明不等式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(参考数据:
xi yi 3245 , y 15.43 , xi2 5075 , 7( x)2 4375 ,
i=1
7 x y 2695 )
18. (本小题满分 14 分) 如图, PAD 为等边三角形,ABCD
为
矩 形 , 平 面 PAD 平 面 ABCD , AB 2 , E 、F 、G 分 别 为 PA 、 BC 、 PD 中 点 ,
2
且满足 PF2 F1 F2 0, PF2 PF2 c ,则该椭圆的离心率等于
A.
5 1 2
B.
3 1 2
C.
1 2
D.
2 2
10 . 若 在 曲 线 f ( x, y ) 0(或y f ( x)) 上 两 个 不 同 点 处 的 切 线 重 合 , 则 称 这 条 切 线 为 曲 线
AD 2 2 .
(Ⅰ)求证:EF//平面 PCD. (Ⅱ)求证: AG EF (Ⅲ)求多面体 P AGF 的体积.
19. (本小题满分 14 分) 在数列 {an } 中,已知 a1 1,.an an 1 an 2 a2 a1 ( n N *, n 2) . (1)求数列 {an } 的通项公式; (2)若 bn log 2 , an , m 的取值范围。
1 i 的值是 1 i
A.1 B.—i C. i D.—1 3.从某小学随机抽取 100 名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如右 图) 。由图中数据可知身高在[120,130]内的学生人数为 A.20 B.25 C.30 D.35 4.设 {an } 是等差数列,且 a2 a3 a4 15, 则这个数列的前 5 项和 S5= A.10 B.15 C.20 D.25 5.函数 f ( x ) x lg x 3 的零点所在区间为 A. (3, ) B. (2,3) C. (1,2) D. (0,1)
1 1 1 m 对于任意的 n N * ,且 n 3 恒成立,求 b3 b4 b4 b5 bn bn 1
20. (本小题满分 14 分)如图,在△ABC 中, | AB || AC | 以 B、C 为焦点的椭圆恰好过 AC 的中点 P。 (1)求椭圆的标准方程;
7 ,| BC | 2 ,原点 O 是 BC 的中点, 2
i
nx y ˆ ˆ y bx ,a nx
2
x
i 1
2 i
第Ⅰ卷(选择题
共 50 分)
一、选择题(本大题共 10 小题,每小题 5 分,满分 50 分,每小题给出的四个选项中,只有一项是 符合题目要求。 ) 1.设集合 P {1, 2,3, 4}, Q {3, 4,5, 6}, 则P Q = A. 2.复数 B.{3,4} C.{1,2,5,6} D.{1,2,3,4,5,6}
广东省揭阳一中、潮州金山中学 2013 届高三上学期联合摸底考试
数学(文)试题
本试卷分共 21 小题,满分 150 分。考试用时 120 分钟。 参考公式:V=
1 Sh (S 是锥体的底面积,h 是锥体的高) 3
n
ˆ 中系数公式b ˆ ˆa ˆ bx 线性回归方程 y
x y
i i 1 n
6.已知 为第四象限的角,且 sin( A.
2
)
3 4
B.
3 4
4 , 则 tan = 5 4 C. 3
D.
4 3
7.平面向量 a 与 b 的夹角为 60°, a (2, 0),| b | 1, 则 | a 2b | 等于 A. 3 B.2 3 C. 4 D.12
(1)求函数 f ( x ) 的定义域; (2)试讨论函数 f ( x ) 的单调区间;
x t, (t 为参数) , y 4 t
4
),
则直线 l 和曲线 C 的公共点有 个. 15.(几何证明选讲选做题)已知 PA 是圆 O 的切线, 线点为 A,直线 PO 交圆 O 于 B,C 两点,AC=2, ∠PAB=120°,则圆 O 的面积为 . 三、解答题:本大题共 6 小题,满分 80 分。解答须写出文字说明,证明过程和演算步骤。 16. (本小题满分 12 分) 已知函数 f ( x ) sin( x )( 0, 0 ) 为偶函数,周期为 2 . (1)求 f ( x ) 的解析式; (2)若 (
(2)过椭圆的右顶点 A1 作直线 l 与圆 E : ( x 1) y 2 相交于 M、N 两点,试探究点 M、 N 能将圆 E 分割成弧长比值为 1:3 的两段弧吗?若能,求出直线 l 的方程;若不能,请说明理由。
2
2
21. (本小题满分 14 分) 已知函数 f ( x)
ex (a 0). x 2 ax 1
则 z=2x+y 的最大值为 . 13.已知某程序框如图所示,则执行该程序后输出的
结果为
.
(二)选做题(14—15 题,考生只能从中选做一题,两道题都做的,只记第一题的分) 14. (坐标系与参数方程选做题)在直角坐标系 xOy 中,直线 l 的参数方程为 以原点 O 为极点,以 x 轴的正半轴为极轴建立极 坐标,曲线 c 的极坐标方、侧视图、俯视图为全等的等腰三角形,且直角边长为 1,那么 这个几何体的体积为 A.1
1 2 1 C. 3 1 D. 6
B. 9.已知椭圆
x2 y2 1(a b 0) 的左、右焦点分别为 F1、F2,且 | F1 F2 | 2c ,若点 P 在椭圆上, a2 b2
2 2 2 。 下 列 方 程 : ① x y 1; ② y x | x |; ③ f ( x, y ) 0或y=f(x) 的 “ 自 公 切 线 ”
y 3sin x 4 cos x; ④ | x | 1 4 y 2 对应的曲线中存在“自公切线”的有
A.①③ B.①④ C.②③ D.②④
第Ⅱ卷(非选择题,共 100 分)
二、填空题(本大题共 5 小题,考生作答 4 小题,每小题 5 分,满分 20 分。 ) (一)必选题(第 11 至 13 题为必做题,每道试题考生都必须作答) 11.函数 f ( x ) ln
x 1 的定义域为 1 2x
.
x 1, 12.若实数 x、y 满足不等式组 y x 1 , x 2 y 2 0
1 2 , ), f ( ) , 求 sin(2 ) 的值. 3 2 3 3 3
17. (本小题满分 12 分)一商场对每天进店人数和商品销售件数进行了统计对比,得到如下表格:
人数 xi
10
15
20
25
30
35
40
件数 yi
4
7
12
15
20
23
27
其中 i 1 , 2 ,, 3 4, 5, 6, 7. (Ⅰ)以每天进店人数为横轴,每天商品销售件数为纵轴,画出散点 图. (Ⅱ)求回归直线方程. (结果保留到小数点后两位) (Ⅲ)预测进店人数为 80 人时,商品销售的件数. (结果保留整数)