连续时间信号与系统的时域分析课件

合集下载

第二章 信号与系统的时域分析

第二章 信号与系统的时域分析
17
二 卷积积分(The convolution integral) 若 (t ) h(t ) 则 (t ) h(t ) = h (t )
x t x h t

x(t ) x( ) (t )d y(t ) x( )h (t )d
则 y(t ) ak yk (t )
k
4
信号与系统的时域分析:
一般的信号都可以表示为延迟冲激的线性组合。
结合系统的叠加性和时不变性,就能够用LTI的单位
冲激响应来完全表征任何一个LTI系统的特性。这样
一种表示在离散情况下称为卷积和;在连续时间情
况下称为卷积积分。
5
分析方法:
对信号分解可在时域进行,也可在频域或变换域 进行,相应地产生了对LTI系统的时域分析法、频 域分析法和变换域分析法。
h( n n kk n h ) uu (n k )k
1
1
k
0
...
0
k
n
12
运算过程:
k k) ,再随参变量 为 h(
点值累加,得到
将一个信号 xk 不动,另一个信号反转后成为
下,将 xk 与 hn k 对应点相乘,再把乘积的各
n
移位.在每个 n 值的情况
x( [ n] y x x[ (n n] )* [ (n) h2 (n n)] x ) y( n n) (h h1 ) 1 n h2 h (n ) h( n) h2 x(t ) 11 y(t ) x(t ) [h1 (t ) h2 (t )] h1 (t ) h2 (t )
0
16
对一般信号 x(t ) ,可以分成很多 宽度的区段, 用一个阶梯信号 x (t ) 近似表示 x(t ) .当 0 时,

信号与系统第二章第一讲

信号与系统第二章第一讲
i
则相应于1的k阶重根,有k项:
( A1t k 1 A2t k 2 Ak 1t Ak )e1t ( Ai t k i )e1t
i 1
k
例2-3
信 号 与 系 统
求如下所示的微分方程的齐次解。
Hale Waihona Puke d3 d2 d r (t ) 7 2 r (t ) 16 r (t ) 12r (t ) e(t ) 3 dt dt dt
等式两端各对应幂次的系数应相等,于是有:
信 号 与 系 统
特解为: 联立解得:
3B1 1 4 B1 3B2 2 2 B 2 B 3 B 0 2 3 1

线性时不变系统
线性的常系数微分方程
按照元件的约束特性及 系统结构的约束特性
也即:
具体系统物理模型
常系数微分方程建立
(1)元件端口的电压与电流约束关系
iR (t ) R
信 号 与 系 统

vR (t )
C


vR (t ) iR (t ) R
dvC (t ) iC (t ) C dt
vR (t ) Ri R (t )

时域经典法就是直接求解系统微分方程的方法。这种方 系 法的优点是直观,物理概念清楚,缺点是求解过程冗繁,应 用上也有局限性。所以在20世纪50年代以前,人们普遍喜欢 统 采用变换域分析方法(例如拉普拉斯变换法),而较少采用时 域经典法。20世纪50年代以后,由于δ(t)函数及计算机的普 遍应用,时域卷积法得到了迅速发展,且不断成熟和完善, 已成为系统分析的重要方法之一。时域分析法是各种变换域 分析法的基础。
信 号 与 系 统
is (t )

信号与系统分析第二章 连续时间系统的时域分析

信号与系统分析第二章 连续时间系统的时域分析

第二章 连续时间系统的时域分析
2.1.1
对系统进行分析时, 首先要建立系统的数学模型。 对于电的系统, 只要利用理想的电路元件, 根据基尔霍 夫定律, 就可以列出一个或一组描述电路特征的线性 微分方程。 现举例来说明微分方程的建立方法。
第二章 连续时间系统的时域分析
例2.1 图2.1所示为RLC串联电路, 求电路中电流i(t) 与激励e(t)之间的关系。
第二章 连续时间系统的时域分析
(3)
y(t) C 1 e t C 2 e 6 t5 2c 0 1o 2 t)s 5 3 (s0i2 n t) (
D(p)y(t)=N(p)f(t)
y(t) N(p) f (t) D(P)
式(2.15)中的 N ( p ) 定义为转移算子, 用H(p)表示,
D (P)
(2.14) (2.15)
H (p ) N D ( (P p ) ) b a m n p p m n a b n m 1 1 p p n m 1 1 a b 1 1 p p a b 0 0 (2.16)
t0
解 (1) 齐次解。 由例2.4 yh (t)=C1e-t+C2e-6t
第二章 连续时间系统的时域分析
(2) 特解。 查表2.2, yp(t)=B1cos (2t)+B2sin(2t)
-14B1+2B2-6=0 2B1+14B2=0
于是,
B15201,
B2530
yp(t)5 20 c 1o2ts) (530 si2 nt)(
第二章 连续时间系统的时域分析
3. 用算子符号表示微分方程, 不仅书写简便, 而且在建 立系统的数学模型时也很方便。 把电路中的基本元件R、 L、 C的伏安关系用微分算子形式来表示, 可以得到相应 的算子模型, 如表2.1所示。

连续时间信号的时域分析和频域分析

连续时间信号的时域分析和频域分析

时域与频域分析的概述
时域分析
研究信号随时间变化的规律,主 要关注信号的幅度、相位、频率 等参数。
频域分析
将信号从时间域转换到频率域, 研究信号的频率成分和频率变化 规律。
02
连续时间信号的时
域分析
时域信号的定义与表示
定义
时域信号是在时间轴上取值的信号, 通常用 $x(t)$ 表示。
表示
时域信号可以用图形表示,即波形图 ,也可以用数学表达式表示。
05
实际应用案例
音频信号处理
音频信号的时域分析
波形分析:通过观察音频信号的时域波形,可 以初步了解信号的幅度、频率和相位信息。
特征提取:从音频信号中提取出各种特征,如 短时能量、短时过零率等,用于后续的分类或 识别。
音频信号的频域分析
傅里叶变换:将音频信号从时域转换 到频域,便于分析信号的频率成分。
通信系统
在通信系统中,傅里叶变 换用于信号调制和解调, 以及频谱分析和信号恢复。
时频分析方法
01
短时傅里叶变换
通过在时间上滑动窗口来分析信 号的局部特性,能够反映信号的 时频分布。
小波变换
02
03
希尔伯特-黄变换
通过小波基函数的伸缩和平移来 分析信号在不同尺度上的特性, 适用于非平稳信号的分析。
将信号分解成固有模态函数,能 够反映信号的局部特性和包络线 变化。
频域信号的运算
乘法运算
01
在频域中,两个信号的乘积对应于将它们的频域表示
相乘。
卷积运算
02 在频域中,两个信号的卷积对应于将它们的频域表示
相乘后再进行逆傅里叶变换。
滤波器设计
03
在频域中,通过对频域信号进行加权处理,可以设计

第二章LTI系统的时域分析ppt课件

第二章LTI系统的时域分析ppt课件

注意:为方便起见,对单一零状态系统进行讨论时常常仅用y(t)代表yf(t)。
y( t ) a0 y当( tf)(t b)0f (t()t )时 h( t ) a0h( t ) b0 ( t )
2、h(t)的求解方法 (1) 利用阶跃响应与冲激响应的关系求解
此方法适用于简单电路,前提是阶跃响应g(t)简单易求。
y( t ) yh( t ) yp( t )
1、齐次解yh(t)
y( n )( t ) an1 y( n1 )( t ) a1 y( t ) a0 y( t ) 0
特征方程
的解
n n1 a1 a0 0
➢ 齐次微分方程的特征根:特征方程的 n 个根λi (i=1,2,…,n) ; ➢ 齐次解yh(t)的函数形式由特征根确定;
零状态 系统
y f ( t ) h( t )
yf(t)= g(t)
➢ 零状态系统:在激励 f(t) 的作用下将产生零状态响应yf(t);
➢ 如果激励是单位冲激信号δ(t),产生的响应称为单位冲激响应,用h(t)表示。 ➢ 如果激励是单位阶跃信号ε(t),产生的响应称为单位阶跃响应,用g(t)表示。
n
m
ai y(k i) bj f (k j)
i0
j0
(an 1, m n)
差分方程的经典解分为齐次解yh(k)和特解yp(k)。
y(k) yh (k) yp (k)
1、差分方程的齐次解
n阶前向齐次差分方程 y(k n) an1y(k n 1) a1y(k 1) a0 y(k) 0
i1
y( t
)
yh( t
)
yp( t
)
C
1e
C2 t
ie

信号与系统引论 课件 郑君里 第2章 连续时间系统的时域分析

信号与系统引论 课件 郑君里 第2章 连续时间系统的时域分析

网络拓扑约束:由网络结构决定的电压电流约束关系,
KCL,KVL。
例2-1
电阻 电感 电容
求并联电路的端电压v(t)与激励is(t)间的关系。
1 iR iR t v t R i s t R L 1 t i L t v d L d v t iC t C 元件特性约束 dt
E (常数)
B(常数)
B1t p B2 t p1 B p t B p1
tp e t
cos t sin t
Be t
B1 cos t B2 sin t
t p e t sin t B1t p B2 t p 1 B p t B p 1 e t cos t
2.2 系统数学模型(微分方程)的建立
对于电路系统,主要是根据元件特性约束和网络拓扑
约束列写系统的微分方程。
对于其他物理系统,根据实际系统的物理特性列写系 统的微分方程。 元件特性约束:表征元件特性的关系式。例如二端元
件电阻、电容、电感各自的电压与电流的关系以及
四端元件互感的初、次级电压与电流的关系等等。
等式两端各对应幂次的系数应相等,于是有
3 B1 1 4 B1 3 B2 2 2 B 2 B 3 B 0 2 3 1
联解得到
1 2 10 B1 , B2 , B3 3 9 27
所以,特解为
1 2 2 10 rp t t t 3 9 27
i L (0 ) i L (0 )
例2-6 如图示出RC一阶电路,电路中无储能,起始电
压和电流都为零,激励信号e(t)=u(t),求t >0系统的响
应——电阻两端电压vR(t)。

信号与系统课件(郑君里版)第二章

信号与系统课件(郑君里版)第二章

e ,t≥0;y(0)=2,y’(0)= 2 t ,t≥0;y(0)= 1, e
t
-1
y’(0)=0时的全解。
解: (1) 特征方程为
2 + 5λ+ 6 = 0
其特征根λ1= – 2,λ2= – 3。 齐次解为
yh (t ) C1e2t C2e2t
由表2-2可知,当f(t) = 2 e t
y fh (t ) C f 1e
2t
C f 2e
t
其特解为常数 3 , 于是有
y f (t ) C f 1e2t C f 2et 3
C1 1 C 2 4
根据初始值求得:
y f (t ) e2t 4et 3,t 0
四.系统响应划分
自由响应+强迫响应 (Natural+forced) 暂态响应+稳态响应 (Transient+Steady-state) 零输入响应+零状态响应 (Zero-input+Zero-state)
零输入响应
2.2 冲激响应和阶跃响应
一.冲激响应 1.定义 系统在单位冲激信号δ(t) 作用下产生的零状态响 应,称为单位冲激响应,简称冲激响应,一般用h(t)表 示。
t
ht
H
[例2.2.1] 描述某系统的微分方程为y”(t)+5y’(t)+6y(t)=f(t)求其 冲激响应h(t)。
相互关系
零输入响应是自由响应的一部分,零状态响应有自由响 应的一部分和强迫响应构成 。
y (t ) e 2t 3 y x (t ) y f (t ) (2e 2t 4e t ) (e 2t 4e t 3),t 0

第2章 连续时间信号和离散时间信号的时域分析

第2章  连续时间信号和离散时间信号的时域分析

第2章 连续时间信号和离散时间信号的时域分析
2.单位冲激信号 1) 单位冲激信号(Delta函数)的定义
∞ δ (t )dt = 1 ∫ ∞ (2-14) δ (t ) = 0 t ≠ 0 冲激信号用箭头表示,如图2.8(a)所示。冲激信号具有强度,其
强度就是冲激信号对时间的定积分值。在图中以括号注明,以与信 号的幅值相区分。 冲激信号可以延时至任意时刻 t0 ,以符号 δ (t t 0 ) 表示,定义 为
Ae st = Ae(σ + jω
0 )t
= Aeσ t cos(ω0 t ) + jAeσ t sin(ω0 t )
(2-8)
式(2-8)表明,一个复指数信号可以分解为实部﹑虚部两部分。 实部﹑虚部分别为幅度按指数规律变化的正弦信号。若 σ < 0 ,复指 数信号的实部﹑虚部为减幅正弦信号,波形如图2.4(a)﹑(b)所示。 若 σ > 0 ,其实部﹑虚部为增幅正弦信号,波形如图2.4(c)﹑(d)所 示。
第2章 连续时间信号和离散时间信号的时域分析
4.抽样函数 抽样函数是指 sin t 与 t 之比构成的函数,其定义如下:
sin t Sa(t ) = t
抽样函数的波形如图2.5所示。
(2-10)
图2.5 抽样函数的波形 抽样函数具有以下性质:
Sa(0) = 1, Sa(kπ) = 0 ,k
= ±1, ±2,L ∫∞ Sa(t )dt = π
第2章 连续时间信号和离散时间信号的时域分析
应用阶跃信号与延时阶跃信号,可以表示任意的矩形波脉冲信号。 例如,图2.7(a)所示的矩形波信号可由图2.7(b)表示,即 :
f (t ) = u (t T ) u (t 3T )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通过分离变量,上式可改写为
21
对两边积分得
其中,k是积分常数。从而可得
其中,C=ek是待定系数,由系统的初始条件 决定。例如,将初始状态yx(o)代入式(2-14)即 可得
22
从而得到一阶齐次方程的解为 二阶齐次方程的一般形式为
其中,a,b是常数。其算子方程为
23
将上式中的D(p)作因式分解 从而将式(2-16)改写为
第2章 连续时间信号与系统的时域分析
2.1 系统微分方程的建立及算子表示 2.2 零输入响应 2.3 零状态响应 2.4 卷积积分 2.5 LTI连续时间系统时域分析举例
1
LTI连续系统的时域分析,归结为:建立并 求解线性微分方程。
由于在其分析过程涉及的函数变量均为时间 t,故称为时域分析法。这种方法比较直观 ,物理概念清楚,是学习各种变换域分析法 的基础。
2
2.1系统微分方程的建立及算子表示
2.1.1系统方程的算子表示法
如上面所示,描写线性系统的激励函数和响应函数
间关系的微分方程形式看起来很复杂,为了方便起见,
把微分算子用符号p来代表,如令
,通过引入
算子符号,可以把微积分方程在形式上变成代数方程。
它的优点一是简化方程的列写(特别是联立方程消元),
一是通过引入系统转移算子H(p)的概念,便于形成系
像代数式那样相乘和因式分解。 特殊情况:
10
2.1系统微分方程的建立及算子表示
特殊一: 这里也像代数式中一样,分子分母中的p
可以消去。但是
这里除非x(-∞) = 0,否则分母和分子中的p 就不能消去。这表明在一般情况下,有
11
2.1系统微分方程的建立及算子表示
特殊二: 若将式
两边积分,可得
( c为积分t
6it
d dt
et
15
例题
如下图所示电路,et 为激励信号,响应为 i2t ,
用算子法求其算子方程、传输算子以及微分方程。
1 2H
et
i1 t 1H
1
1 2 p
i2 t
2 et
i1 t p
1
i2 t
2
16
1 2 p
et
i1 t p
1
i2 t
2
3
p 1i1 pi1 t
对于等式px =py,双方的算子p一般也不好消
去。
以上讨论说明,代数量的运算规则对于算子 符号一般也可以用,只是在分子分母中或在 等式两边中的算子符号不能随便消去。
12
2.1系统微分方程的建立及算子表示
3.算子方程组的消元 为了要从一个n阶电路的n元一次算子方程组 得到一个形式为
的一元n阶算子方程,必须将原方程组中除响 应变量.y(t)以外的其他未知量系统消去。在掌 握了算子的运算规则之后,就可以较为方便 地做到这一点。
d dt
yt an yt
dm b0 dt m
d m1
f t b1 dt m1
f
t
...
bm 1
d dt
f t bm f t
算子方程
pn yt a1 pn1 yt ... an1 pyt an yt b0 pm f t b1 pm1 f t ... bm1 pf t bm f t
13
电感和电容的算子表示
电感
L t
L
d dt
iL
t
LpiL
t
Lp 电感算子符号,理解为电感的感抗值
电容
C
t
1 C
t
iC d
1 Cp
iC
t
1 电容算子符号,理解为电容的容抗值
Cp
14
Lp p
R
L
iL
5 1H
et
i t
1F 6
C
1 6
Cp p
5
p
6 p
it
et
p2it 5 pit 6it pet
5
d dt
i2
t
3 2
i2
t
1 2
d dt
et
17
2.2 零输入响应yx(t)
2.2.1 yx(t)的定义 2.2.2 yx(t)的求法 2.2.3 系统的自然模式
返回首页
18
2.2.1 yx(t)的定义
系统在无外加激励作用下,仅由系统的初始 状态所引起的响应称为系统的零输入响应, 记为yx(t)。系统的零输入响应完全由系统的结 构与状态决定,而与激励信号无关。
统分析的统一的方法。
先引入算子的定义,再由定义导出其“运算”规则, 最后介绍如何用算子法列写微分方程。
3
微分算 子
算子符号
p d dt
px dx , dt
pn
dn dt n
,
pn x
dnx dt n
积分算 子
1 t d
p
1 x
t
xd
p
4
2.1系统微分方程的建立及算子表示
例 用算子法表示下面的微分方程。
解:根据微分算子与积分算子的定义,上式可 表示为 还可以将上式改写为
5
2.1系统微分方程的建立及算子表示
例 利用广义微分算子与广义积分算子来表示 下面的微分方程。
解:由广义微分算子与广义积分算子可写微 分方程的算子方程如下
其中
6
微分方程的算子形式
dn dt n
yt a1
d n1 dt n1
yt ... an1
ft
yt
N p D p
f t
yt H p f t
D p H p
8
2.1系统微分方程的建立及算子表示
例2-3 求下面微分方程的转移算子H(p)
解:可将上述方程改写为
根据转移算子的定义,上式可进一步表示为
也即
9
2.1系统微分方程的建立及算子表示
2.算子的运算规则 (1)由P的多项式所组成的运算符号可以
7
pn yt a1 pn1 yt ... an1 pyt an yt b0 pm f t b1 pm1 f t ... bm1 pf t bm f t
N p
y t
b0 pm b1 pm1 ... bm1 p bm pn a1 pn1 ... an1 p an
t p
pi2 t 3i2 t
e
t
0
利用克莱姆法则, 解出:
3 p 1 et
i2t
p 3p1
0 p
pet
2 p2 10 p 3
1 2
p2
5
p p
3
/
2
et
p p3
系统函数为:H p
2
p2
p 5p
3/2
p2
5p
3 2
i2 t
1 2
pet
微分方程为: d 2
dt 2
i2
t
在式(2-8)中令f (t) = 0,得到齐次方程
yx(t)就是齐次方程(2-11)的解。
19
其中,D(p)称为系统的特征多项式,方程D(p) =0叫做系统的特征方程,特征方程的根称系统 的特征根。 先来讨论比较简单的一阶、二阶齐次方程的 情况,然后推广至n阶方程。
20
一阶与二阶齐次方程的解 一阶齐次方程的一般形式为 即
相关文档
最新文档