请从内力求解的角度阐述静定结构和超静定结构的区别

合集下载

建筑力学教材课件第八章 超静定结构的内力分析

建筑力学教材课件第八章 超静定结构的内力分析

⑶求系数和自由项
11
1 1 2 256 4 4 4 4 4 4 EI 2 3 3EI 1 1 1280 80 4 4 EI 3 3EI
1P
⑷求解多余力
⑸绘制内力图 各杆端弯矩可按 M X 1 M 1 M P 计算,最后弯矩图如图8-7c所示。
图(a)所示刚架有两个刚结点,现在两个刚结点
都发生了角位移和线位移,但在忽略杆件的轴向变形
时,这两个线位移相等,即独立的结点线位移只有一 个,因此用位移法求解时,该结构的基本未知量是两 个角位移C和 D 以及一个线位移Δ。
(b)
同理,图( b)所示排架有三个铰结点,其水 平线位移相同,故该结构的基本未知量是一个线位 移Δ。
M 1M P 1 1 ql 2 3l ql 4 dx l EI EI 3 2 4 8 EI
同理可用 M 1 图与 M P 图相图乘计算 1P ,得
1P
将11 和1P 之值代入力法基本方程由此求出:
X1 1P
11
ql 4 l 3 3ql / 8 EI 3EI 8
• 即:n次超静定结构力法的基本方程,通常称为力法典型方程。这一 方程组的物理意义为:基本结构在全部多余未知力和荷载共同作用下, 在去掉多余联系处沿各多余未知力方向的位移,应与原结构相等。 • 典型方程中,多余未知力系数主对角线上称为主系数,其物理意义为: 当单位力单独作用时,在其自身方向上所引起的位移,恒为正且不为 零。其它系数称为副系数,其物理意义为:当单位力单独作用时,所 引起方向的位移。各式最后一项称为自由项,它是荷载单独作用时所 引起的方向的位移。副系数和自由项的值可能为正、负或零。

01-静定梁和超定结构知识点小结

01-静定梁和超定结构知识点小结

第3章 静定梁和静定刚架(知识点小结)一、杆件内力分析方法1、内力分量轴力N F 是横截面上的应力沿截面法线方向的合力,一般以拉力为正,压力为负。

剪力S F 是横截面上的应力沿截面切线方向的合力,以绕截面处微段隔离体顺时针方向转动为正,反之为负。

弯矩M 是横截面上的应力对截面形心取矩的代数和,一般不规定正负号。

有时按习惯也可规定,在水平杆件中弯矩使杆件截面的下侧纤维受拉时为正,上侧受拉时为负。

2、截面法截面法是计算指定截面内力的基本方法,即沿指定截面假想将结构截开,切开后截面内力暴露为外力,取截面左侧(或右侧)作为隔离体,作隔离体受力图,建立平衡方程,从而可确定指定截面的内力。

由截面法可得截面上三个内力分量的运算规则如下:(1)轴力N F 等于截面左侧(或右侧)的所有外力(包括支座反力)沿截面法线方向的投影代数和;(2)剪力S F 等于截面左侧(或右侧)的所有外力(包括支座反力)沿截面切线方向的投影代数和;(3)弯矩M 等于截面左侧(或右侧)的所有外力(包括支座反力)对截面形心取矩的代数和。

3、内力图内力图表示结构上各截面的内力随横截面位置变化规律的图形,包括M 图、S F 图和N F 图。

内力图用平行于杆轴线方向的坐标表示横截面位置(又称基线),用垂直于杆轴线的坐标(又称竖标)表示相应截面的内力值。

轴力图、剪力图中,竖标正、负值分别画在杆件基线的两侧,要标明正负号;弯矩图画在杆件的受拉侧,不标正负。

内力图要画上竖标,标注某些控制截面处的竖标值,并写明图名和单位。

4、内力图的形状特征直杆段上内力图的形状特征归纳如表3-1所示。

熟练掌握内力图的这些形状特征,对于以后正确、迅速地绘制内力图、校核内力图是非常有帮助的。

5、区段叠加法作M图对承受横向荷载作用的任意结构中直杆段,都可采用区段叠加法作其弯矩图:先采用截面法求出该段两个杆端截面弯矩值并将其连以一虚线,然后以此虚线为基线,叠加相应简支梁在跨间相应荷载作用下的弯矩图,如图3-1所示。

建筑力学复习题答案

建筑力学复习题答案

一、力学基础1、力的三要素是哪些?答:大小、作用点、方向。

2、二力平衡的条件?答:大小相等、方向相反、作用在同一直线上。

3、作用力与反作用力的特点?答:大小相等、方向相反、作用在同一直线上。

4、作用力与反作用力是一对平衡力吗?请简述二者的联系与区别。

答:作用力与反作用力不是一对平衡力。

联系:二者都是一对大小相等、方向相反、作用在同一直线上的力。

区别:平衡力作用在同一物体上,作用力与反作用力分别作用在两个物体上。

5、取隔离体是一种常用的受力分析方法,即假想原结构沿某一截面截开。

将两部分隔离体在截面上的内力分别记为F和G,它们是一对(作用力与反作用力,不是平衡力)6、静力分析中,一般将物体简化为刚体。

刚体的特点是什么?答:刚体内部任意两点之间的距离始终保持不变,即不变形。

7、对平面内的某根杆件进行静力分析,能列几个独立的平衡方程?答:3个。

8、取平面结构的一个结点为隔离体进行静力分析,能列几个独立的平衡方程?答:2个。

9、在对实际结构的力学问题进行合理地简化后,作计算简图描述其力学模型。

杆件间的连接区是如何简化的?答:杆件的连接区通常简化为以下3种结点。

①铰结点。

被连接的杆件在连接处不能相对移动,可以相对转动。

以传递力,但不能传递力矩。

木结构的连接近似铰结点。

②刚结点。

被连接的杆件在连接处既不能相对移动,又不能相对转动。

因此刚结点可以传递力,也可以传递力矩。

现浇钢筋混凝土的连接近似刚结点。

10、在对实际结构的力学问题进行合理地简化后,作计算简图描述其力学模型。

平面结构与基础间的连接区是如何简化的?答:结构与基础的连接区简化为以下四种支座。

①滚轴支座,也称可动铰支座。

被支撑的部分可以转动和水平移动,动。

因此滚轴支座只能提供竖向支反力。

②铰支座。

被支撑的部分可以转动,不能移动。

支反力。

③定向支座,也称滑动支座。

被支撑的部分可以沿一个方向平行滑动,因此定向支座可以提供反力矩和与滑动方向垂直的支反力。

④固定支座。

结构力学第五章 力法

结构力学第五章 力法
超静定结构
超静定结构与静定结构 在计算方面的主要区别
• 静定结构的内力只要根据静力平衡条件即 可求出,而不必考虑其它条件,即:内力是 静定的。 • 超静定结构的内力则不能单由静力平衡
条件求出,而必须同时考虑变形协调条件,即: 内力是超静定的。
求解超静定结构的计算方法
• • 从方法上讲基本有两种:力法和位移法。 从历史上讲分传统方法和现代方法。
M1 M1 M 12 l 3 (图形自乘) • EI dx EI dx 3EI 11

1P
4 M1MP ql dx EI 8EI
• 代入变形条件, 得: • X1= - ⊿1P/δ11= 3ql/8 (↑) • 最后弯矩图可用叠加原理(也可将X1作用在基
•⊿2P=[(ql2/2×l)×l] =ql4/2EI
(3)、解方程 (求解未知量)
• 力法方程:(可消去 l3/EI) • 4/3 X 1 -X 2 - 5ql/8 = 0 • -X1+4/3X2+ ql/2 = 0 • 解出: • X 1 =3ql/7 • X2 = - 3ql/56
1nXn+
… … nnXn+ ⊿nP = 0
• (n次超静定结构在荷载作用下的力法典型方程) • 基本未知量:n个多余未知力X1 、X2、… Xn; • 基本体系:从原结构中去掉相应的n个多余约 束后所得的静定结构; • 基本方程:n个多余约束处的n个变形条件。
力法典型方程的讨论:
• (1)、可写成矩阵形式: 11 12 1n X 1 1P 0 • 22 2 n X 2 2 P 0 21 n1 n 2 nn X N nP 0 • [δ ]{X} + {⊿P } = {0} • [δ ]——系数矩阵、柔度矩阵 • (2)、力法方程主系数: δ ii≠0,恒为正 . • 因为δ ii是Xi=1作用在自身方向上,所产 生的位移系数,所以不为零,恒为正。

静定超静定判断及计算

静定超静定判断及计算

目的和意义
目的
理解静定与超静定的概念,掌握判断方法,能够进行相应的计算。
意义
在实际工程中,正确判断结构和系统的静定或超静定状态对于确保结构安全、节约材料和降低成本具有重要意义。
02
静定与超静定的基本概念
静定结构的定义
静定结构
在任何外界影响下,其平衡位置都是稳定的 ,且在受到微小扰动后能自动恢复到原来的 平衡状态。
内力计算的方法
静定结构的内力计算通常采用截面法或节点法进行。截面法是通过 截取结构的一部分进行分析,节点法则是对结构的节点进行受力分 析。
内力的表示方法
内力可以用实线和虚线表示,实线表示实际受力方向,虚线表示实际 受力反方向。
静定结构的位移计算
1
位移计算的意义
在结构分析中,位移是一个重要的参数 。通过计算位移,可以了解结构的变形 情况,从而评估结构的稳定性和安全性 。
本文的研究成果已被广泛应用于建筑、机械、航空航天等工程领 域,解决了众多实际工程问题,取得了显著的经济和社会效益。
对未来研究的展望
深入研究复杂结构体系
随着科技的发展,复杂结构体系在工程中越来越常见,未 来研究可进一步探讨复杂结构体系的静定与超静定问题, 提高工程结构的稳定性和安全性。
引入先进计算技术
计算公式
自由度数 = 刚片数 - 约束数。
判断标准
若自由度数等于0,则结构为静定;若自由度数不等于0,则结 构为超静定。
几何法判断
定义
几何法判断是指通过分析结构的几何形状来判断结构是否为静定或超静定的一种方法。
判断标准
若结构的几何形状满足静定结构的条件(即所有刚片都是相互平行的),则结构为静定;否则为超静 定。
01

超静定结构及力学原理和方程重难点分析

超静定结构及力学原理和方程重难点分析

超静定结构及力学原理和方程重难点分析一、超静定结构的概念:超静定结构:从几何组成分析来说具有几何不变性而又有多余约束的结构。

超静定结构与静定结构相比较,主要有三个方面的优点:1从几何组成看,超静定结构未没有联系的几何不变体系,而超静定结构是具有多余联系的几何不变体系;2从静力特征看,静定结构仅凭静力平衡条件便可以完全确定它的反力和内力,而超静定结构仅凭静力平衡条件还不能确定全部反力和内力,必须建立附加方程式才能求解;3 当无外荷载作用时,超静定结构有产生内力的可能性超静定杆件结构的分类:超静定梁、刚架、桁架、拱以及组合结构。

二、超静定次数的确定1、超静定次数的概念超静定次数:结构中多余约束的数目2、方法去掉多余联系的常用方法如下:(1)去掉一根支杆或切断一根链杆,相当于去掉一个联系; (2)去掉一个单铰,相当于去掉二个约束;(3)切断一根弯杆或去掉一个固定支座,相当于去掉三个联系(4)将固定支座改成不动铰支座或将受弯杆切断改铰结,各相当去掉一个联系 3、举例例如图1所示的单跨静定梁,若去掉B 支座的支杆,代以多未知力B X ,则原梁变为静定的简支梁(即为基本结构),如图1(b )所示;若将固定端A 支座加一个单铰,代以多余未知力A X ,则原梁变为静定的简支梁(即为基本结构),如图1(c )所示,所有原结构一次超静定结构.同理,如图2所示的刚架,可将A 、B 两固定改成铰支座,代以多余力A X 、B X ,则得如图2(b )所示的静定三铰刚架;或者去掉铰C ,代以多余力1X 、2X ,则得如图2(c )所示的两各静定悬臂刚架;或者去掉铰C ,故原结构为二次超静定结构。

三、力法原理和力法方程1.力法的基本原理:将超静定结构转化为含多余力的静定结构 (一)一次超静定结构 (1)确定超静定次数:n=1次 (2)选基本结构⎩⎨⎧)几何不变体系(静定结构b a )((3)位移条件: 01=∆ (a) 根据叠加原理 :p1111∆+∆=∆ (b )11111x δ=∆ (c)(4)力法方程(一次):将(c )代入(b )式得:01111=∆+px δ…………(6-1)式中:--11δ系数(单位多余力1=X 作用时,B 点沿1x 方向的位移)--∆p1自由项(荷载单独作用时B 点沿1x 方向的位移)1x --基本未知量(多余未知力或多余力)系数(11δ) 和自由项(p1∆)都是基本结构(静定结构)在已知外力作用下的位移,可用上一章讲的单位荷载法或图乘法求得,代入(6-1)式后可求出多余未知力1x ,求得1x 之后其余的计算(支座反力和内力)同静定结构。

超静定结构的内力

超静定结构的内力
通过对大型机械设备的超静定结构进行优化 设计,提高设备的运行效率和安全性,降低 能耗和维护成本。
06 超静定结构的应用与发展趋势
CHAPTER
应用领域
桥梁工程
建筑工程
超静定结构在桥梁设计中应 用广泛,如斜拉桥、拱桥等, 能够提供更高的承载能力和
稳定性。
超静定结构在高层建筑、大 跨度结构等建筑工程中具有 重要应用,能够增强结构的
优化设计方法
数学模型法
有限元法
遗传算法
建立超静定结构的数学模型, 包括受力分析、位移分析、 稳定性分析等,以便进行优 化设计。
利用有限元分析软件对超静 定结构进行离散化分析,得 到结构的内力和位移等结果, 为优化设计提供依据。
采用遗传算法等智能优化算 法对超静定结构进行优化设 计,寻找最优解或近似最优 解。
超静定结构的内力
目录
CONTENTS
• 超静定结构的基本概念 • 超静定结构的内力分析方法 • 超静定结构的内力计算 • 超静定结构的稳定性分析 • 超静定结构的优化设计 • 超静定结构的应用与发展趋势
01 超静定结构的基本概念
CHAPTER
定义与特点
定义
超静定结构是指具有多余约束的结构, 即结构的自由度小于其独立刚体的自 由度。
抗震性能和承载能力。
机械工程
航空航天工程
超静定结构在机械设计中用 于制造高强度、高刚度的零 部件,提高机械设备的稳定
性和可靠性。
超静定结构在航空航天领域 的应用,如飞机机身、火箭 发动机壳体等,能够提供更
高的结构强度和稳定性。
发展趋势
优化设计
随着计算机技术的发展,超静定结构的优化设计成为研究 热点,旨在寻求更轻量化、高效的结构形式。

2-5-1静定和超静定问题

2-5-1静定和超静定问题

静定和超静定问题
静定和超静定问题
静定问题超静定问题
工程结构和机构都是由许多物体通过约束按一定方式连接而成的系统,称为物体系。

整个物体系平衡时,该物体系中的每个物体也必然处于平衡状态。

将物体系中所有单个物体的独立平衡方程数相加得到的物体系独立平衡方程的数目。

物体系独立平衡方程的数目等于未知量的总数,为静定问题。

物体系独立平衡方程的数目少于未知量的总数,为超静定问题。

有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
工程结构和机构都是由许多物体通过约束按一定方式连接而成的系统,称为物体系。

整个物体系平衡时,该物体系中的每个物体也必然处于平衡状态。

将物体系中所有单个物体的独立平衡方程数相加得到的物体系独立平衡方程的数目。

物体系独立平衡方程的数目等于未知量的总数,为静定问题。

物体系独立平衡方程的数目少于未知量的总数,为超静定问题。

有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

请从内力求解的角度阐述静定结构和超静定结构的区别
从内力求解的角度,静定结构和超静定结构的区别主要体现在内力的计算和平衡条件的满足上。

静定结构是指结构中的未知量(反力或内力)数量等于平衡方程的数量,可以通过静力学方法求解内力。

对于静定结构,我们可以通过平衡方程来求解反力,再根据结构的几何性质和约束条件来计算结构元件的内力。

静定结构的优点是计算简单,结果可靠,适用于形状简单,受力单一的结构。

而超静定结构是指结构中的未知量(反力或内力)数量多于平衡方程的数量,无法直接使用静力学方法求解内力。

超静定结构的计算需要引入附加的条件,如位移兼容条件、应力兼容条件或变形兼容条件等,来降低未知量的数量,从而求解内力。

超静定结构的优点是可以通过增加约束来提高结构的稳定性和承载能力,使得结构更加安全可靠。

缺点是计算相对复杂,对结构的约束条件要求较高。

总的来说,静定结构和超静定结构在内力求解的角度上的区别主要体现在未知量的数量和平衡条件的满足。

静定结构的未知量和平衡方程数量相等,可以直接使用静力学方法求解内力;而超静定结构的未知量数量多于平衡方程的数量,需要引入附加条件来求解内力。

相关文档
最新文档