小学奥数等差数列公式
奥数等差数列

例4、1+2+3+4+5+6+…+97+98+99+100=?
例5、求100以内所有被5除余10的自然数的和.
例6、小王和小胡两个人赛跑;限定时间为10秒;谁跑的距离长谁就获胜.小王第一秒跑1米;以后每秒都比以前一秒多跑0.1米;小胡自始至终每秒跑1.5米;谁能取胜?
(10)4;11;18;25;( );39;46;
2.一串数按下面规律排列:
1;3;5;2;4;6;3;5;7;4;6;8;5;7;9;…
从第一个数算起;前100个数的和是多少?
3.有一串黑白相间的珠子(如下图);第100个黑珠前面一共有多少个白珠?
4.在平面中任意作100条直线;这些直线最多能形成多少个交点?
即数列2;4;8;16;32;64;… ;1024;2048的和是4094.
仔细阅读上面的求和方法;然后利用这种方法求下面数列的和.
1;3;9;27;81;243;…;177147;531441.
10.求下面数字方阵中所有数的;4;…99;100;101
3;4;5;…;100;101;102
……
100,101,102, …197,198,199
第八讲 找规律
你能找出下面各数列暴烈的规律吗?请在括号内填上合适的数》
(1)8;15;22;( );36;…;
(6)2;5;11;20;32;( );65;86.
(7)1;3;2;4;3;5;( );6;5.
(8)1;4;9;16;25;( );49;64.
1.9个人9天共读书1620页;平均1个人1天共读书( )页;照这样计算;5个同学5天读书( )页.
小学奥数 等差数列的认识与公式运用 精选例题练习习题(含知识点拨)

本讲知识点属于计算板块的部分,难度较三年级学到的该内容稍大,最突出一点就是把公式用字母表示。
要求学生熟记等差数列三个公式,并在公式中找出对应的各个量进行计算。
一、等差数列的定义⑴ 先介绍一下一些定义和表示方法定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、 从第二项起,每一项比前一项大3 ,递增数列100、95、90、85、80、 从第二项起,每一项比前一项小5 ,递减数列⑵ 首项:一个数列的第一项,通常用1a 表示末项:一个数列的最后一项,通常用n a 表示,它也可表示数列的第n 项。
项数:一个数列全部项的个数,通常用n 来表示;公差:等差数列每两项之间固定不变的差,通常用d 来表示; 和 :一个数列的前n 项的和,常用n S 来表示 .二、等差数列的相关公式(1)三个重要的公式① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯() 递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯() 回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >). 找项数还有一种配组的方法,其中运用的思想我们是常常用到的.譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2知识点拨教学目标等差数列的认识与公式运用对于这个公式的得到可以从两个方面入手: (思路1) 1239899100++++++ 11002993985051=++++++++共50个101()()()()101505050=⨯= (思路2)这道题目,还可以这样理解: 23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即, 和 (1001)1002101505050=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(), 题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯;② 65636153116533233331089++++++=+⨯÷=⨯=(), 题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.模块一、等差数列基本概念及公式的简单应用等差数列的基本认识【例 1】 下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由。
小学奥数培优等差数列含答案

小学奥数培优等差数列含答案第四讲等差数列(一)问题解决方法若干个数排成一列,称为数列。
数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项,数列中数的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
【引文】:等差序列:3,6,9,。
,96.这是一个序列,第一项为3,最后一项为96,项目数为32,公差为3。
计算等差数列的相关公式:(1)通用术语公式:哪个术语=第一项+(术语数量-1)×公差(2)项目数量公式:项目数量=(最后一项-第一项)÷公差+1(3)总和公式:总和=(第一项+最后一项)×项目数量÷2注:在等差数列中,如果已知首项、末项、公差,求总和时,应先求出项数,然后再利用等差分序列的求和公式。
例题1有一个数列:4、7、10、13、…、25,这个数列共有多少项[提示]仔细观察后,我们可以发现后一项与相邻前一项之间的差值为3,因此这是一个以4为第一项、公差为3的等差序列,可以根据等差序列的项数公式进行求解。
解决方案:根据算术顺序的项目编号公式:项目编号=(最后一项-第一项)÷公差+1,项目编号=(25-4)÷3+1=8,因此这个数列共有8项。
引申1.有一个顺序:2,6,10,14,。
,106.这个序列中有多少项?。
答:这个数列共有27项2.有一个系列:5,8,11,。
,92,95,98. 这个系列有多少个项目?答:这个数列共有19项3.在算术序列中,第一项=1,最后一项=57,公差=2。
这个算术序列中有多少项?答:这个算术顺序有29项。
例题2有一等差数列:2,7,12,17,…,这个等差数列的第100项是多少?提示:仔细观察后,可以发现后一项和相邻前一项之间的差值等于5,因此这是一个等差序列,第一项为2,公差为5。
可根据等差序列的通用项公式求解:根据等差序列的通用项公式:哪个项=第一项+(项数-1)×公差,可用,第100项=2+(1oo-1)×5=497,所以这个等差数列的第100项是497。
小学奥数:等差数列计算题.专项练习及答案解析

等差数列的相关公式(1)三个重要的公式 ① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯()递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯()回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >).找项数还有一种配组的方法,其中运用的思想我们是常常用到的.譬如:找找下面数列的项数:4、7、10、13、L 、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、L 、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2对于这个公式的得到可以从两个方面入手:(思路1) 1239899100++++++L11002993985051=++++++++L 1444444442444444443共50个101()()()()101505050=⨯= (思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++LLL 和=1+和倍和即,和 (1001)1002101505050=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=L (),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯;知识点拨等差数列计算题②65636153116533233331089L(),++++++=+⨯÷=⨯=题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.例题精讲【例 1】用等差数列的求和公式会计算下面各题吗?⑴3456767778+++++++=L⑵13578799L++++++=⑶471013404346L+++++++=【考点】等差数列计算题【难度】2星【题型】计算【解析】⑴根据例1的结果知:算式中的等差数列一共有76项,所以:L()+++++++=+⨯÷=34567677783787623078⑵算式中的等差数列一共有50项,所以:13578799(199)5022500L++++++=+⨯÷=⑶算式中的等差数列一共有15项,所以:L()471013404346446152375+++++++=+⨯÷=【答案】⑴3078⑵2500⑶375【巩固】1+2+……+8+9+10+9+8+……+2+1=_____。
等差数列(小数数学 五年级奥数)

等差数列知识与方法:像(1)1,2,3,4,5,…;(2)10,20,30,40,50,…从第2项起,每一项与它前一项的差等于同一个常数的数列,叫做等差数列。
这个常数叫做等差数列的公差,通常用字母d表示。
在等差数列a1,a2,a3,…a n中,它的公差是d,那么a2=a1+da3=a2+d=(a1+d)+d=a1+2da4=a3+d=(a1+2d)+d=a1+3d…a n=a1+(n-1)×d(等差数列的通项公式)由此可见,等差数列从第2项起,每一项都等于第一项加上公差的若干倍,这个倍数等于这项的项数减1的差,利用它可以求出等差数列的任何一项。
例题1:求等差数列3,8,13,18......的第38项和第69项。
练习1:求等差数列1,4,7,10,13.....的第20项和第80项.练习2:超市工作人员在商品上依次编号,分别为4,8,12,16......,请问第34个商品上标注的是什么数字?第58个标注的是什么数字?例题2:36个小学生排成一排玩报数游戏,后一个同学报的数总比前一个同学多报8,已知最后一个同学报的数是286,第一个同学报的数是几?练习1:仓库里有一叠被编上号的书,共40本,已知每下面一本书比上面一本书的号码多5,最后一本书的编号是225,请问第一本书的编号是多少?练习2:幼儿园给小朋友们发玩具,共32个小朋友,每人一个,每个玩具上都有编号,已知最后一个小朋友玩具编号是98,每一个玩具的编号比后一个玩具的编号少3,问第一个小朋友上玩具编号是多少?例题3:等差数列4,12,20......,中的580是第几项?练习1:等差数列3,9,15,21.....中381是第几项?练习2:糖果生产商为机器编号,依次为7,13,19,25......。
问编号为433的机器是第几个?例题4:一批货箱上面的标号是按等差数列排列的。
第1项是3.6,第5项是12,求它的第2项.练习1:有一个等差数列的第1项是2.4,第7项是26.4,求它的第5项.练习2:有一排用等差数列编码的彩色小旗,第1面小旗上的号码为3.7,第8面小旗上的号码为38.7。
1小学奥数等差数列基础知识(已整理)

1小学奥数等差数列基础知识(已整理)小学奥数等差数列基础知识1、数列定义:(1) 1,2,3,4,5,6,7,8,…(等差)(2) 2,4,6,8,10,12,14,16,…(等差)(3) 1,4,9,16,25,36,49,…(非等差)若干个数排成一列,像这样一串数,称为数列。
以此类推,数列中的每一个数称为一项,其中第一个数称为首项,第二个数叫做第二项最后一个数叫做这个数列的末项,数列中数的个数称为项数,如:2,4,6,8,,1002、等差数列:从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列。
我们将这个差称为公差例如:等差数列:3、6、9……96,这是一个首项为3,末项为96,项数为32,公差为3的数列。
3、计算等差数列的相关公式:(1)末项公式:第几项(末项)=首项+(项数-1)×公差(2)项数公式:项数=(末项-首项)÷公差+1(3)求和公式:总和=(首项+末项)×项数÷2在等差数列中,如果已知首项、末项、公差。
求总和时,应先求出项数,然后再利用等差数列求和公式求和。
例:求等差数列3,5,7,的第10项,第100项,并求出前100项的和。
解:我们观察这个一个等差数列,已知:首项=3,公差=2,所以由通项公式,得到第10项:第几项=首项+(项数-1)×公差第10项=3+(10-1)×2=21第100项:第几项=首项+(项数-1)×公差第10项=3+(100-1)×2=201前100项的和:总和=(首项+末项)×项数÷2前100项的和=3+5+7+ 201=(3+201)?100÷2=10200.练习1:1、6+7+8+9+……+74+75=(2835)2、2+6+10+14+……+122+126=(2112)3、已知数列2、5、8、11、14……,47应该是其中的第几项?(16)项数=(末项-首项)÷公差+116=(47-2)÷3+14、有一个数列:6、10、14、18、22……,这个数列前100项的和是多少?(20400)第几项(末项)=首项+(项数-1)×公差总和=(首项+末项)×项数÷25、在等差数列1、5、9、13、17……401中,401是第几项(101)?第50项是多少?(197)项数=(末项-首项)÷公差+1 第几项(末项)=首项+(项数-1)×公差6、1+2+3+4+……+2007+2008=总和=(首项+末项)×项数÷2(1+2008)×2008÷2=20170367、(2+4+6+……+2000)-(1+3+5+……+1999)=总和=(首项+末项)×项数÷2【(2+2000)×1000÷2】-【(1+1999)×1000÷2】=1001000-1000000=1000方法二:(2-1)+(4-3)+……+(2000-1999)=10008、1+2-3+4+5-6+7+8-9+……+58+59-60=总和=(首项+末项)×项数÷2(1+2+……+60)-(3+6+……+60)=5709、有从小到大排列的一列数,共有100项,末项为2003,公差为3,求这个数列的和。
四年级奥数等差数列和等比数列

四年级奥数等差数列和等比数列
简介
本文将介绍四年级奥数中的等差数列和等比数列概念及其求和公式。
等差数列
等差数列是指一个数列中的每一项与它的前一项之差都相等。
例如,2、4、6、8、10 就是一个等差数列,其中公差为2。
公式
对于等差数列,可以使用以下公式来求前n项和:
$$S_n = \frac{n}{2} (a_1 + a_n)$$
其中,$S_n$表示前n项的和,$a_1$表示数列的首项,
$a_n$表示数列的第n项。
等比数列
等比数列是指一个数列中的每一项与它的前一项之比都相等。
例如,2、6、18、54、162 就是一个等比数列,其中公比为3。
公式
对于等比数列,可以使用以下公式来求前n项和:
$$S_n = \frac{a_1(1-q^n)}{1-q}$$
其中,$S_n$表示前n项的和,$a_1$表示数列的首项,$q$表示公比,$n$表示项数。
总结
等差数列和等比数列是四年级奥数中常见的数列类型。
通过掌握它们的概念和求和公式,可以帮助学生更好地理解数列的特点和规律,并能应用到实际问题中。
以上是对四年级奥数中的等差数列和等比数列的简要介绍。
希望本文能够对大家有所帮助。
小学奥数《等差数列公式》及其练习

小学奥数《等差数列公式》及其练习等差数列练习知识点1、数列定义:若干个数排成一列,像这样一串数,称为数列。
数列中的每一个数称为一项,其中第一个数称为首项(我们将用 1a 来表示),第二个数叫做第二项ΛΛ以此类推,最后一个数叫做这个数列的末项(我们将用n a 来表示),数列中数的个数称为项数,我们将用 n 来表示。
如:2,4,6,8,Λ,1002、等差数列:从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列。
我们将这个差称为公差(我们用d 来表示),即:1122312----=-==-=-=n n n n a a a a a a a a d Λ例如:等差数列:3、6、9……96,这是一个首项为3,末项为96,项数为32,公差为3的数列。
(省略号表示什么)练习1:试举出一个等差数列,并指出首项、末项、项数和公差。
3、计算等差数列的相关公式:(1)通项公式:第几项=首项+(项数-1)×公差即:d n a a n ?-+=)1(1(2)项数公式:项数=(末项-首项)÷公差+1即:1)(1+÷-=d a a n n(3)求和公式:总和=(首项+末项)×项数÷2即:()21321÷?+=+++n a a a a a a n n Λ在等差数列中,如果已知首项、末项、公差。
求总和时,应先求出项数,然后再利用等差数列求和公式求和。
例1:求等差数列3,5,7,Λ的第 10 项,第 100 项,并求出前100 项的和。
【解析】我们观察这个等差数列,可以知道首项1a =3,公差d=2,直接代入通项公式,即可求得21293)110(110=?+=?-+=d a a ,2012993)1100(1100=?+=?-+=d a a . 同样的,我们知道了首项3,末项201以及项数100,利用等差数列求和公式即可求和:3+5+7+Λ201=(3+201)?100÷2=10200.解:由已知首项 1a =3,公差d=2,所以由通项公式 d n a a n ?-+=)1(1,得到21293)110(110=?+=?-+=d a a2012993)1100(1100=?+=?-+=d a a 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数等差数列公式
公式1:求和公式:等差数列求和=(首项+末项)×项数÷2,即:Sn=(a1+an)×n÷2;
公式2:通项公式:第n项=首项+(n-1)×公差,即:
an=a1+(n-1)×d;
公式3:项数公式:项数=(末项-首项)÷公差+1,即n=(an-a1)÷d+1。
上述三个公式必须掌握
此外,还有一个中项定理,也掌握:
中项定理:对于作意一个项数为奇数的等差数列来说,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。
例1:建筑工地有一批砖,码成如右图形状,最上层两块砖,第2层6块砖,第3层10块砖…,依次每层都比其上面一层多4块砖,已知最下层2106块砖,问中间一层多少块砖?这堆砖共有多少块?
解:如果我们把每层砖的块数依次记下来,2,6,10,14,…容易知道,这是一个等差数列.
方法1:
a1=2,d=4,利用公式求出an=2106,
则:n=(an-a1)÷d+1=527
这堆砖共有则中间一项为a264=a1+(264-1)×4=1054.
方法2:(a1+an)×n÷2=(2+2106)×527÷2=555458(块).
则中间一项为(a1+an)÷2=1054
a1=2,d=4,an=2106,
这堆砖共有1054×527=555458(块).
此题利用中项定理和等差数列公式均可解!
例2:求从1到2000的自然数中,所有偶数之和与所有奇数之和的差.
解:根据题意可列出算式:
(2+4+6+8+...+2000)-(1+3+5+ (1999)
解法1:能够看出,2,4,6,…,2000是一个公差为2的等差
数列,1,3,5,…,1999也是一个公差为2的等差数列,且项数均为1000,所以:
原式=(2+2000)×1000÷2-(1+1999)×1000÷2
=1000.
解法2:注意到这两个等差数列的项数相等,公差相等,且对应
项差1,所以1000项就差了1000个1,即
原式=1000×1=1000.
例3:100个连续自然数(按从小到大的顺序排列)的和是8450,取出其中第1个,第3个…第99个,再把剩下的50个数相加,得多少?
解:
方法1:要求和,我们能够先把这50个数算出来.
100个连续自然数构成等差数列,且和为8450,则:
由题可知:(首项+末项)×100÷2=8450,求出:(首项+末项)=169。
又因为末项比首项大99,所以,末项=首项+99,根据(首项+末项)=169得到:
首项+末项+99=169,解出:首项=35.
所以,剩下的50个数为:36,38,40,42,44,46…134.这些数构成等差数列,和为(36+134)×50÷2=4250.
方法2:我们考虑这100个自然数分成的两个数列,这两个数列有相同的公差,相同的项数,且剩下的数组成的数列比取走的数组成的数列的相对应项总大1,所以,剩下的数的总和比取走的数的总和大50,又因为它们相加的和为8450.所以:
剩下的数总和+取走的数的总和=8450;
剩下的数总和-取走的数的总和=50。
求出:剩下的数的总和为(8450+50)÷2=4250.
(利用两数和已知,两数差已知,求两数)
附加题:x+y+z=1993有多少组正整数解.
朋友们,此题留给大家解一下,答案见最下面。
答案:l+2+3+…+1991=1983036。