数模(DA)转换电路及应用
模拟量和数字量的转换—D_A转换器(电子技术课件)

2 LSB
FSR
1
2
≤ 0.05%,即 ×
1
2 −1
≤ 0.05% ⇒
1
由于10位D/A转换器分辨率为 10
2 −1
的D/A转换器。
=
1
2 −1
1
1023
≤ 0.1%。
= 0.097%,故应取十位或十位以上
总结
DAC主要技术指标: VLSB 、 VFSR 、分辨率、转换速度、
转换精度
倒T形电阻网络D/A转换器
位数比较多时问题更突出。难以在极为宽广的阻值范围内保证每个电阻
都有很高的精度,对制作集成电路不利且影响转换器精度。
总结
权电阻网络DAC:结构比较简单,所用电阻元件数很少。
但各个电阻阻值相差较大,尤其在输入信号位数比较多时
问题更突出,影响转换器精度。
开关树型DAC
分压器型
双积分型ADC
间接ADC
权电容网络DAC
V-F变换型ADC
总结
1. DAC:数模转换器
ADC:模数转换器
2. DAC的分类、ADC的分类
D/A转换器的应用
以AD7520为例,介绍D/A转换器的应用。
AD7520是一种10位CMOS型的D/A转换集成
芯片,与微处理器完全兼容。该芯片以接口
1
对于n位D/A转换器,分辨率也可表示为:分辨率= 。如10位D/A转换器
2 −1
1
的分辨率为 10
2 −1
=
1
1023
≈ 0.001。DAC输入位数n越多,电路的分辨率越高。
分辨率体现D/A转换器对输入微小量变化的敏感程度。
4. 转换速度:指从输入数字量到转换成稳定的模拟输出电压所需要的时间。
数电电子第7章 数模(DA)和模数(AD)转换

28
D7
27
D1
21
D0
20 )
VREF R 210
9
i0
Di
2i
VREF R 210
D
模拟输出电流(流入运算放大 器虚地)与10位二进制数的数 值(即数字量)成正比,实现 了数字/模拟电流的转换
式中D为输入二进制数的数值。
接入运算放大器后,则可 将数字量转换为模拟电压,运放 的输出电压:
(二)集成D/A转换器的结构及分类
各种类型的集成DAC器件多由参考电压源,电阻网络和电子开关三个 基本部分组成。
按电阻网络的结构不同,可将DAC分成T形R-2R电阻网络DAC、倒T 形R-2R电阻网络DAC及权电阻求和网络DAC等几类。由于权电阻求和网 络中电阻值离散性太大,精度不易提高,因此在集成DAC中很少采用。T 形R-2R电阻网络DAC、倒T形R-2R电阻网络DAC中只有两种阻值的电阻, 因此最适用于集成工艺,集成DAC普遍采用这种电路结构。倒T形R-2R电 阻网络DAC在集成芯片中比T形R-2R网络DAC应用更广泛。
(二)集成A/D转换器的主要参数 1.分辨率 其含义与DAC的分辨率一样,通 常也可用位数来表示,位数越多,分辨率(有时 也称分辨力)也越高。
2.量化编码电路
用数字量来表示采样信号时,必须把它转化成某个最 小数量单位的整数倍,这个转化过程叫量化,所规定的最 小数量单位叫作量化单位,用S表示。
将量化的数值用二进制代码表示,称为编码。这个二 进制代码便是A/D转换器的输出信号。
量化的方法一般有两种形式:
1)舍尾取整法
2)四舍五入法
用舍尾取整法量化时,最大量化误差为1S,用四舍五 入法量化时,最大量化误差为S/2。所以,绝大多数ADC 集成电路均采用四舍五入量化方式。
008-数模转换(DA)工作原理及应用

欢迎进入云龙电子科技大讲堂
如有不清楚的地方,请登交流
谢谢!
欢迎进入云龙电子科技大讲堂
欢迎进入云龙电子科技大讲堂
D/A转换器及其与单片机接口
二.T型电阻网络D/A转换器 :
I VREF
I7 I7 R I6 2R 1 0 I6 R I5 2R 1 0 I5 R I4 2R 1 0 I4 R I3 2R 1 0 I3 R I2 2R 1 0 I2 R I1 2R 1 0 I1 R I0 2R 1 0 I0
分辨率8位; 电流建立时间1μ S; 数据输入可采用双缓冲、单缓冲或直通方式; 输出电流线性度可在满量程下调节; 逻辑电平输入与TTL电平兼容; 单一电源供电(+5V~+15V); 低功耗,20mW。
欢迎进入云龙电子科技大讲堂
DAC0832内部结构及引脚
1、单缓冲工作方式 两个寄存器之一始终处于直通,即WR1=0 或WR2=0,另一个寄存器处于受控状态。
P2.7
CS XFER DI0 DI7
DAC0832
80Байду номын сангаас51
P0 WR VSS
VCC ILE Rfb IOUT1 IOUT2
+5V 1kΩ 1MΩ
WR1 WR2 DGND
+
VO
欢迎进入云龙电子科技大讲堂
欢迎进入云龙电子科技大讲堂
4、建立时间 建立时间是将一个数字量转换为稳定模拟信号所需的时间。 是描述D/A转换速率的一个动态指标。 电流输出型DAC的建立时间短。电压输出型DAC的建立时 间主要决定于运算放大器的响应时间。根据建立时间的长短, 可以将DAC分成超高速(<1μS)、高速(10~1μS)、 中速(100~10μS)、低速(≥100μS)几档。
数字电子数模(DA)和模数(AD)转换

)
d1(
I 8
)
d0
(I 16
)
VO
Ri
R VREF R
1 24
(d3 23
d2 22
d1 21
d0
20 )
VREF 24
D
《数字电子技术基础》第五版
VO
Ri
R VREF R
1 24
(d3 23
d2
22
d1 21
d0 20
)
VREF 24
D
对n位输入时,应有
VO
Ri
R VREF R
1 2n
11.2 D/A转换器
《数字电子技术基础》第五版
D 111101…
D/A
A(电压 或 电流)
?
《数字电子技术基础》第五版
11.2.1 权电阻网络D/A转换器
一、电路结构和工作原理
求和放大器
权电阻网络
模拟开关
负反馈放大器: 设A为理想放大器,即AV , iI 0, RO 0 当接成深度负反馈时,必有V V 0,且iI 0
《数字电子技术基础》第五版
求和放大器
权电阻网络
模拟开关
权电流:Ii VREF Ri I0 VREF 23 R I1 VREF 22 R I2 VREF 21 R I3 VREF 20 R
S3 ~ S0受数字d3 ~ d0控制
di 0时,Ii 0
di
1时,I
流向
i
点
求和放大器《数字电子技术基础》第五版
补码输入
D2 D1 D0
0
1
1
0
1
0
0
0
1
0
0
0
电路中的AD转换与DA转换

电路中的AD转换与DA转换在当今信息时代,电子设备已经渗透到我们生活的方方面面。
而这些电子设备的运作离不开AD转换(模数转换)和DA转换(数模转换)这两个关键环节。
本文将介绍AD转换和DA转换的原理、应用以及相关技术发展。
一、AD转换AD转换是模拟信号转换为数字信号的过程。
在电子设备中,传感器等设备输出的信号多为模拟信号,需要通过AD转换将其转换成数字信号,才能由电子器件进行处理和存储。
AD转换器通常由采样器、量化器和编码器组成。
采样器的作用是将模拟信号在一定的时间间隔内取样,量化器将取样的模拟信号分成有限个离散值进行量化,编码器将量化后的离散值转换成二进制数字信号。
通过这一过程,AD转换器能够将连续变化的模拟信号转换为离散的数字信号。
AD转换器广泛应用于各个领域,如音频、视频、电力系统等。
在音频领域,AD转换器用于将声音等模拟信号转换为数字信号,实现录音、播放等功能。
在电力系统中,AD转换器用于电能计量、监测等方面。
二、DA转换DA转换是数字信号转换为模拟信号的过程。
数字信号由计算机或其他数字系统处理和存储,而大部分外围设备如音箱、显示器等则需要模拟信号进行驱动。
DA转换器通常由数字信号输入端和模拟输出端组成。
数字信号输入端接收来自计算机或其他数字系统的数字信号,将数字信号按照一定的波形进行放大、滤波等处理后,经过模拟输出端输出为模拟信号。
这样,数字系统生成的数字信号便可以控制外围设备的模拟输出。
DA转换器广泛应用于音频设备、显示设备等领域。
在音频设备中,DA转换器用于将计算机中存储的音频文件转换为模拟信号,通过音箱输出高质量的音乐。
在显示设备中,DA转换器则将计算机生成的数字图像信号转换为模拟信号,驱动显示器显示各种图像。
三、技术发展随着科技的不断进步,AD转换与DA转换技术也得到了快速的发展与创新。
目前,高速、高精度、低功耗、小型化是AD转换与DA转换技术的发展方向。
在AD转换技术方面,新型的Delta-Sigma调制技术、超大规模集成电路技术等被广泛应用,提高了AD转换器的精度和信噪比。
da转换的原理及应用

DA转换的原理及应用一、DA转换的原理DA转换(Digital-to-Analog Conversion),即数字信号到模拟信号的转换。
它是将数字量转换为连续的模拟信号的过程,常见的应用场景包括音频文件播放、图像处理和通信系统等。
以下是DA转换的原理。
1. 数字信号数字信号是一种离散的信号,它由一系列二进制位组成。
在计算机系统中,数字信号由0和1组成,表示不同的离散状态。
这些离散的数字值无法直接用于模拟信号的表示和处理。
2. 数模转换数字信号需要经过数模转换(Digital-to-Analog Conversion)才能转换为模拟信号。
数模转换器是一个电路或设备,它将数字信号转换为模拟信号。
数模转换器根据输入的数字信号值,在其输出上生成相应的模拟信号。
3. DA转换器的工作原理DA转换器(Digital-to-Analog converter)是一种常用的数模转换器。
它将离散的数字值转换为连续的模拟信号,使得模拟信号能够被连续的方式表示和处理。
常见的DA转换器使用的是二进制加权电阻网络原理。
它由一组电阻和开关组成,每个开关对应一个二进制位。
根据输入的二进制码,相应的开关打开或关闭,将电阻连接到电路中或断开连接。
通过调整每个开关的状态,可以精确地控制输出的模拟信号。
二、DA转换的应用DA转换在各个领域都具有广泛的应用。
以下是一些常见的应用场景。
1. 音频文件播放在音频文件播放过程中,需要将数字音频信号转换为模拟音频信号,以便于扬声器或耳机等设备的输出。
DA转换器可以将音频文件中的数字音频信号转换为模拟音频信号,使得用户能够听到清晰的音乐或声音。
2. 图像处理图像处理过程中,需要将数字图像信号转换为模拟图像信号。
DA转换器可以将数字图像信号转换为模拟图像信号,以便于显示器或打印机等设备的输出。
通过DA转换器的应用,可以实现高质量的图像显示和打印。
3. 通信系统在通信系统中,数字信号需要经过DA转换器转换为模拟信号,以便于传输和接收。
DA转换器及其应用

…
输入 d n -1
D /A 输出
二、D/A转换器的分类 转换器的分类
根据DAC内部结构不同 内部结构不同 根据 根据输出结构的不同 电压输出型( 电压输出型(如 TLC5620) ) 电流输出型 (如 如 DAC0832)
权电阻网络型 “T”型电阻网 型电阻网 络型
1 3
5/14/2012
电路连接图
5/14/2012
例1:输出正锯齿波 用p1口 :输出正锯齿波,用 口
START: CLR A LOOP1:MOV P1 , A; : INC A SJMP LOOP1 END
输出负锯齿波 START: CLR A LOOP2:MOV P1 , A; : DEC A SJMP LOOP2 END
5/14/2012
电路连接图
5/14/2012
实现两路同步输出的程序如下: MOV DPTR,#0DFFFH MOV A,#data1 MOVX @DPTR,A ; MOV DPTR,#0BFFFH MOV A,#data2 , MOVX @DPTR,A ; MOV DPTR,#7FFFH MOVX @DPTR,A
5/14/2012
电路连接
5/14/2012
例2:单缓冲方式输出正锯齿波 :
START: CLR A MOV DPTR,#7FFFH LOOP1:MOVX @DPTR , A; : INC A SJMP LOOP1 END
5/14/2012
例3:单缓冲方式输出三角波 START: CLR A LOOP1:MOV DPTR,#7FFFH MOVX @DPTR , A INC A CJNE A,#00H, LOOP1 LOOP2: MOVX @DPTR , A DEC A CJNE A , #00H , LOOP2 SJMP START END
数字逻辑电路第10章数模(DA)和模数(AD)转换

+0V (再取1.25V项,此时5V+2.5V+1.25V>8.5V,则应去掉该项,
记为数字’0’)
+0.625V(再取0.625V项,此时5V+2.5V+0.625V<8.5V,则保留该项,
记为数字’1’)
≈8.125V(得到最后逼近结果) 总结上面的逐次逼近过程可知,从大到小逐次取出Vr的各分 项值,按照“大者去,小者留”的原则,直至得到最后 逼近结果,其数字表示为’1101’。
1)逐次逼近比较式ADC
上述逼近结果与Vx的误差为8.125V-8.5V=-0.375V。 显然,当Vx=(7.8125V~8.4375V)之间时,采用上面Vr 的4个分项逼近的结果相同,均为8.125V,其误差为 ΔVx=(-0.3125V~+0.3125V),最大误差限相当于Vr 最后一个分项的一半,即 1 V。
最终SAR的输出Q2Q1Q0=101,即为输入电压Ux的数字码,经 缓冲寄存器输出至译码电路,显示出十进制数5 V。
上述过程是在控制电路依次发出的节拍脉冲的作用下 完成的, 其工作波形如图7.7-11 所示。 现在A/D变换器一般都是用大规模集成电路制作的, 如ADC0809、 ADC0816、 AD7574等都是8位(二进制)逐次逼 近型A/D变换器, ADC1210是12位逐次比较型A/D 变换器.
1)逐次逼近比较式ADC
1 1 1 1 1 Vr Vr Vr Vr Vr n Vr 2 4 8 16 2 5V+2.5V+1.25V+0.625V+ + =10V
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角波: #include <reg51.h> #include <absacc.h> //定义绝对地址访问 #define uchar unsigned char #define DAC0832 XBYTE[0x7FFF] void main() { uchar i; while(1) { for (i=0;i<0xff;i++) {DAC0832=i;} for (i=0xff;i>0;i--) {DAC0832=i;} } }
数/模(D/A)转换电路及应用
D/A转换器的基本原理 倒T型电阻网络D/A转换器 权电流型D/A转换器 D/A转换器的输出方式 D/A转换器的主要技术指标 D/A转换器的应用举例
一. D/A转换器的基本原理
对于有权码,先将每位代码按其权的大小转换成相应的模拟量,然后相 加,即可得到与数字量成正比的总模拟量,从而实现数字/模拟转换。
A
+
vo
S0 I 16
S1 I 8
S2 I 4
S3 I 2
V REF
特点:用恒流源IREF, 速度高。
六. 集成DAC的组成
1、 仅集成电阻网络和模拟开关。(电流输出型)
2、 集成了电阻网络、模拟开关、参考电源和输出运算放 大器。(电压输出型) 3、 除上之外,还集成了外围接口电路 ①、带输入缓冲器或锁存器 ②、带输入数据分配器 ③、带输入串-并变换器 ④、带输入FIFO 4、 常用的DA转换技术:倒T型电阻网络D/A转换器(转 换速度快)和权电流型D/A转换器(转换精度高) 5、 常用的CMOS开关倒T型电阻网络D/A转换器的集成电 路有AD7520(10位),DAC1210(12位)及AK7546(16位 高精度)等;常用的权电流D/A转换器有AD1408、DAC0806、 DAC0808等
V = -15V EE
DAC0808 D/A转换器输出与输入的关系( 设VREF=10V)
例2: D/A转换器AD7520 AD7520是10位的D/A转换集成芯片,与微处理器完全兼容。该芯片以接口简 单、转换控制容易、通用性好、性能价格比高等特点得到广泛的应用。 该芯片只含倒T形电阻网络、电流开关和反馈电阻,不含运算放大器,输出 端为电流输出。 具体使用时需要外接集成运算放大器和基准电压源。
方波: #include <absacc.h> //定义绝对地址访问 #define uchar unsigned char #define DAC0832 XBYTE[0x7FFF] void delay(void); void main() { uchar i; while(1) { DAC0832=0; //输出低电平 delay(); //延时 DAC0832=0xff; //输出高电平 delay(); //延时 } } void delay() //延时函数 { uchar i; for (i=0;i<0xff;i++) {;} }
当引脚 WR1 WR2、 、 、 CS XFER 直接接地,ILE接电源,DAC0832 工作于直通方式,此时,8位输入寄存器和8位DAC寄存器都直接处于 导通状态,8位数字量到达DI0~DI7,就立即进行D/A转换,从输出端 得到转换的模拟量。 2).单缓冲方式: 当连接引脚 WR1、 WR2 、CS 、XFER,使得两个锁存器的一个处于 直通状态,另一个处于受控制状态,或者两个被控制同时导通, DAC0832就工作于单缓冲方式,例如下图就是一种单缓冲方式的连接 对于下图的单缓冲连接,只要数据DAC0832写入8位输入锁存器,就 立即开始转换,转换结果通过输出端输出。
D4 D5 D6 V = +5V CC 13 5 6 7 8 9 10 11 12 3 16 0.01μF 2 DAC0808 4 + A 5kΩ Rf 14 15 R1 5kΩ V REF 5kΩ
vO
模拟量输出
(MS B)D7 数字量输入
7
vO
R f VREF 28 R1
10 7 Di 2i 8 Di 2i 2 i 0 i 0
基准参考 电压
R-2R倒T形电 阻解码网络
图2 倒T型电阻网络DAC原理图
分析计算:
基准电流: I=VREF/R,
流过各开关支路(从左到右)的电流分别为 I/2、I/4、I/8、I/16。
VREF D0 D1 D2 D3 VREF 3 ( 4 3 2 1) 4 ( Di 2i ) 总电流: i R 2 2 2 2 2 R i 0
图1 n位D/A转换器方框图
D0 D1
. . .
Dn-1 输入
D/A转换器
vo
输出
D/A转换器的种类很多,主要有: 权电阻网络DAC T形电阻网络DAC 倒T形电阻网络DAC 权电流DAC
二. 权电阻网络D/A转换器
特点:电阻取值太多。
练习1:对4位DAC,若输入d3 d2 d1 d0 =0110, VREF=10V, 则输出vO =-10*(6)/16= - 3.75 (V) 练习2:对8位DAC,若输入D=10011011, VREF =-10V,
则输出vO =-(-10*(155)/256= 6.046875 (V)
三. T型电阻网络D/A转换器
特点:流过开关的电流变化较大。
电流相加型
四. 倒T形电阻网络D/A转换器(4位) 1. 电路组成 双向模拟开关 电路由解码网络、模拟开关、求和放大器和基准电源组成。 D=1时接运放 求和集成运算 D=0时接地 放大器
3. 温度系数——在输入一定时,输出模拟电压随温度变化产生的变化量。一
般用满刻度输出条件下温度每升高1℃,输出电压变化的百分数来表示。
八. D/A转换器应用举例
常用的集成DAC有AD7520、DAC0832、DAC0808、DAC1230、MC1408、 AD7524等。
例1:DAC0808是8位权电流型 D/A转换器,其中D0~D7是 (LSB) 0 D 数字量输入端。 D1 使用时,需要外接运算放大器 D2 和产生基准电流用的电阻R1。 D3 当VREF=10V、 R1=5kΩ 、 Rf=5kΩ 时, 输出电压为:
+5V VCC ILE CS XFER WR1 WR2 DI0~DI7 DGND AGND
-5V VREF Rfb IOUT1 IOUT2 A + -
P2.7 P2.6 WR
Vout
P0.0~P0.7 8051
-
4.DAC0832的应用 D/A转换器在实际中经常作为波形发生器使用,通过它可以产生各 种各样的波形。它的基本原理如下:利用D/A转换器输出模拟量与输 入数字量成正比这一特点,通过程序控制CPU向D/A转换器送出随时 间呈一定规律变化的数字,则D/A转换器输出端就可以输出随时间按 一定规律变化的波形。
+5V
VCC ILE CS WR1 DI0~DI7 WR2 XFER DGND AGND
-5V
VREF Rfb A + -
P2.7 WR P0.0~P0.7 8051
IOUT1 IOUT2
Vout
3).双缓冲方式: 当8位输入锁存器和8位DAC寄存器分开控制导通时,DAC0832工作于 双缓冲方式,双缓冲方式时单片机对DAC0832的操作分两步,第一步, 使8位输入锁存器导通,将8位数字量写入8位输入锁存器中;第二步, 使8位DAC寄存器导通,8位数字量从8位输入锁存器送入8位DAC寄存 器。第二步只使DAC寄存器导通,在数据输入端写入的数据无意义。 下图就是一种双缓冲方式的连接。
编程:从DAC0832输出端分别产生锯齿波、三角波和方波。 根据单缓冲方式图的连接,DAC0832的口地址为7FFFH。
C语言编程: 锯齿波:
#include <reg51.h>
#include <absacc.h> //定义绝对地址访问 #define uchar unsigned char//定义uchar代表无符号字符型 #define DAC0832 XBYTE[0x7FFF] void main() { uchar i; while(1) { for (i=0;i<0xff;i++) {DAC0832=i;} } }
例3:MCS-51与8位DAC0832的接口 1、内部结构图 DAC0832是一种电流型D/A转换器,数字输入端具有双重缓冲功能 ,可以双缓冲、单缓冲或直通方式输入,它的内部结构如图。
2.DAC0832的引脚
DAC0832(DAC0830、DAC0831管脚完全兼容 )有20引脚,采用双列直插
CS WR1 AGND DI3 DI2 DI2 DI0 VREF RFB DGND 1 2 3 4 5 6 7 8 9 10
XFER :数据传送控制信号输入线,低电平有效。
IOUT1:模拟电流输出线1。它是数字量输入为“1”的模拟电流输出端。 IOUT2:模拟电流输出线2,它是数字量输入为“0”的模拟电流输出端, 采用单极性输出时,IOUT2常常接地。 Rfb:片内反馈电阻引出线,反馈电阻制作在芯片内部,用作外接的 运算放大器的反馈电阻。 VREF:基准电压输入线。电压范围为-10V~+10V。 VCC:工作电源输入端,可接+5V~+15V电源。 AGND:模拟地。 DGND:数字地。 3.DAC0832的工作方式 DAC0832有三种方式:直通方式、单缓冲方式和双缓冲方式。 1).直通方式:
七. D/A转换器的主要技术指标
1.转换精度
(1)分辨率——D/A转换器模拟输出电压可能被分离的等级数。
分辨率
(2)转换误差——
最小输出电压 VLSB 1 n 满量程输出电压 VREF 2 1
失调误差