抛物线知识点归纳

合集下载

完整版)抛物线知识点归纳总结

完整版)抛物线知识点归纳总结

完整版)抛物线知识点归纳总结抛物线是一种经典的二次函数图像,具有许多重要的特点和性质。

以下是对抛物线知识点的详细总结。

1.定义:抛物线是平面上一点P到定点F的距离等于点P到定直线上一点的距离的轨迹。

2.构成:抛物线由平面上的点集组成,由对称轴与焦点决定。

3. 表达式:一般形式的抛物线方程是y=ax^2 + bx + c,其中a、b、c是实数且a不等于0。

4.开口方向:抛物线开口方向由a的正负决定,如果a大于0,抛物线开口向上;如果a小于0,抛物线开口向下。

5.对称轴:抛物线的对称轴是一条与抛物线的开口方向垂直的直线,由方程x=-b/2a给出。

6. 焦点:抛物线的焦点是与抛物线上任意一点的距离相等的定点F,其坐标为((-b/2a), (4ac-b^2)/4a)。

7.直径:抛物线的直径是通过焦点且与抛物线相交于两点的直线。

8.非退化抛物线:当a不等于0时,抛物线是非退化的,并且它的对称轴是直线x=-b/2a。

9.顶点:抛物线的顶点是抛物线上最高或最低的点,它是通过对称轴的纵坐标最小(或最大)的点。

10.切线:抛物线上任意一点的切线是通过该点并且与抛物线仅有一个交点的直线。

11.弦:抛物线上的弦是通过抛物线上两个点并且与抛物线仅有两个交点的线段。

12. 与X轴交点:抛物线与X轴的交点可通过求解方程ax^2 + bx +c = 0得到。

13.与Y轴交点:抛物线与Y轴的交点是抛物线上当x=0时的点,即把x替换为0后求解方程得到。

14.对称性:抛物线具有关于对称轴对称的性质,即对称轴上的一点关于对称轴上的另一点的映射是自身。

15.焦点和直角三角形:抛物线上两点和焦点构成的三角形是直角三角形。

16.抛物线的图像:抛物线的图像是一个开口朝上或朝下的弧线,形状可以通过方程中的系数来确定。

17.抛物线的平移:抛物线可以通过平移来改变其位置,平移的方式是通过方程中的常数项来实现。

18.抛物线的拉伸/压缩:通过改变抛物线方程中的a的值,可以改变抛物线的宽度。

抛物线的知识点总结【通用5篇】

抛物线的知识点总结【通用5篇】

抛物线的知识点总结【通用5篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!抛物线的知识点总结【通用5篇】抛物线是高考数学的一个重要考点。

抛物线总结知识点

抛物线总结知识点

抛物线总结知识点一、抛物线的定义1、几何定义抛物线实际上是一个平面上的曲线,其特点是所有点到焦点的距离与直线上的点到焦点的距离相等。

在几何上,抛物线可以用一定的数学方法来绘制,比如几何学中的反射法则,就是一个通过抛物线的特性进行绘制的方法。

2、代数定义抛物线也可以用数学式子来表示,通常来说,一个一般形式的抛物线方程可以表示为:y=ax^2+bx+c。

其中a、b、c为常数,且a≠0。

这个方程就是抛物线的代数表示方法。

二、抛物线的性质1、对称性抛物线具有对称性,即其焦点与直线的对称轴关于抛物线是对称的。

也就是说,如果你在抛物线上选取一个点,并且在该点的正上方或是正下方做等距的另外一个点,那么这两个点与抛物线的焦点的距离是一样的。

2、焦点抛物线的焦点是抛物线中的一个重要点,所有在抛物线上的点到焦点的距离,是和这根线上的点到焦点的距离是相等的。

这也是抛物线对称性的基础。

3、直线抛物线的对称轴是一条直线,这条直线被称为抛物线的直线。

直线与抛物线的焦点以及对称轴是彼此有特殊的关系的,这样的直线通常是抛物线的对称轴。

4、距离性质抛物线上的任意一点到焦点的距离与该点到抛物线的对称轴的距离之间的关系。

通常,这个距离关系就是抛物线的形成依据之一。

三、抛物线的方程1、标准形式标准形式的抛物线通常以y=ax^2+bx+c的数学形式表示。

这种数学形式可以清楚的展现抛物线的双曲性。

2、顶点形式抛物线的顶点形式方程也是一种比较通用的表示方法。

顶点形式的抛物线方程是一种通过抛物线的顶点来表示其位置的方法。

其数学表达式通常为y=a(x-h)^2+k,其中(h,k)为抛物线的顶点坐标。

3、焦点形式焦点形式的抛物线方程则是基于抛物线的焦点和直线来展现其形状和位置的。

该类型的方程通常为x^2=4py,其中p为焦点的距离。

四、抛物线的几何意义1、抛物线的几何意义作为一条特殊的曲线,抛物线在实际中有着丰富的几何意义。

通过抛物线的特性和性质,我们可以从几何角度来认识抛物线。

抛物线知识点

抛物线知识点

抛物线知识点1、抛物线的定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.2、抛物线的几何性质:标准方程22y px = ()0p > 22y px =- ()0p > 22x py = ()0p > 22x py =- ()0p >图形顶点()0,0 对称轴x 轴 y 轴 焦点,02p F ⎛⎫ ⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭ 0,2p F ⎛⎫ ⎪⎝⎭ 0,2p F ⎛⎫- ⎪⎝⎭ 准线方程2px =- 2p x = 2p y =- 2p y = 离心率1e = 范围 0x ≥ 0x ≤ 0y ≥ 0y ≤3.过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =. 4.焦半径公式:若点()00,x y P 在抛物线()220y px p =>上,焦点为F ,则02p F x P =+; 若点()00,x y P 在抛物线()220x py p =>上,焦点为F ,则02p F y P =+;例:斜率为1的直线l 经过抛物线y 2=4x 的焦点,与抛物线相交于点A 、B ,求线段A 、B 的长.分析:这是灵活运用抛物线定义的题目.基本思路是:把求弦长AB 转化为求A 、B 两点到准线距离的和.解:如图8-3-1,y 2=4x 的焦点为F (1,0),则l 的方程为y =x -1.由⎩⎨⎧+==142x y xy 消去y 得x 2-6x +1=0. 设A (x 1,y 1),B (x 2,y 2) 则x 1+x 2=6.又A 、B 两点到准线的距离为A ',B ',则 ()()()8262112121=+=++=+++='+'x x x x B B A A。

抛物线知识点归纳总结

抛物线知识点归纳总结


• 利用抛物线的对称性,简化体积计算过程
抛物线面积与体积问题的实际应用
抛物线面积与体积在几何问题中的应用
• 描述圆锥曲线、圆等几何图形的面积和体积问题
• 描述抛物线与椭圆、双曲线等二次曲线的面积和体积问题
抛物线面积与体积在物理问题中的应用
• 描述物体的抛物线运动轨迹的面积和体积问题
• 描述物体的抛物线形变问题的面积和体积问题
• 标准方程y = ax^2 + bx + c决定了抛物线图像的形状、
• 一般方程为Ax^2 + Bx + Cy + D = 0,其中A、B、C、
开口方向、顶点坐标等
D为常数,A≠0
• 根据抛物线图像的特征,可以反推出标准方程
• 一般方程可以转化为标准方程,进而确定抛物线图像
03
抛物线的方程求解与应用
kx
抛物线的切线绘制方法与技巧
抛物线的切线绘制方法
抛物线的切线绘制技巧
• 确定抛物线上需要绘制切线的点
• 利用抛物线的对称性,简化切线绘制过程
• 利用切线方程,计算切线的斜率和截距
• 结合图像,判断抛物线的形状和开口方向,辅助切线绘
• 绘制切线,使其通过指定点和切线方程

抛物线切线问题的实际应用
• 对抛物线方程进行化简,得到标准方程或一般方程
• 变形后的抛物线方程仍保持原有性质,但图像发生改变
• 化简后的抛物线方程便于求解和应用
04
抛物线的极值与最值问题
抛物线的极值点与最值点求解
抛物线的极值点
抛物线的最值点
• 抛物线在顶点处取得极值,即顶点为极值点
• 抛物线在顶点处取得最值,即顶点为最值点

抛物线性质和知识点总结

抛物线性质和知识点总结

抛物线性质和知识点总结1. 抛物线的定义和基本形式抛物线是指平面上满足二次方程y=ax^2+bx+c(a≠0)的曲线。

其基本形式是y=ax^2+bx+c,其中a、b、c是常数,称为抛物线的系数。

a决定抛物线的开口方向,当a>0时抛物线开口朝上,当a<0时抛物线开口朝下;b决定抛物线的位置,c决定抛物线与y轴的交点。

2. 抛物线的顶点和对称轴抛物线的顶点是抛物线的最低点(开口向上)或者最高点(开口向下),对于标准形式的抛物线y=ax^2+bx+c,它的顶点坐标为(-b/2a, c-b^2/4a)。

抛物线的对称轴是通过顶点并垂直于x轴的直线,对称轴方程为x=-b/2a。

3. 抛物线的焦点和直线方程抛物线的焦点是到抛物线上所有点的距离到抛物线的对称轴的距离相等的点,焦点的坐标为(-b/2a, 1-1/4a)。

抛物线的直线方程是y=mx+n,其中m和n是常数,直线与抛物线有两个交点。

当直线与抛物线相切时,两个交点重合。

当直线与抛物线没有交点时,这个抛物线不与这条直线相交。

4. 抛物线的焦距和离心率抛物线的焦距是抛物线的顶点到焦点的距离,焦距的大小是2|a|;抛物线的离心率是焦距与顶点到焦点的距离的比值,离心率的大小是1。

5. 抛物线的性质抛物线的性质是抛物线的特征,对于抛物线y=ax^2+bx+c,它的性质包括:a)抛物线的开口方向是由a的符号决定的,a>0时开口向上,a<0时开口向下;b)抛物线的顶点在对称轴上;c)焦点在对称轴上的顶点的上方,离心率等于1;d)与y轴的交点是常数项c;e)抛物线的焦点到直线方程的距离等于抛物线到直线方程的对称轴的距离。

6. 抛物线的知识点抛物线的知识点是在解决抛物线问题时需要掌握的知识,包括:a)抛物线的标准形式、一般形式、顶点形式和焦点形式的相互转化;b)抛物线的顶点、对称轴、焦点和直线方程的求法;c)抛物线与直线的交点和相切点的求法;d)抛物线的焦距和离心率的求法;e)抛物线的方程的实际应用问题。

超详细抛物线知识点归纳总结

超详细抛物线知识点归纳总结

引言概述:抛物线是高中数学中的重要内容,具有广泛的应用领域,包括物理、工程、经济等。

本文将对抛物线的相关知识进行归纳总结,从定义、性质、方程、焦点与准线、图形以及应用等多个方面进行详细的阐述。

正文内容:一、定义和性质1.抛物线的定义:抛物线是平面内一点到固定点和固定直线的距离之比等于常数的轨迹。

2.焦点与准线的关系:焦点是抛物线上所有点到准线的距离相等的点。

3.对称性:抛物线具有关于准线对称和关于纵轴对称的性质。

4.切线方程:抛物线上任意一点的切线方程为y=mx+c,其中m 是斜率,c是截距。

5.切线与法线的关系:切线与法线互为垂线且交于抛物线上的点。

二、方程和焦点、准线1.标准方程:抛物线的标准方程为y=ax^2+bx+c,其中a、b、c 是常数,a≠0。

2.顶点坐标:抛物线的顶点坐标为(b/2a,f(b/2a)),其中f(x)=ax^2+bx+c。

3.焦点坐标:抛物线的焦点坐标为(h,f(h+1/4a)),其中h=b/2a。

4.准线方程:抛物线的准线方程为y=f(h+1/4a)1/(4a)。

三、图形展示和性质分析1.抛物线的开口方向:a的正负决定抛物线的开口方向,a>0时开口向上,a<0时开口向下。

2.抛物线的焦点位置:焦点在抛物线的顶点上方,焦点的纵坐标为f(h+1/4a)+1/(4a)。

3.抛物线的对称轴:对称轴是通过抛物线的顶点和焦点的直线。

4.抛物线的顶点与焦点距离:顶点与焦点的距离等于抛物线的准线长。

四、应用领域1.物理学应用:抛物线可以描述自由落体运动、抛射运动等。

2.工程学应用:抛物线常用于建筑物的设计、桥梁的设计等。

3.经济学应用:抛物线可以用来表示成本、收入和利润的函数关系。

4.生物学应用:抛物线可用于描述某些生物体运动的轨迹。

5.计算机图像处理应用:抛物线可以用于图像处理算法中的平滑处理。

五、总结本文对抛物线的定义、性质、方程、焦点与准线、图形以及应用进行了详细的阐述。

抛物线知识点总结_高三数学知识点总结

抛物线知识点总结_高三数学知识点总结

抛物线知识点总结_高三数学知识点总结一、定义和基本性质抛物线是一条二次曲线,其数学定义为“一个平面曲线,其每个点到一个定点(称为焦点)的距离等于该点到一条直线(称为准线)的距离,该直线与焦点的连线垂直”。

基本性质:(1)抛物线的轴是准线与焦点连线所在的直线。

轴垂直于抛物线的开口方向。

(2)抛物线的焦距等于准线与轴的交点到焦点的距离。

(3)抛物线的顶点是轴与抛物线的交点。

顶点是抛物线的最低点或最高点。

(4)抛物线的开口方向和对称轴的方向相同。

当抛物线开口向上时,对称轴是上下对称线;当抛物线开口向下时,对称轴是左右对称线。

(5)两个相等的角度分别以离顶点最远和最近的两个点为顶点所夹的弧长相等。

二、标准式和一般式(1)标准式:y=ax² (a≠0),抛物线的焦点在y轴上,顶点为原点。

三、参数方程式和极坐标方程(1)参数方程式:x=at²,y=2at(2)极坐标方程:r=2a(cosθ,sinθ)四、求顶点、轴、焦距和焦点坐标(1)顶点:对于标准式y=ax²,顶点坐标为(0,0);对于一般式y=ax²+bx+c,顶点的x坐标为-b/2a,y坐标为c-(b²/4a)。

(3)焦距:焦距是准线与轴的交点到焦点的距离。

焦距长度为1/(4a)。

五、直线与抛物线的交点对于二次方程y=ax²+bx+c和一次方程y=kx+d,它们的交点可以通过联立方程解得。

六、解形式不同的抛物线对于形如y=ax²的抛物线,可以通过求顶点和焦距、左右移动以及大小的变化来确定其形态。

对于形如y=ax²+bx+c的抛物线,则需要将其写成标准式或参数方程式,然后根据顶点、轴、焦距等求解其形态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抛物线方程及其性质
1.抛物线定义:平面内到一定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线. 2.抛物线四种标准方程的几何性质:
图形
参数p 几何意义 参数p 表示焦点到准线的距离,p 越大,开口越阔.
开口方向 右


下 标 准方 程 22(0)y px p => 22(0)y px p =-> 22(0)x py p =>
22(0)x py p =->
焦 点位 置 X 正
X 负
Y 正
Y 负
焦 点坐 标 (,0)2
p (,0)2p -
(0,)2p
(0,)2p -
准 线方 程 2p x =-
2p x =
2p y =-
2p y =
范 围 0,x y R ≥∈
0,x y R ≤∈
0,y x R ≥∈
0,y x R ≤∈
对 称轴 X 轴
X 轴
Y 轴
Y 轴
顶 点坐 标 (0,0)
离心率 1e =
通 径 2p
焦半径11(,)A x y 12
p AF x =+
12
p AF x =-+
12
p AF y =+
12
p AF y =-+
焦点弦长AB
12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++
焦点弦长AB 的补充
11(,)A x y
22(,)B x y
以AB 为直径的圆必与准线l 相切
若AB 的倾斜角为α,2
2sin p AB α
=
若AB 的倾斜角为α,则22cos p
AB α
=
2124
p x x = 2
12y y p =-
112AF BF AB AF BF AF BF AF BF p
++===•• 3.抛物线)0(22>=p px y 的几何性质:
(1)范围:因为p>0,由方程可知x ≥0,所以抛物线在y 轴的右侧, 当x 的值增大时,|y |也增大,说明抛物线向右上方和右下方无限延伸.
(2)对称性:对称轴要看一次项,符号决定开口方向. (3)顶点(0,0),离心率:1=e ,焦点(
,0)2p F ,准线2
p
x -=,焦准距p . (4) 焦点弦:抛物线)0(22
>=p px y 的焦点弦AB ,),(11y x A ,),(22y x B ,则p x x AB ++=21||. 弦长|AB|=x 1+x 2+p,当x 1=x 2时,通径最短为2p 。

4.焦点弦的相关性质:焦点弦AB ,),(11y x A ,),(22y x B ,焦点(
,0)2
p
F (1) 若AB 是抛物线2
2(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则:2
124p x x =,
212y y p =-。

(2) 若AB 是抛物线2
2(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则22sin P AB α
=(α≠0)。

(3) 已知直线AB 是过抛物线2
2(0)y px p =>焦点F ,
112AF BF AB AF BF AF BF AF BF p
++===•• (4) 焦点弦中通径最短长为2p 。

通径:过焦点垂直于焦点所在的轴的焦点弦叫做通径.
(5) 两个相切:○1以抛物线焦点弦为直径的圆与准线相切.○2过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。

5、
焦半径公式
2
1
22
x P
BF x p AF +=+=
2
1-2-2x P
BF x p AF ==
αα
cos 1cos 1+=
-=
p BF p
AF
α
αcos -1cos 1p BF p AF =
+=
相同
P
BF AF 2
11=+
6 三角形OAB 的面积
θsin 22
P S OAB =

θ
cos 22
P S OAB =

7.弦长公式:),(11y x A ,),(22y x B 是抛物线上两点,则
221212()()AB x x y y =-+-||1
1||1212
212y y k x x k -+=-+= 8.直线与抛物线的位置关系 直线
,抛物线

,消y 得:
(1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时,
Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。

(3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) 9、过抛物线内一点作直线只与抛物线有一个交点
点在抛物线内 直线有1条 (1交) 点在抛物线上 直线有2条 (1交1切) 点在抛物线外 直线有3条 (1交2切)
10、关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线
,)0( p
① 联立方程法:
⎩⎨⎧=+=px
y b
kx y 22
⇒0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0 ∆,以及2121,x x x x +,还可进一步求出
b x x k b kx b kx y y 2)(212121++=+++=+,2212122121)())((b x x kb x x k b kx b kx y y +++=++=
在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长
2122122124)(11x x x x k x x k AB -++=-+=a
k ∆+=2
1 或 2122122124)(1111y y y y k y y k AB -++=-+
=a
k ∆+=2
1 b. 中点),(00y x M , 2210x x x +=
, 2
2
10y y y += ② 点差法:
设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得
12
12px y = 22
22px y =
将两式相减,可得
)(2))((212121x x p y y y y -=+-
2
121212y y p
x x y y +=
--
a. 在涉及斜率问题时,2
12y y p
k AB +=
b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M ,
021*******y p
y p y y p x x y y ==+=--, 即0
y p k AB =
, 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点),(00y x M 是弦
AB 的中点,则有p
x p x p x x k AB 0
021222==+=
(注意能用这个公式的条件:1)直线与抛物线有两个不同的交点,2)直线的斜率存在,
且不等于零)。

相关文档
最新文档