三角形的认识1

合集下载

人教版数学四年级下册《三角形的认识》教案1

人教版数学四年级下册《三角形的认识》教案1

人教版数学四年级下册《三角形的认识》教案1一. 教材分析《三角形的认识》是小学四年级数学下册的一章节,主要让学生认识三角形及其特性。

本节课内容是在学生已经掌握了直线、射线的基础上进行的,对于学生来说,具有一定的挑战性。

通过本节课的学习,让学生能够理解三角形的定义,掌握三角形的特性,能够识别各种三角形,并为后续学习三角形的相关知识打下基础。

二. 学情分析四年级的学生已经具备了一定的空间观念和几何知识,对于直线、射线等概念有了一定的了解。

但是,对于三角形的概念和特性,学生可能还比较陌生。

因此,在教学过程中,需要教师通过生动形象的讲解和丰富的教学活动,帮助学生理解和掌握三角形的知识。

三. 教学目标1.让学生了解三角形的定义,能够识别各种三角形。

2.让学生掌握三角形的特性,能够运用三角形的知识解决实际问题。

3.培养学生的空间观念,提高学生的几何思维能力。

四. 教学重难点1.三角形的定义和特性。

2.能够识别各种三角形。

五. 教学方法1.采用直观演示法,通过实物和模型,让学生直观地了解三角形的形状和特性。

2.采用情境教学法,创设各种实际情境,让学生在实践中理解和掌握三角形的知识。

3.采用合作学习法,让学生通过小组讨论和交流,共同探究三角形的特性。

六. 教学准备1.准备各种三角形的模型和图片。

2.准备三角形的相关练习题。

3.准备黑板和粉笔。

七. 教学过程导入(5分钟)教师通过展示一些生活中常见的三角形物体,如三角板、三角形的玩具等,引导学生关注三角形。

然后提出问题:“你们知道这些物体为什么是三角形吗?三角形有什么特殊的性质吗?”让学生思考,激发学生的学习兴趣。

呈现(10分钟)教师通过讲解和展示,向学生介绍三角形的定义和特性。

讲解三角形的定义,即由三条边和三个角组成的图形。

然后讲解三角形的特性,如三角形的内角和为180度,三角形的三条边互相连接,任意两边之和大于第三边等。

同时,教师可以通过举例和实物演示,让学生更加直观地理解三角形的特性。

北师大版数学七年级下册第四章:1、认识三角形 课件(共65张PPT)

北师大版数学七年级下册第四章:1、认识三角形 课件(共65张PPT)

1.三角形内角和定理:三角形三个内角的和等于180°.
2.三角形内角和定理的应用:①在三角形中,已知任意两个内角的度数可以 求出第三个内角的度数;②已知三角形三个内角的关系,可以求出各个内角 的度数;③求一个三角形中各角之间的关系.
3.三角形按角分类:
直角三角形:有一个角是直角的三角形 锐角三角形:三个角都是锐角的三角形 钝角三角形:有一个角是钝角的三角形
∠A、∠C的公共边是
.
,∠A的对边是
栏目索引
,
图4-1-3 答案 ∠B;BC;AC 解析 △ABC中,AB与BC的夹角是∠B,∠A的对边是BC,∠A、∠C的公共 边是AC.
1 认识三角形
知识点二 三角形三个内角之间的关系
栏目索引
4.(2017广西南宁中考)如图4-1-4,△ABC中,∠A=60°,∠B=40°,则∠C等于
其所在直 直角三角形
线)的交
点位置 钝角三角形
交点在三角形内 交点在直角顶点处 交点在三角形外
三条中线交于三 角形内一点(这一 点称为三角形的 重心)
交点在三角形内
共同点
每个三角形都有三条高、三条中线、三条角平分线,它们(或它们所在的直线) 都分别交于一个点,它们都是线段
1 认识三角形
栏目索引
知识拓展
(1)得到线段垂直;(2)得到角相等 (1)得到线段相等; (2)得到面积相等
得到角相等
1 认识三角形
栏目索引
线段 的位置
锐角三角形 直角三角形
钝角三角形
三条高全在三角形内
三条中线全在三
角形内 一条高在三角形内,另外两条
与两直角边重合
三条角平分线全 在三角形内
三角形内一条,三角形外两条

认识三角形三角形PPT优秀课件

认识三角形三角形PPT优秀课件

三角形稳定性及应用
三角形稳定性
当三角形的三条边的长度确定后,这个三角形的形状和大小也就唯一确定了,这 种性质叫做三角形的稳定性。
应用
在建筑、桥梁、机械等领域中,常常利用三角形的稳定性来增强结构的稳固性。 例如,在建筑中,常常使用三角形框架来支撑建筑物,以增加其抗震能力。
02
特殊三角形类型及特点
等腰三角形性质与判定
四边形的分类
根据四边形的边长和角度特征,四边形可分为平行四边形 、矩形、菱形、正方形等。
多边形的定义和性质
多边形是由三条或三条以上的线段首尾顺次连接所组成的 封闭图形。多边形的内角和为(n-2)×180度,其中n为 多边形的边数。
多边形的对角线
多边形中任意两个不相邻的顶点之间的连线称为多边形的 对角线。n边形的对角线总数为n(n-3)/2条。
定义:两个三角形如果它们的三边及三 角分别相等,则称这两个三角形全等。
全等三角形的面积和周长都相等。 对应角相等。
性质 对应边相等。
相似和全等条件比较
相似之处
01
02
都涉及三角形的角和边的关系。
都有对应的判定定理。
03
04
不同之处
相似仅要求对应角相等,而全等要求对应 边和对应角都相等。
05
06
相似的条件较为宽松,全等的条件更为严 格。
直角三角形中的特殊性质
勾股定理及其逆定理的应用,以及直角三角形的射影定理等。
三角形中的最值问题
通过三角形的性质和判定条件,解决与三角形有关的最值问题,如 最短路径、最大面积等。
拓展延伸:四边形等多边形知识
四边形的定义和性质
四边形是由四条不在同一直线上的线段首尾顺次连接所组 成的封闭图形。四边形的内角和为360度,且任意三个角 之和大于第四个角。

认识三角形(1)课件

认识三角形(1)课件

新知讲解
三角形按内 角的大小分 类
锐角三角形 (三个内角都是锐角的三角形)
直角三角形 (有一个内角是直角的三角形)
钝角三角形 (有一个内角是钝角的三角形)
练一练
1、如果一个三角形的三个内角比是3:4:5,那么这个三 角形是______锐__角_____三角形。
2、如图,BD⊥AC,说出图中的锐角三角形、直角三角形和
认识三角形
——第一课时
浙教版 八年级上
学习目标
1、结合具体实例,进一步认识三角形的概念及基本 要素。 2、理解三角形三边关系的性质,并会初步应用它们 来解决问题。 3、通过观察、操作、想象、推理、交流等活动,发 展空间观念和推理能力。
导入新课
你能举出生活中看到的三角形例子吗? 雨伞、衣架、小红旗……
钝角三角形。
C
D
锐角三角形:△ABC 直角三角形:△ABD、△BCD
A
钝角三角形:没有
B
1.为什么有人喜欢 斜穿人行横道?
两点之间线段最短
拿出草稿纸,在纸上画出任意一个 三角形,动手量一量,算一算,叠 一叠,探究三角形任何两边和的数 量关系,把你的发现与小组同学交 流。
思考探究
新知讲解
在△ABC中,利用你发现的规律填空: A
A
b
c
B
C
a
(1)说出图中所有的三角形,以及每一个三角形的三条边和三
个内角。
(2)若∠A=40°,∠C=60°,求∠ABC的度数。
C D
A
B
(1)△ABC,△ABD、△BCD (边、角口述)
(2)∠A、∠C、∠ABC是△ABC的内角,根据三角形内角和为
180°,可知:∠ABC=180°-∠A-∠C=80°

7.4认识三角形(1)

7.4认识三角形(1)

所有内角都是锐角的三角形———— 锐角三角形
有一个内角是直角的三角形———— 直角三角形
有一个内角是钝角的三角形———— 钝角三角形




⑤ 锐角三角形
③ ⑤
⑥ 直角三角形 ① ④ ⑥
⑦ 钝角三角形 ② ⑦







每组共有四根电线,2cm、4cm、 8cm、11cm,试着摆一个三角形,看谁 先摆好.
为什么 呢?
三角形的任意两边之和大于第三边.
A
c
b
B
a
C
两点之间线段最短.
你知 道为 什么 吗?
三角形的任意两边之差小于第三边.
A
任意 两边之和大于第三边.
b
a
B
任意 两边之差小于第三边.
C
c
你是如何 理解的?
1、三条线段的长度分别为:
(1)3、8、10 (2)5、2、7
(3)5、5、11 (4)13、12、20
A
B
C
D
A
三角形ABC
b
c
记作:△ABC
三角形的顶点: A、B、C
C
B
a
三角形的内角:∠A 、 ∠B 、 ∠C
三角形的边:AB、AC、BC
c
b
a
观察后来写一写

若将房屋顶的框架图抽象成一个几何 图形,标出字母,请聪明的你尽可能 多的表示这些三角形.
A F B
G
C
D
E
知识再现:
(b c a b c
2. 有3、5、7、10四根木条,要摆出 一个三角形,有(B)种摆法。

七年级数学上册第一章三角形1认识三角形第1课时课件鲁教版五四制

七年级数学上册第一章三角形1认识三角形第1课时课件鲁教版五四制

至D. 因为∠ACE =∠A, 所以CE∥AB,
所以∠DCE =∠B,
又因为 ∠ACE+∠DCE +∠ACB =180°,
所以 ∠A+∠B+∠C=180°.
三角形分类
锐角三角形 (三个内角都是锐角)
直角三角形 (有一个内角是直角)
钝角三角形 (有一个内角是钝角)
【探究新知】
“直角三角形ABC”用“Rt△ABC”表示.
C
此图中有几个三角形? 你能表示出来吗?
DE B
6个,△ABD, △ADE, △AEC, △ABE, △ADC, △ABC.
【想一想】
三角形的三个内角有什么关系? 三角形三个内角的和等于180°. 小学里,是用什么方法得到三角形内角和为180°的 结论的?
将一个三角形的三个角撕下来,拼在一起,可以得到 三角形的内角和为180°.
三边可表示为AB,BC,AC,顶点A所对的边BC也 可表示为a,顶点B所对的边AC也可表示为b,顶点 C所对的边AB也可表示为c.
【揭示新知】
1.当表示三角形时,字母没有先后顺序.
2.如图,我们把BC(或a)叫做A的对边,把AB(或c)、 AC(或b)叫做A的邻边.
A
c
b
B
a
C
如果我说三角形有三要素,
3.(苏州·中考)△ABC的内角和为( )
(A)180°
(B)360°
(C)540°
(D)720°
【解析】选A.根据三角形的内角和为180°,得△ABC
的内角和为180°,故A正确.
通过本课时的学习,需要我们掌握: 1.三角形的概念. 2.三角形的内角和为180°. 3.三角形的任意两边之和大于第三边,任意两边之 差小于第三边. 4.直角三角形两个锐角互余.

()七年级数学下册第四章三角形1认识三角形三角形认识讲义(无答案)(新版)北师大版

()七年级数学下册第四章三角形1认识三角形三角形认识讲义(无答案)(新版)北师大版

三角形的认识段【根底知识】从三角形的一个顶知识点1三角形的定义点向它的对边所在1.由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

三角形的高线的直线作垂线,顶点表示:三角形可用符号“△〞表示,如右图和垂足之间的线段三角形记作:△ABC b CAc a三角形中,连结一个B 顶点和它对边中点2.一个三角形有三条边,三个角、三个顶点三角形的中线的线段如图三角形中三边可表示为AB,BC,AC,顶点A所对的边BC也可表示为a,顶点B所对的边AC表示为b,顶点C所对的边AB表示为c 三角形一个内角的知识点2三角形的性质平分线与它的对边1.三角形三边关系:三角形任意两边之和大于第三边;三角形任意两边之差小于三角形的角平分相交,这个角顶点与第三边。

线交点之间的线段3.4.三角形的内角关系:三角形内角和为1805.三角形的分类:三角形按内角的大小可以分为锐角三角形、直角三角形、钝角结论总结:三角形。

其中直角三角形的两个锐角互余知识点3三角形的中线、角平分线和高线三角形的重要线概念图形表示法AE是△ABC的AB上的高线.CE⊥AB∠AEC=∠BEC=90°.AD是△ABC的BC上的中线.BD=CD=?BC.AE是△ABC的∠ABC的平分线1∴∠1=∠2=2ABC-1-/12【典例剖析】例1.有两根长度分别为5cm和8cm的木棒,再取一根长度为2cm的木棒,它们能摆成三角形吗?为什么?如果取一根长度为13cm的木棒呢?聪明的你能取一根木棒,与原来的两根木棒摆成三角形吗?(4)要选取的第三根木棒的长度x要满足什么条件呢?例2.假设△ABC的三边长a,b,c都是正整数,且满足a.bc,如果b=4,问这样的三角形有几个?例3.一个三角形有两边相等,并且周长为56cm,两不等边之比为3︰2,求这个三角形各边的长。

锐角三角形直角三角形钝角三角形角平分线〔有几中线条,是否相交,交高线点在那〕例4.判断满足以下条件的VABC是锐角三角形、直角三角形还是钝角三角形;〔1〕A80o,B25o〔2〕A B30o,BC36oA11CB6〔3〕2例5.三角形ABC的一个内角度数为40o,且A B,求C的外角的度数。

【课件】1 认识三角形 第3课时 三角形的三边关系

【课件】1 认识三角形  第3课时 三角形的三边关系

么结论?
三角形任意两边之差小于第三边
我们可以得出三角形第三边的取值范围是:
第三边>两边之差
第三边<两边之和
典题精析
例1.有两根长度分别为 5cm 和 8cm 的木棒,用长度为 2cm 的 木棒与它们能摆成三角形吗?为什么?长度为 13cm 的木棒呢?
解:取长度为2cm的木棒时,由于2+5=7 < 8,出现了两边 之和小于第三边的情况,所以它们不能摆成三角形. 取长度为13cm的木棒时,由于5+8=13,出现了两边之和 等于第三边的情况,所以它们也不能摆成三角形.
课堂总结
三角形任意两边之和大于第三边. 三角形任意两边之差小于第三边.
做一做
如果一根木棒能与长度分别为 5 cm 和 8 cm 的两根木棒摆成三 角形,那么它的长度取值范围是什么?
8-5 < x < 5+8 3 < x < 13
典题精析
例2.若a,b,c是△ABC的三边长,化简|a-b-c|+ |b-c-a|+|c+a-b|. 解:根据三角形的三边关系,两边之和大于第三边,得 a-b-c<0,b-c-a<0,c+a-b>0. 所以 |a-b-c|+|b-c-a|+|c+a-b|
A.14
B.10
C.3
D.2
3.已知等腰三角形的两边长分别为4、9,求它的周长.
解:因为三角形是等腰三角形, 所以,当腰长为4时, 三角形的三边分别为:4、4、9,而4+4<9 , 所以不能构成一个三角形,应舍去. 当腰长为9时, 三角形的三边分别为:9、9、4,4+9>9, 所以能构成一个三角形. 即周长为22.
鲁教版七年级上册数学
1 认识三角形 第3课时 三角形的三边关系
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档