直线与圆的方程的应用PPT课件
合集下载
2.5.1 直线与圆位置关系 课件(共23张PPT)

2
(
3
)
4 1 2= 1 > 0
因为
所以,直线 l 与圆相交,有两个公共点.
由 2 − 3 + 2 = 0 ,解得1 = 2, 2 = 1.
把 1 = 2代入方程①,得 1 = 0 ;
把 2 = 1代入方程① ,得 2 = 3.
所以,直线 l 与圆的两个交点是:
(2,0),(1,3)
【分析】如图,点(2,1)位于圆: 2 + 2 = 1外,经过圆外一点有两条直线与这个圆相切.我们设切线方
程为 − 1 = ( − 2), k为斜率.由直线与圆相切可求出k的值.
y
解法1:设切线的斜率为,则切线的方程为 − 1= − 2 ,
P.
即kx-y+1-2k=0
由圆心(0,0)到切线l的距离等于圆的半径1,得
【分析】思路一 判断直线l与圆的位置关系,就是看由它们的方程组成的方程组有无实数解;
思路二 可以依据圆心到直线的距离与半径长的关系,判断直线与圆的位置关系.
解法一:由直线 l 与圆的方程,得:
3x y 6 0,
2
2
x
y
2 y 4 0.
消去y,得 x 2 3x 2 0
①当切线l的斜率存在时, 即 − + 2 − = 0,
由圆心(0,0)到切线l的距离等于圆的半径1,得
|2 − |
2
+1
= 1, 解得
3
=4 ,
y
.
P
此时,切线l的方程为3 − 4 + 5 = 0.
②当切线l的斜率不存在时,此时直线x=1也符合题意.
(
3
)
4 1 2= 1 > 0
因为
所以,直线 l 与圆相交,有两个公共点.
由 2 − 3 + 2 = 0 ,解得1 = 2, 2 = 1.
把 1 = 2代入方程①,得 1 = 0 ;
把 2 = 1代入方程① ,得 2 = 3.
所以,直线 l 与圆的两个交点是:
(2,0),(1,3)
【分析】如图,点(2,1)位于圆: 2 + 2 = 1外,经过圆外一点有两条直线与这个圆相切.我们设切线方
程为 − 1 = ( − 2), k为斜率.由直线与圆相切可求出k的值.
y
解法1:设切线的斜率为,则切线的方程为 − 1= − 2 ,
P.
即kx-y+1-2k=0
由圆心(0,0)到切线l的距离等于圆的半径1,得
【分析】思路一 判断直线l与圆的位置关系,就是看由它们的方程组成的方程组有无实数解;
思路二 可以依据圆心到直线的距离与半径长的关系,判断直线与圆的位置关系.
解法一:由直线 l 与圆的方程,得:
3x y 6 0,
2
2
x
y
2 y 4 0.
消去y,得 x 2 3x 2 0
①当切线l的斜率存在时, 即 − + 2 − = 0,
由圆心(0,0)到切线l的距离等于圆的半径1,得
|2 − |
2
+1
= 1, 解得
3
=4 ,
y
.
P
此时,切线l的方程为3 − 4 + 5 = 0.
②当切线l的斜率不存在时,此时直线x=1也符合题意.
高一数学423直线与圆的方程的应用课件新人教A版必修2

同理可求得过点 A′(-3,-3)的圆 C 的切线方程 3x-4y -3=0 或 4x-3y+3=0,
即为所求光线 m 所在直线的方程.
解题时需注意的问题是:直线的点斜式适用 于斜率存在的情况,由图知此题中,入射光线所在直线应有两 条,若 k 只有一解,应考虑 k 不存在的情况.
2-1.坐标平面上点(7,5)处有一光源,将圆 x2+(y-1)2=1 16
解:∵圆与 y 轴相切,且圆心在直线 x-3y=0 上, 故设圆的方程为(x-3b)2+(y-b)2=9b2.
又∵直线 y=x 截圆得弦长为 2 7, 则由垂径定理有|3b-2 b|2+( 7)2=9b2, 解得 b=±1. 故所求圆方程为
(x-3)2+(y-1)2=9 或(x+3)2+(y+1)2=9.
2.弦长问题: 圆的弦长的计算:常用弦心距 d,弦长的一半12a 及圆的半 径 r 所构成的直角三角形来解:r2=d2+(12a)2.
弦长问题 例 1:根据下列条件求圆的方程:与 y 轴相切,圆心在直线 x-3y=0 上,且直线 y=x 截圆所得弦长为 2 7 .
思维突破:研究圆的问题,既要理解代数方法,熟练运用解 方程思想,又要重视几何性质及定义的运用.
关于圆的弦长问题,可用几何法从半径、 弦心距、半弦所组成的直角三角形求解,也可用代数法弦长公 式求解.
1-1.一直线经过点 P-3,-23被圆 x2+y2=25 截得的弦 长为 8, 求此弦所在直线方程.
解:当斜率 k 存在时,设所求方程为 y+32=kx+3,即 kx -y+3k-32=0.
由已知,弦心距OM= 52-42=3,
由点到直线的距离公式,得
|2-0+b|= 2
3,即 b=-2±
6,
高二数学《直线与圆的方程的应用》课件

提示 要先建立适当的坐标系,用坐标表示出相应的几何 元素,如点、直线、圆等,将几何问题转化为代数问题来 解决,通过代数的运算得到结果,分析结果的几何意义, 得到几何结论. 2.利用坐标法求解几何问题要注意什么? 提示 (1)利用“坐标法”解决问题首要任务是先建立平面 直角坐标系,用坐标和方程表示相应的几何元素. (2)建立不同的平面直角坐标系,对解决问题有着直接的影 响.因此,建立直角坐标系,应使所给图形尽量对称,所 需的几何元素坐标或方程尽量简单.
课前预习
课堂互动
课堂反馈
圆 C:(x-a)2+(y- r2-a2)2=r2-a2. 两方程作差得直线 EF 的方程为 2ax+2 r2-a2y=r2+a2. 令 x=a,得 y=12 r2-a2, ∴H(a,12 r2-a2),即 H 为 CD 中点,
∴EF 平分 CD.
课前预习
课堂互动
课堂反馈
规律方法 坐标法建立直角坐标系应坚持的原则: (1)若有两条相互垂直的直线,一般以它们分别为x轴和y轴. (2)充分利用图形的对称性. (3)让尽可能多的点落在坐标轴上,或关于坐标轴对称. (4)关键点的坐标易于求得.
2.利用直线与圆的方程解决最值问题的关键是由某些代数式 的结构特征联想其几何意义,然后利用直线与圆的方程及 解析几何的有关知识并结合图形的几何量值关系分析、解 决问题.
课前预习Βιβλιοθήκη 课堂互动课堂反馈于是有 aa+ -110022+ +bb22= =rr22, , a2+b-42=r2.
课前预习
课堂互动
课堂反馈
解此方程组,得a=0,b=-10.5,r=14.5. 所以这座圆拱桥的拱圆的方程是 x2+(y+10.5)2=14.52(0≤y≤4). 把点D的横坐标x=-5代入上式,得y≈3.1. 由于船在水面以上高3 m,3<3.1, 所以该船可以从桥下通过.
课前预习
课堂互动
课堂反馈
圆 C:(x-a)2+(y- r2-a2)2=r2-a2. 两方程作差得直线 EF 的方程为 2ax+2 r2-a2y=r2+a2. 令 x=a,得 y=12 r2-a2, ∴H(a,12 r2-a2),即 H 为 CD 中点,
∴EF 平分 CD.
课前预习
课堂互动
课堂反馈
规律方法 坐标法建立直角坐标系应坚持的原则: (1)若有两条相互垂直的直线,一般以它们分别为x轴和y轴. (2)充分利用图形的对称性. (3)让尽可能多的点落在坐标轴上,或关于坐标轴对称. (4)关键点的坐标易于求得.
2.利用直线与圆的方程解决最值问题的关键是由某些代数式 的结构特征联想其几何意义,然后利用直线与圆的方程及 解析几何的有关知识并结合图形的几何量值关系分析、解 决问题.
课前预习Βιβλιοθήκη 课堂互动课堂反馈于是有 aa+ -110022+ +bb22= =rr22, , a2+b-42=r2.
课前预习
课堂互动
课堂反馈
解此方程组,得a=0,b=-10.5,r=14.5. 所以这座圆拱桥的拱圆的方程是 x2+(y+10.5)2=14.52(0≤y≤4). 把点D的横坐标x=-5代入上式,得y≈3.1. 由于船在水面以上高3 m,3<3.1, 所以该船可以从桥下通过.
《直线和圆的方程》课件

参数$D,E,F$必须满足一定的条 件才能构成一个有效的圆。
圆的参数方程
圆的参数方程
01
$x=a+rcostheta, y=b+rsintheta$,其中$(a,b)$是圆心,$r$
是半径,$theta$是参数。
参数方程的应用
02
参数方程常用于圆的极坐标表示,方便计算圆的轨迹和运动。
参数方程与直角坐标系的关系
圆的一般方程
圆的一般方程
$x^2+y^2+Dx+Ey+F=0$, 其中$D,E,F$是常数。
圆心坐标
圆心的坐标为$(-frac{D}{2}, frac{E}{2})$,通过圆心可以确 定圆的位置。
半径
半径的平方为 $frac{D^2+E^2-4F}{4}$,通 过半径可以确定圆的大小。
参数$D,E,F$
02
圆的方程的介绍
圆的标准方程
圆的标准方程
圆心坐标
$(x-a)^2+(y-b)^2=r^2$,其中$(a,b)$是 圆心,$r$是半径。
圆心的坐标为$(a,b)$,通过圆心可以确定 圆的位置。
半径
圆上任一点坐标
半径是圆上任一点到圆心的距离,用$r$表 示。
根据圆的标准方程,圆上任一点的坐标可 以表示为$(a+rcostheta, b+rsintheta)$, 其中$theta$是参数。
《直线和圆的方程》 ppt课件
目 录
• 直线方程的介绍 • 圆的方程的介绍 • 直线与圆的位置关系 • 直线与圆的实际应用
01
直线方程的介绍
直线的斜率与截距式
总结词
斜率截距式是直线方程的基本形式,它描述了直线在直角坐标系中的位置关系 。
圆的参数方程
圆的参数方程
01
$x=a+rcostheta, y=b+rsintheta$,其中$(a,b)$是圆心,$r$
是半径,$theta$是参数。
参数方程的应用
02
参数方程常用于圆的极坐标表示,方便计算圆的轨迹和运动。
参数方程与直角坐标系的关系
圆的一般方程
圆的一般方程
$x^2+y^2+Dx+Ey+F=0$, 其中$D,E,F$是常数。
圆心坐标
圆心的坐标为$(-frac{D}{2}, frac{E}{2})$,通过圆心可以确 定圆的位置。
半径
半径的平方为 $frac{D^2+E^2-4F}{4}$,通 过半径可以确定圆的大小。
参数$D,E,F$
02
圆的方程的介绍
圆的标准方程
圆的标准方程
圆心坐标
$(x-a)^2+(y-b)^2=r^2$,其中$(a,b)$是 圆心,$r$是半径。
圆心的坐标为$(a,b)$,通过圆心可以确定 圆的位置。
半径
圆上任一点坐标
半径是圆上任一点到圆心的距离,用$r$表 示。
根据圆的标准方程,圆上任一点的坐标可 以表示为$(a+rcostheta, b+rsintheta)$, 其中$theta$是参数。
《直线和圆的方程》 ppt课件
目 录
• 直线方程的介绍 • 圆的方程的介绍 • 直线与圆的位置关系 • 直线与圆的实际应用
01
直线方程的介绍
直线的斜率与截距式
总结词
斜率截距式是直线方程的基本形式,它描述了直线在直角坐标系中的位置关系 。
《直线和圆方程》课件

《直线和圆方程》 ppt课件
目录
• 直线方程的概述 • 圆的方程 • 直线与圆的交点求解 • 直线和圆的几何性质 • 直线和圆的方程在实际问题中的应
用
01
直线方程的概述
直线的定义
直线是由无数个点组成的几何图形,这些点沿着同一直 线排列,形成一条无限延伸的线。
在平面几何中,直线是连接两个点的最短路径,它没有 宽度和厚度。
圆的参数方程
$x = a + rcostheta, y = b + rsintheta$,其中$(a, b)$是圆心坐 标,$r$是半径,$theta$是参数。
圆的标准方程
圆的标准方程为$(x - a)^{2} + (y b)^{2} = r^{2}$,其中$(a, b)$是圆
心坐标,$r$是半径。
圆的基本性质
01 02
圆的定义
圆是一个平面图形,由所有到定点(圆心)的距离等于定长(半径)的 点组成,表示为 $(x - h)^2 + (y - k)^2 = r^2$,其中 $(h, k)$ 是圆 心坐标,$r$ 是半径。
圆的半径
连接圆心到圆上任意一点的线段的长度称为半径。
03
圆的直径
通过圆心且两端点在圆周上的线段称为直径,长度是半径的两倍。
圆心和半径
直径
通过圆心且两端点在圆上的线段称为 直径。
圆心是圆的中心点,半径是从圆心到 圆上任一点的线段。
圆的方程表示
圆的一般方程
$(x - h)^{2} + (y - k)^{2} = r^{2}$,其中$(h, k)$是圆心坐标
,$r$是半径。
圆的标准方程
$(x - a)^{2} + (y - b)^{2} = r^{2}$,其中$(a, b)$是圆心坐标 ,$r$是半径。
目录
• 直线方程的概述 • 圆的方程 • 直线与圆的交点求解 • 直线和圆的几何性质 • 直线和圆的方程在实际问题中的应
用
01
直线方程的概述
直线的定义
直线是由无数个点组成的几何图形,这些点沿着同一直 线排列,形成一条无限延伸的线。
在平面几何中,直线是连接两个点的最短路径,它没有 宽度和厚度。
圆的参数方程
$x = a + rcostheta, y = b + rsintheta$,其中$(a, b)$是圆心坐 标,$r$是半径,$theta$是参数。
圆的标准方程
圆的标准方程为$(x - a)^{2} + (y b)^{2} = r^{2}$,其中$(a, b)$是圆
心坐标,$r$是半径。
圆的基本性质
01 02
圆的定义
圆是一个平面图形,由所有到定点(圆心)的距离等于定长(半径)的 点组成,表示为 $(x - h)^2 + (y - k)^2 = r^2$,其中 $(h, k)$ 是圆 心坐标,$r$ 是半径。
圆的半径
连接圆心到圆上任意一点的线段的长度称为半径。
03
圆的直径
通过圆心且两端点在圆周上的线段称为直径,长度是半径的两倍。
圆心和半径
直径
通过圆心且两端点在圆上的线段称为 直径。
圆心是圆的中心点,半径是从圆心到 圆上任一点的线段。
圆的方程表示
圆的一般方程
$(x - h)^{2} + (y - k)^{2} = r^{2}$,其中$(h, k)$是圆心坐标
,$r$是半径。
圆的标准方程
$(x - a)^{2} + (y - b)^{2} = r^{2}$,其中$(a, b)$是圆心坐标 ,$r$是半径。
直线和圆的方程PPT课件(2021)

(2)由已知
t 2 1 7t 2 6t 1 4t 2 3t 0 t 3 或t 0 4
结合(1)得:t 的范围为 ( 1 ,0) ( 3 ,1)
7
4
(1) 设圆心坐标为(x,y),则有
xt3
y
4t 2
1
y
4x2
24x
35 命题得证
例 2.(1)求经过点 A(5,2),B(3,2),圆心在直线 2x-y-3=0 上圆方程; (2)设圆上的点 A(2,3)关于直线 x+2y=0 的对称点仍在这
(1) 倾斜角的正弦值为 4 ;
5
(2) 与坐标轴围成的三角形面积为 4; (3) ABC面积取最小值时;
解析:
(1)由 sin 4 , ( , ) k tan 4
5
2
3
故所求直线方程为 y-1= 4 (x 2)
3
(1)
设所求直线方程为:
x a
y b
1,
由
2
a
ab
1 b
1得
且 AD 与 AB 垂直,所以直线 AD 的斜率为 3 . 又因为点T (1,1) 在直线 AD 上,
所以 AD 边所在直线的方程为 y 1 3(x 1) .
3x y 2 0.
(II)由
x 3 3x
y y
6 2
=
0,
解得点
0
A
的坐标为
(0,
2)
,
因为矩形 ABCD 两条对角线的交点为 M (2,0) .
方法一:过点M且与x轴垂直的直线显然不合题意,故可设所
求直线方程为y=kx+1,与已知两直线 l1 、l2 分别交于A、B两
点,联立方程组:
t 2 1 7t 2 6t 1 4t 2 3t 0 t 3 或t 0 4
结合(1)得:t 的范围为 ( 1 ,0) ( 3 ,1)
7
4
(1) 设圆心坐标为(x,y),则有
xt3
y
4t 2
1
y
4x2
24x
35 命题得证
例 2.(1)求经过点 A(5,2),B(3,2),圆心在直线 2x-y-3=0 上圆方程; (2)设圆上的点 A(2,3)关于直线 x+2y=0 的对称点仍在这
(1) 倾斜角的正弦值为 4 ;
5
(2) 与坐标轴围成的三角形面积为 4; (3) ABC面积取最小值时;
解析:
(1)由 sin 4 , ( , ) k tan 4
5
2
3
故所求直线方程为 y-1= 4 (x 2)
3
(1)
设所求直线方程为:
x a
y b
1,
由
2
a
ab
1 b
1得
且 AD 与 AB 垂直,所以直线 AD 的斜率为 3 . 又因为点T (1,1) 在直线 AD 上,
所以 AD 边所在直线的方程为 y 1 3(x 1) .
3x y 2 0.
(II)由
x 3 3x
y y
6 2
=
0,
解得点
0
A
的坐标为
(0,
2)
,
因为矩形 ABCD 两条对角线的交点为 M (2,0) .
方法一:过点M且与x轴垂直的直线显然不合题意,故可设所
求直线方程为y=kx+1,与已知两直线 l1 、l2 分别交于A、B两
点,联立方程组:
2.5.1直线与圆的位置关系 课件【可编辑图片版】【共40张PPT】

题型三 有关圆的弦长问题 例 2 求直线 l:3x+y-6=0 被圆 C:x2+y2-2y-4=0 截得 的弦长.
分析:弦心距、半弦长与半径构成的直角三角形求解.
解析:法一:圆C:x2+y2-2y-4=0 可化为x2+(y-1)2=5, 其圆心坐标为(0,1),半径r= 5. 点(0,1)到直线l的距离为d=|3×03+2+11-2 6|= 210, l=2 r2-d2= 10,所以截得的弦长为 10. 法二:设直线l与圆C交于A、B两点.
所成的切点处时,DE为最短距离.此时DE的最小值为
|0+0-8| 2
-
1=(4 2-1) km.
即DE的最短距离为(4 2-1) km.
[方法技巧] 求解直线与圆的方程的实际应用问题的四个步骤
1.认真审题,明确题意. 2.建立平面直角坐标系,用方程表示直线和圆,从而在实际 问题中建立直线与圆的方程. 3.利用直线与圆的方程的有关知识求解问题. 4.把代数结果还原为实际问题的解释.
将A′(x0,-3)代入圆的方程,得x0= 51, ∴当水面下降1 m后,水面宽为2x0=2 51(m).
答案:(1)B (2)2 51
易错辨析 忽略了圆的一个隐含条件 例 4 已知圆的方程为 x2+y2+ax+2y+a2=0,一定点 A(1,2), 要使过定点 A(1,2)作圆的切线有两条,则 a 的取值范围为________.
5,则弦长=2
r2-d2=4
5.
答案:4 5
题型一 直线与圆位置关系的判断
1.直线 y=x+1 与圆 x2+y2=1 的位置关系为( )
A.相切
B.相交但直线不过圆心
C.直线过圆心 D.相离
解析:圆心(0,0)到直线y=x+1的距离d=
直线与圆的方程的应用

1 所以 | O' E | | BC | 2
用坐标方法解决几何问题时,用坐标和方程表 示相应的几何元素:点、直线、圆,将几何问题转 化为代数问题;然后通过坐标方法解决平面几何问 题;最后解释平面几何问题的几何含义。 坐标法解决平面几何问题的“三步曲” • 第一步:建系,几何问题代数化; • 第二步:解决代数问题; • 第三步:还原结论。
2 (2)2 (y 10.5) 1Hale Waihona Puke .52因为y>0,所以
y 14.5 2 ( 2) 2 10.5 14.36 10.5 3.86(m)
答:支柱A2P2的长度约为3.86m。
思考
如果不建立坐标系,能解决这个问题吗? P2 P A A1 A2 O A3 A4 B
将点D的横坐标-5代入上式,得y=3.1。 由于船在水面以上高3m,3<3.1,所以该船可以从 船下经过。 1 4.以B为原点,BC所在直线为x轴,线段BC长的 6 为单位长,建立坐标系。则
A(3,3 3 ), B(0,0),C(6,0), D(2,0),E(5, 3 )
直线AD的方程是 y 3 3(x 2) 3 (x 5) 3 直线BE的方程是 y 5
(2)圆心M(1,2),当截得弦长最小时,则 L⊥AM,由 1 k AM 2
L的方程为y-1=2(x-3)即2x-y-5=0。
习题答案
1.由已知,圆C的圆心坐标为(3,0),半径长 r=3,圆心到直线2x-y-2=0的距离是
| 2 3 0 2 | 4 d 5 5 5
直线2x-y-2=0被直线截得的弦长是
于是有
(a 10)2 b 2 r 2 2 2 2 (a 10) b r 2 2 2 a (b 4) r
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思考5:由上述计算可得|BC|=2|MN|,从而命题成 立.你能用平面几何知识证明这个命题吗?
B
C
A
M
N
E
D
理论迁移
例1 如图,在Rt△AOB中,|OA|=4,|OB|=3,
∠AOB=90°,点P是△AOB内切圆上任意一点,求
点P到顶点A、O、B的距离的平方和的最大值和最
小值。
yB
P
C
X
O
A
例2 如图,圆O1和圆O2的半径都等于1,圆心 距为4,过动点P分别作圆O1和圆O2的切线,切点为 M、N,且使得|PM|= 2 |PN|,试求点P的运动轨迹 是什么曲线?
y 14.52 4 10.5 3.86(m)
知识探究:直线与圆的方程在平面几何中的应用
问题III:已知内接于圆的四边形的对角线互相垂直, 求证:圆心到一边的距离等于这条边所对边长的 一半。
思考1:许多平面几何问题常利用“坐标法”来解 决,首先要做的工作是建立适当的直角坐标系, 在本题中应如何选取坐标系?
港口
台风
轮船
思考1:解决这个问题的本质是什么?
思考2:你有什么办法判断轮船航线是否经过台风 圆域?
思考3:如图所示建立直角坐标系,取10km为长度 单位,那么轮船航线所在直线和台风圆域边界所 在圆的方程分别是什么?
y
港 口
x
台o
轮
风
船
思考4: 直线4x+7y-28=0与圆x2+y2=9的位置关
思考2:如图所示建立直角坐标系,那么求支柱A2P2 的高度,化归为求一个什么问题?
y P2 P
x A A1 A2 O A3 A4 B
思考3:
取1m为长度单位,如何求圆拱所在圆的方程?
y
x2+(y+10.5)2=14.52
P2 P
x A A1 A2 OA3 A4 B
思考4:利用这个圆的方程可求得点P2的纵坐标是多 少?问题Ⅱ的答案如何?
《直线与圆的方程的应用》
教学目标
• 1、知识与技能 • (1)理解直线与圆的位置关系的几何性质; • (2)利用平面直角坐标系解决直线与圆的位置关
系;
• (3)会用“数形结合”的数学思想解决问题. • 2、过程与方法 • 用坐标法解决几何问题的步骤: • 第一步:建立适当的平面直角坐标系,用坐标和
问题提出
通过直线与圆的方程,可以确定直 线与圆、圆和圆的位置关系,对于生产、 生活实践以及平面几何中与直线和圆有 关的问题,我们可以建立直角坐标系, 通过直线与圆的方程,将其转化为代数 问题来解决.对此,我们必须掌握解决问 题的基本思想和方法.
识探究:
直线与圆的方程在实际生活中的应用
问题Ⅰ:一艘轮船在沿直线返回港口的途中,接到 气象台的台风预报:台风中心位于轮船正西70 km 处, 受影响的范围是半径长为30km的圆形区域. 已知港口位于台风中心正北40 km处,如果这艘轮 船不改变航线,那么它是否会受到台风的影响?
yP
M
O1 o
N
O2
x
方程表示问题中的几何元素,将平面几何问题转 化为代数问题;
• 第二步:通过代数运算,解决代数问题;
• 第三步:将代数运算结果“翻译”成几何结 论.
• 3、情态与价值观
• 让学生通过观察图形,理解并掌握直线与圆 的方程的应用,培养学生分析问题与解决问 题的能力.
• 教学重点、难点: • 重点与难点:直线与圆的方程的应用.
y
o
X
思考2:如图所示建立直角坐标系,设四边形的四 个顶点分别为点 A(a,0),B(0,b),C(c, 0), D(0,d),那么BC边的长为多少?
y B C oM
N
D
A x
思考3:四边形ABCD的外接圆圆心M的坐标如何?
y B C oM
N
D
A x
思考4:如何计算圆心M到直线AD的距离|MN|?
系如何?对问题Ⅰ应作怎样的回答?
港口
台风
轮船
问题Ⅱ:如图是某圆拱形桥一孔圆拱的示意图. 这个圆的圆拱跨度AB=20m,拱高OP=4m,建造时每 间隔4m需要用一根支柱支撑,求支柱A2P2的高度 (精确到0.01m)
P2 P
A A1 A2 O A3 A4 B
思考1:你能用几何法求支柱A2P2的高度吗?