煤气发电技术方案

合集下载

煤气发电工程施工方案

煤气发电工程施工方案

煤气发电工程施工方案一、项目概况1.1 项目名称:煤气发电工程施工1.2 项目地点:根据实际情况确定1.3 项目内容:本项目是以煤气作为燃料,通过燃烧发电的工程,主要包括煤气生成设备、发电设备、配套设施等。

1.4 项目规模:根据实际情况确定1.5 项目业主:根据实际情况确定1.6 项目施工单位:根据实际情况确定1.7 施工周期:根据实际情况确定1.8 施工费用预算:根据实际情况确定二、施工方案2.1 施工前期准备施工前期准备工作包括对施工场地的勘察、设计方案的审核、施工材料和设备的准备等。

2.1.1 场地勘察施工单位应派遣专业人员对施工场地进行详细勘察,包括场地的地质情况、周边环境、地形地貌等,为后续的施工工作提供可靠的数据支持。

2.1.2 设计方案审核施工单位对设计方案进行审核,确保设计方案符合国家规定和相关标准,同时与设计单位沟通,明确施工中可能涉及的关键问题和重点难点。

2.1.3 材料设备准备根据设计方案,施工单位进行必要的材料和设备的采购和准备工作,确保施工过程中有足够的物资支持。

2.2 施工流程2.2.1 煤气生成设备安装首先,对煤气生成设备进行就位调整,并进行固定和连接管线。

在此过程中需要严格按照设备安装要求进行操作,确保设备安装牢固可靠。

2.2.2 发电设备安装对发电设备进行就位调整,并进行固定和连接管线。

同时,对发电设备进行必要的启动和调试,确保设备能正常运行。

2.2.3 配套设施安装配套设施包括冷却设备、除尘设备、废气处理设备等,需要对这些设备进行安装和调试,以确保设备能够正常运行并满足环保要求。

2.2.4 电力输送线路施工电力输送线路施工需要根据实际情况进行规划和布置,确保输电线路能够正常稳定地输送电力。

2.2.5 系统调试和试运转在全部设备安装完成之后,对整个系统进行调试和试运转,以验证设备是否能够正常运行,同时对设备进行调整和优化,确保系统能够达到设计要求。

2.3 施工安全管理施工单位应制定详细的施工安全管理方案,确保在施工过程中遵守相关的安全规定,对施工现场进行全面的安全排查和管理,避免发生意外事故。

高温超高压煤气发电技术在钢铁企业的实际应用

高温超高压煤气发电技术在钢铁企业的实际应用

高温超高压煤气发电技术在钢铁企业的实际应用近年来,国家对工业企业实施了一系列节能减排的强制措施,国内各个钢铁企业生存压力巨大;另一方面,在目前钢铁企业产能过剩、整个行情萧条之际,成本的高低成为一个企业生存的命脉,各个钢铁企业开始探求多方面降低成本的措施。

某钢铁企业富余放散的高炉煤气及转炉煤气,响应国家节能减排的号召,建设一座1×35MW+40MW高温超高压余热电站,以有效回收利用企业富余煤气。

一、高温超高压煤气发电技术钢铁企业生产过程中会产生大量废烟气、废气(汽)、废液、废渣,这些都是重要的二次能源,可以再次被利用。

煤气发电技术可以充分利用富余的煤气发电使其变废为宝,化害为利,既获得了经济效益,又减少煤气放散造成的环境污染,符合国家节能减排的产业政策。

煤气发电技术主要是通过燃气锅炉燃烧厂区富余的煤气产生蒸汽,通过对蒸汽参数进行调节优化,将蒸汽供入蒸汽轮机发电。

目前,高温超高压煤气发电是一种效率高、技术成熟的钢厂余能利用方式,通过进一步提高蒸汽初参数和增加一次中间再热,尽可能提高机组的热效率。

二、企业富余能源情况及利用方案以某钢铁企业为例,该企业生产过程中存在大量的煤气放散现象,既严重污染环境,又造成大量能源浪费。

富余煤气资源情况见表1。

表1、某钢铁企业富余煤气资源情况根据煤气平衡计算,折合可利用富余高炉煤气资源约11×104Nm³/h,合8.8亿Nm³/a。

为了充分回收利用企业富余的高炉、转炉煤气,该企业增加了煤气锅炉及汽轮发电机组。

结合企业实际电负荷分配情况,并考虑企业将来煤气富余增多的情况,该工程采用130t/h高温超高压再热燃煤气锅炉及1×35MW+40MW凝汽式高温超高压汽轮发电机组,电站实际发电量为34MW,装机方案见图1。

按年利用7200h计算,机组年发电量可达2.448×108kWh,年外供电量2.27×108kWh。

舞钢中加钢铁煤气发电项目

舞钢中加钢铁煤气发电项目

舞钢中加钢铁煤气发电项目舞钢中加钢铁煤气发电项目是指在舞钢地区,利用钢铁生产过程中的高炉煤气作为燃料来发电的项目。

本文将从项目的背景、建设目标、技术实施、经济效益等方面进行详细介绍。

一、项目背景舞钢地区是中国重要的钢铁生产基地之一,拥有丰富的炼铁产能。

然而,钢铁生产过程中会产生大量的高炉煤气,这些煤气大多数只是被燃烧掉,没有得到有效利用,造成资源的浪费和环境污染。

为了解决这一问题,舞钢中加钢铁煤气发电项目应运而生。

二、建设目标舞钢中加钢铁煤气发电项目的主要建设目标是实现对高炉煤气的有效利用,提高能源利用效率,减少环境污染。

通过将高炉煤气转化为电能,为舞钢地区提供稳定可靠的电力供应,推动地方经济发展。

三、技术实施舞钢中加钢铁煤气发电项目主要采用以下技术实施方案:1. 高炉煤气净化技术:通过高炉煤气的净化处理,去除其中的灰尘、硫化氢等有害物质,确保煤气的质量符合发电要求。

2. 煤气发电技术:采用燃气轮机发电技术,将净化后的高炉煤气作为燃料,通过燃烧产生高温高压的气流,驱动轮机发电。

3. 余热回收技术:在煤气发电过程中,利用燃烧产生的热能,进行余热回收,提供给周边工业或居民供热用途,提高能源利用效率。

四、经济效益舞钢中加钢铁煤气发电项目的实施将带来丰富的经济效益:1. 节约能源资源:通过对高炉煤气的有效利用,替代传统发电方式,减少煤炭等能源的消耗,实现节能减排。

2. 提高钢铁企业竞争力:通过将高炉煤气转化为电能,为钢铁企业提供自给自足的电力供应,减少能源采购成本,提高企业竞争力。

3. 促进地方经济发展:舞钢地区作为钢铁产业基地,发展钢铁煤气发电项目将带动相关产业链的发展,增加就业机会,促进地方经济的繁荣。

4. 减少环境污染:有效利用高炉煤气,减少燃烧排放,降低大气污染物的排放量,改善环境质量。

五、项目前景舞钢中加钢铁煤气发电项目的实施具有广阔的市场前景和发展潜力。

随着钢铁产业的不断发展,高炉煤气的产量将不断增加,该项目将成为舞钢地区实现资源循环利用、促进可持续发展的重要途径之一。

钢铁企业富余煤气高效利用发电技术应用分析

钢铁企业富余煤气高效利用发电技术应用分析

钢铁企业富余煤气高效利用发电技术应用分析摘要:针对钢铁行业节能减排要求的不断提高,本文介绍了钢厂富余煤气发电技术的发展历程,对煤气高效利用发电系统的原理进行了分析,并针对典型装机规模主要技术指标进行了对比,通过应用超高温亚临界煤气发电技术可有效提高钢厂能源利用效率,降低企业生产能耗并减少污染物排放。

关键词:钢铁行业;节能减排;煤气发电;高效利用1概述钢铁企业在冶炼加工过程中会产生大量煤气资源,此部分煤气资源除用作钢铁主体工艺消耗外,尚有大量富余煤气可供回收利用。

为贯彻执行国家节能减排政策,利用富余煤气发电是钢铁企业煤气资源综合利用的主要思路。

煤气发电技术能有效利用钢铁企业富余煤气资源,为企业节能增效提供了较好的途径。

2钢厂富余煤气发电技术的发展历程近年来,由于钢铁企业节能增效任务的日益紧迫以及国家节能减排要求的不断提高,钢铁企业低热值煤气发电技术亦不断进步,逐步从中温中压向更高参数发展,发展至超高温亚临界中间再热参数系列。

表1 煤气发电技术发展历程及主要技术指标序号项目早期技第一代技术第二代技术第三代技术第四代技术术1主机参数中温中压或更低中温中压或次高温次高压高温高压高温超高压带中间再热超高温亚临界带中间再热2典型机组规模MW12255035~13580~1503锅炉容量t/h75130220130~440260~425全厂热效率 %≤2424~2830~3236~3840~424煤气单耗Nm3/kW.h(760kcal/Nm3)4.534.53~4.043.77~3.543.14~2.982.70~2.83第四代超高温亚临界中间再热发电技术综合热效率较高,全厂综合热效率约40.5%,根据电厂传统容量参数匹配原则,其主要应用于200MW及以上大型机组,但近年来,由于节能减排以及装备升级改造任务日益紧迫,以往应用于大型机组的超高温亚临界中间再热技术逐渐向小型化发展,目前80MW~150MW等级中小型超高温亚临界中间再热发电机组已有成熟的技术和业绩,截至2020年底,超高温亚临界发电机组总装机70多套,其中中冶南方都市环保公司设计及总承包50余套,已投运20多套。

燃气蒸汽联合循环发电技术的研究与应用

燃气蒸汽联合循环发电技术的研究与应用

燃气蒸汽联合循环发电技术的研究与应用摘要:本文以燃气蒸汽联合循环发电机组为例进行介绍,通过企业生产过程中产生的富余焦炉煤气和高炉煤气为燃料,采用先进技术、效率高,实现了将放散的煤气全部回收进行发电,解决了能源浪费和环境污染问题。

关键词:燃气轮机;蒸汽轮机;联合循环;发电技术引言随着能源发电技术的不断发展,人们环保意识的日益增强,燃气发电技术得到了快速的发展。

常规简单循环的燃气发电系统主要是通过空气经过压气机压缩到一定的气压后,然后进入燃烧室与喷入的燃料混合燃烧,形成高温燃气后进入透平膨胀机做功,推动透平转子带着压气机一起旋转,并带动发电机做功,输出电能。

因此当燃气机温度较高时,就会导致热能损失,降低循环的热效率。

一、燃气蒸汽联合循环的意义根据我国当前的用电情况,为了满足社会用电需求及能源消耗增多等情况,对于对节能发电模式的期望越来越高。

为了能同时满足这两方面的需求,热电厂在制定电能生产工艺时,需对传统发电模式进行改造,采用先进的电力生产技术,合理利用煤燃料燃烧生产热能、电能。

联合循环技术的运用对热电厂发电发热有着重要的意义。

1、解决能源问题能源作为社会经济的发展的主要因素,热电厂采用传统发电模式不仅无法获得理想的生产效率,也导致煤燃料资源的浪费。

联合循环技术用于热电厂发电,既能实现“煤的洁净燃烧”,也能提高热电厂的发电效率。

联合循环技术对燃气轮机循环、蒸汽轮机循环进行优化改进,把两者组合到一起构成综合性的热力循环。

不仅科学利用煤燃料发电,也促进了机组运行效率、机组功率的提高。

2、合理利用燃气煤燃料燃烧后产生燃气,若发电厂能充分利用燃气也可将其作为发电的燃料。

对煤燃烧产生的燃气利用率较低,降低了电能生产的产量。

联合循环技术对燃烧锅炉、汽轮机组等设备的连接进行改进,设置了循环控制系统以及时集中燃气加以燃烧,提高了热电厂发电的效率。

如联合循环技术里燃气轮机能充分燃烧气化炉产生的中、低热值煤气,保证了燃气的合理运用。

煤气燃气轮机发电系统介绍

煤气燃气轮机发电系统介绍

海拔高度
5m
燃机进口压损
100mmH2O
燃机出口压损
100mmH2O
燃机进口温度
15℃
设计大气压力
1.013bar
设计大气相对湿度
60%
燃机工况点
全工况
净输出功
5500kW
燃料流量
61.79GJ/Hr
热耗率
11838kJ/kW-hr
涡轮排气温度
510℃
焦炉煤气为低热值燃料,且H2含量较高,直接起动安全性较差,故燃气轮机在 设计中采用双燃料系统,先用柴油启动,待起动稳定全速后切换到焦炉气运行。
厂用电负荷分别采用6KV和0.4KV电压等级。其中煤气压缩机 组等大型电动机采用6KV电压;其它负荷采用0.4KV电压(中性 点直接接地、动力与照明共用系统)。燃气轮机发电机组、余 热锅炉、汽轮发电机组等辅机由各自的6/0.4KV厂用变电器供电 ,即0.4KV厂用按主热力设备分段供电,分别由6KV母线引接。
2.4余热锅炉
余热锅炉采用双锅筒具有螺旋翅片管 受热面一体化除氧器的双压自然循环 结构,模块化设计,卧式布置,锅炉 稳定性好,抗震性强,锅炉的主要部 件钢架支承,锅炉运行技术要求低, 操作管理方便。
2.5煤气增压系统
煤气增压机组电压等级为发电机组出 口电压等级,受环境要求需设计为增 安型防爆等级;在煤气压缩机后设足 够容量的煤气缓冲罐。
燃气轮机发电系统设计
燃气轮机热电联产系统工艺流程: 此工艺流程为:焦炉煤气净化后,经压缩机压缩
提高压力到燃机需求;燃气轮机通过焦炉煤气燃烧作 功发电供生产用电,同时排出高温烟气;余热锅炉吸 收燃机烟气余热;将水处理设备提供锅炉的除盐水加 热为蒸汽供生产车间工艺使用;构成燃气轮机热电联 产系统(动力一期生产系统)。若提高余热锅炉蒸汽 设计参数为高品过热蒸汽,在余热锅炉后再加蒸汽轮 发电机组发电、供汽,就构成燃气轮机热电联产联合 循环发电系统(动力二期生产系统)。

高温超高压燃烧高炉和焦炉煤气发电厂设计方案

高温超高压燃烧高炉和焦炉煤气发电厂设计方案

( 1 ) 锅 炉煤气系统 : 锅 炉燃 料 为 高 炉 煤 气 和 焦 炉 煤 气 , 旋 流 式 水 平 燃 烧 器 锅 炉 前 后 墙 对 冲布 置 . 其 中 高 炉 煤 气 燃 烧 器
炉。 为利用富余焦 炉煤气 和高炉煤气 , 结合其 电力需 求 , 建设 规模为 1台 2 6 2 t / h高温超高压燃 烧 ( 高炉煤 气和焦 炉煤气 ) 锅炉加 1台 7 8 MW 高温超 高压 一次 中间再 热凝 汽式汽 轮发
式) 、 U型 水 封 , 气 动快关 阀 , 各 层分支 管道上设 有手 动蝶 阀 、 调节 阀和气动快 速切 断阀。连接锅 炉的高炉煤 气 、 焦 炉 煤 气 母 管上设有气 动快速放散 阀 ( 安 全放散 系统 ) 。
2 设备选 型
主机 型号和参数 分述如下 :
( 1 ) 燃气 锅 炉 : 1台 ; 型号 : N G一 2 6 2 / 1 3 . 7 一 Q; 型式 : 单 锅
3 设 计方 案
3 . 1 煤气 成分 分 析
建 设单 位提供 的焦 炉煤气 和 高炉煤 气 的成 分分 析详 见
表 1 。
表1 焦炉煤气和高炉煤气主要成 分分析表
系统 。 氮气 由钢铁厂管 网送 入 . 接至 电厂设 计界限 1 m处 。 氮
气 和煤气管道 连接处装有 闸阀及手动 盲板 阀 。 当通 氮 气 时 才 能 把 氮 气 管 道 和 煤 气 管 道 联 通 :停 用 时 必 须 断 开 或 堵 盲 板 , 以 防 止 煤 气 窜入 氮 气 管 道 。
热: 空气 预热 器 : 热管 式空气 预热 器 ; 燃烧 方式 : 前 后墙 对 冲
布 置旋 流式 燃 烧器 ; 点火 方 式 : 自动 点 火 , 点 火 采 用 焦 炉 煤

TRT高炉煤气余压发电系统方案

TRT高炉煤气余压发电系统方案

煤气回收工艺
OG〔湿法工艺:冶炼中产生的近1450℃煤气,通过冷却烟道冷却到约900℃后进入溢流文氏管, 使煤气中80%左右的固体颗粒脱离后进人重力脱水器脱水,煤气温度降至约70℃.在风机的抽引 下煤气流速突增并继续进入R—D文氏管,经水雾处理去除8μm以上的固体颗粒后再水雾分离得 到纯净的煤气.系统设置有气体分析仪,当煤气合格〔CO > 35%、O2<2%时三通阀切换至回收状 态,煤气借助风机后的正压,经水封逆止阀、V型水封送入气柜.如煤气不合格则三通阀切换至放 散状态,经放散塔点火燃烧后排放到大气中.
➢ 对于1000-2000m3高炉配套湿法TRT 每年可回收2400-4800万度电
➢ 对于2000-3200m3高炉配套湿法TRT 每年可回收4800-9000万度电
➢ 对于3200-4300m3高炉配套湿法TRT 每年可回收9000-15000万度电
➢如果高炉工艺采用干法除尘,配套干法TRT,则可以较湿法TRT同比 提高25-50%的发电量.同时,每套机组年可节省320-640万吨除尘用 水,可以节约新水2-3万吨,减少污泥处理量约2万吨. ➢ 采用TRT发电,每年一套机组可避免由于燃煤发电而向大气排放 约2万吨的CO2气体量,这对改善日益严重的温室效应和酸雨的环境 污染都将发挥积极的作用.
• 第三级
– 第四级 » 第五级
让我们共同进步
煤气净化回收与利用技术按净化方式分为湿法和干法2大类 干法系统包括烟气冷却净化系统与煤气回收系统.由活动烟罩捕集并经 汽化冷却烟道冷却至1600℃左右的转炉烟气,首先进入蒸发冷却器降温 和初除尘,温度降至180℃~200℃左右,进入静电除尘器进行精除尘.然 后根据CO含量、O2含量由阀门切换站进行煤气回收或放散操作.回收期 煤气需经冷却器二次冷却,温度降至70℃后进入煤气柜回收;放散期煤 气需点火燃烧,排放气体的含尘浓度≤15mg/Nm3.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汉钢实业股份有限公司高炉煤气发电站工程可行性报告广州梓越工程管理有限公司2014年03月目录第一章概述1.1 建设单位1.2 项目概况1.3 高炉煤气发电站建设的必要性和合理性1.4 设计依据及基础资料1.5 设计范围1.6 主要设计技术原则第二章热负荷第三章电力系统3.1 当地电网现状3.2 电力、电量平衡3.3 发电站发电机接入电力系统方案第四章燃料供应第五章机组选型5.1 机组选型5.2 机组参数及主要技术数据第六章厂址条件6.1 自然地理概况6.2 工程地质6.3 交通运输6.4 发电站水源第七章总体方案7.1总图运输7.2 煤气及低压蒸汽输送7.3 燃烧系统7.4 热力系统7.5 主厂房布置7.6 暖通部分7.7 电气部分7.8 水工部分7.9 化学水处理系统7.10 热工控制7.11 土建部分7.12 电讯设施第八章环境保护8.1 设计依据8.2 环境概况8.3 工程概况8.4 主要污染源、污染物8.5 污染控制方案8.6 厂区绿化8.7 环境监测和环保管理机构8.8 环保投资8.9 环境影响简略分析第九章劳动安全与工业卫生9.1 设计依据9.2 工程概况9.3 生产过程中职业危险、危害因素分析9.4劳动安全卫生防范措施9.5辅助用室设置9.6 劳动安全卫生机构9.7 劳动安全卫生投资9.8 劳动安全卫生预期效果分析第十章节能与综合利用资源10.1节能10.2 综合利用第十一章消防11.1设计依据11.2工程概况11.3工程火灾因素分析11.4防范措施11.5消防设施投资11.6防范措施预期效果第十二章生产组织及劳动定员12.1 实施条件及轮廓进度12.2 劳动定员第一章概述1.1 建设单位项目名称:陕西汉钢股份有限公司高炉煤气发电站工程企业名称:陕西汉钢股份有限公司(以下简称汉钢)项目地址:陕西汉中市勉县1.2 项目概况汉钢位于江西省九江市湖口县牛角芜金沙工业园区,目前具备2×180m2烧结机、2×1780m3高炉、2×120t转炉等装备,具有年产约400万吨钢、400万吨材的生产能力。

汉钢为积极响应国家产业结构优化升级的要求,在九江分公司老厂区内,拆除现有的小高炉、小转炉和小烧结机等能耗高的设备,建设1×238m2烧结机、1×1080m3高炉、2×60t转炉等大中型设备。

汉钢老厂区产生的高炉煤气、转炉煤气除供炼铁热风炉、汽动鼓风机站和喷煤自用以及棒、线材轧钢车间加热炉使用外,尚剩余部分高炉煤气和转炉煤气。

汉钢老厂区正在建设的1080 m3高炉配套的鼓风机站为汽动鼓风机站,设置有2台75t/h中温中压高炉煤气锅炉,1套AV63-15型汽动鼓风机组,预留本套汽轮发电机组的位置。

为充分发挥备用锅炉的设备能力,建设一套25MW汽轮发电机组,在生产中加强煤气管理和科学调度,发电机组年平均功率23MW,在冬季工况条件下,可满负荷运行。

1.3 高炉煤气发电站建设的必要性和合理性(1)是贯彻循环经济的必然产物。

循环经济是一种以资源的高效利用和循环利用为核心,以“减量化、再利用、再循环”为原则,以低消耗、低排放、高效率为基本特征,符合可持续发展理念的经济增长模式,是兼顾发展经济、节约资源和保护环境的一体化战略。

循环经济首先是一种新的发展理念,其次是一种新的经济增长方式,然后才是一种新的污染治理模式,其实质是生态经济。

因此,循环经济的衡量标准是:必须以“减量”和“循环”为主要手段,通过资源利用上的减量和将主要废物商品化提高资源利用率,达到节约资源、保护环境的目的。

(2)是公司降低生产成本的重要措施。

高炉煤气发电站将放散掉的高炉煤气、转炉煤气转化为电能,可以显著降低公司的生产成本,增加企业的经济效益和提高企业的综合竟争力。

(3)是改善公司电力供应紧张的重要措施。

公司现有的电力供应不是很宽裕,而将本企业生产产生的煤气转化为宝贵的电能正是缓解电力供应紧张的重要措施。

1.4 设计依据及基础资料1.4.1设计依据1、江西萍钢实业股份有限公司委托;2、《热电联产项目可行性研究技术规定》。

1.4.2 设计基础资料(1)自然条件极端最高气温40.3℃极端最低气温-10.3℃最热月平均温度33.7℃最冷月平均温度 1.5℃最热月平均湿度84%最冷月平均湿度78%一日最大降雨量281.6mm年平均降雨量1411.9mm地震基本烈度 6 度1.5 设计范围本工程主要对电厂生产所必须的燃料供应、循环水等供应、电气出线、高炉煤气发电工艺等进行分析,最终推荐技术可行、经济合理的建设高炉煤气发电站方案。

设计内容具体包括:电气系统、工艺系统、热工控制系统、循环水系统、通风系统、电讯系统、生活消防设施,以及全厂建筑、结构、施工组织、投资估算、经济效益分析等。

本工程的环境影响评价、工程地质勘察、地形测绘及接入系统、地基处理、站区1米外所有设施等不包含在本方案范围内。

1.6 主要设计技术原则本电站按照《小型火力发电厂设计规范》确定的设计原则及建设单位提出的建设标准开展设计,充分考虑安全可靠,方便施工和操作运行措施。

坚持节省投资、经济实用设计指导思想,设计力求达到国内同行业较先进水平。

第二章热负荷本工程不考虑对外热负荷。

第三章电力系统3.1 当地电网现状九江分公司厂区内已建成有1座220kV总降压变电所和烧结、制氧、炼铁、炼钢、轧钢共5座35kV区域变电所。

总降压变电所装设有220/35kV、120MVA降压变压器共3台,2回220kV 供电电源采用架空线路引自附近电力系统区域变电站。

3.2 电力、电量平衡全厂最大用电负荷约为251.39MW,全厂年用电量约为14.937×108kWh。

从节约能源的角度考虑,利用高炉煤气、转炉煤气灯余热资源发电,实现循环经济方式发展。

工艺发电方案为:1×25MW汽轮发电机组。

发电机组在扣除厂用电及水处理用电外,可外供最大电力为20.95MW,年发电量约17600×104kWh, 年外供电能约16720×104kWh。

电力平衡如下表:3.3 发电站发电机接入电力系统方案3.3.1 发电机出线接线方案根据汉钢现有电压等级,发电机电压采用10.5kV。

拟将发电机出线接入炼铁区域10kV配电系统,直接向负荷供电,以减少升压和降压的投资和电能损耗,并增加重要负荷供电的可靠性。

发电站与炼铁区域变电所有一条10kV电缆联络线。

为了使发电机接入配电系统后总的短路容量限制在断路器允许的开断容量以下,在发电机的联络线上,接入一组并联有FSR快速开关的电抗器。

正常运行时电抗器被短接,发电机无功功率得以充分输出。

短路时FSR快速断开,负荷侧断路器的开断容量受电抗器限制到允许范围内。

3.3.2 发电站循环水泵房供电方案发电站两段10kV母线除分别供电给发电站厂用电外,还向循环水泵站供电。

第四章燃料供应本工程为利用汽动鼓风机站内备用锅炉的能力设置汽轮发电机组,充分消纳厂区的富裕煤气,煤气的供应已在汽动鼓风机站系统中考虑,本工程不再描述煤气供应。

第五章机组选型5.1机组选型5.1.1 中温中压汽轮发电机组选型目前中小型汽轮发电机组参数一般有中温中压参数(3.82MPa、450℃)和次高压参数(5.4MPa、485℃)可供选择。

次高压参数机组的效率,理论上比中温中压参数机组高,但由于次高压的机炉等主机设备费用和管道及附件费用较高,且基建投资费用比中温中压参数要高,同时锅炉给水泵电耗要增加;设备日常的运行、维护和检修成本也将增加,按发电设备年利用小时数6000小时计,经理论计算次高压参数机组的效率提高带来的经济效益比中压参数机组多投入的投资约7~8年可以回收。

我公司设计的天津大沽化工厂热电站一期(4×35t/h次高压链条锅炉、2×B6MW背压机)是国内中小机组第一个采用次高压参数机组的工程,该项目于1985年获化工部优秀节能奖。

但据了解次高压参数机组运行实际经济效益很难达到理论计算的效益,因此次高压参数机组未能被广泛采用。

因此,本工程汽轮机组选用中温中压参数的机组。

考虑到汉钢生产、生活用低压蒸汽已由余热蒸汽供应,发电站基本没有热用户,本工程汽轮发电机组选用纯凝机组。

5.1.2鼓风机实际参数根据2010年10月份萍钢安源分公司1080m3高炉和其他钢铁企业同级别高炉的运行参数:萍钢安源分公司1080m3高炉配套鼓风机为AV63-15型汽动鼓风机组,在富氧6000N m3/h,鼓风机实际运行风量~2500N m3/min,风压0.33~0.34MPa。

此时汽轮机的实际耗汽量51~52t/h,高炉日产铁水3000~3100t,利用系数为2.87-2.9,达到高炉的额定产量。

新余钢铁公司1050 m3高炉配套鼓风机为AV63-15型汽动鼓风机组,在富氧率3%的前提下,鼓风机实际运行风量~2700N m3/min,风压0.32MPa。

此时汽轮机的实际耗汽量~55t/h,高炉日产铁水3000~3100t,利用系数为2.87-2.9,达到高炉的额定产量。

综合上述2座同级别高炉的实际运行参数,预计本工程高炉鼓风机的年平均耗汽量应不超过55 t/h。

鼓风机站内现设有2台75t/h,锅炉能力富裕为95t/h,可装机容量为23MW。

5.1.3装机方案根据汉钢设备的实际情况,方案如下:1×25MW汽轮机,配套25MW的发电机。

发电站的主要技术经济指标见下表5.1-1。

表5.1-1 高炉煤气发电站技术经济指标表5.2 机组参数及主要技术数据(1)25MW纯凝汽轮机及发电机汽轮机:台数:1台型号:N25-3.43型汽轮机额定功率:25MW汽轮机年平均功率:23MW主汽门前蒸汽压力: 3.43 MPa(a)最高: 3.62 MPa(a)最低: 3.14 MPa(a)主汽门前蒸汽温度: 435 ℃最高: 445 ℃最低: 420 ℃额定进汽量:62t/h运转层标高7.00m冷却水温度正常:33 ℃最高:35 ℃给水温度:104 ℃额定排汽压力:0.005 MPa(a)汽轮机额定转速3000r/min发电机:台数:1台型号:QFW-25-2额定发电量25 MW额定电压10.5 kV额定电流1718 A频率50 Hz转速3000 r/min相数3接法Y绝缘等级F级制造F级考核励磁方式无刷励磁效率97.4%冷却方式空冷第六章厂址条件6.1 自然地理概况萍钢汉钢高炉煤气发电站工程建于九钢炼铁厂厂区内,厂区位于位于九江市湖口县牛角湖金沙工业园区,厂区北侧与长江南岸防护堤相连,东侧为拟建的集装箱码头,南侧紧邻正在建设中的发展大道,西部为现有的九江钢厂,二者之间由泄洪渠分开。

该区域的环境条件如下:极端最高气温40.3℃极端最低气温-10.3℃最热月平均温度33.7℃最冷月平均温度 1.5℃最热月平均湿度84%最冷月平均湿度78%一日最大降雨量281.6mm年平均降雨量1411.9mm6.2 工程地质地震基本烈度为6 度。

相关文档
最新文档