LL(1)中First和Follow集合的求法
first集follow集求解算法及构造预测分析表

构造预测分析表源程序:#include<stdlib.h>#include<stdio.h>#include<string.h>/*******************************************/int count=0; /*分解的产生式的个数*/int number; /*所有终结符和非终结符的总数*/char start; /*开始符号*/char termin[50]; /*终结符号*/char non_ter[50]; /*非终结符号*/char v[50]; /*所有符号*/char left[50]; /*左部*/char right[50][50]; /*右部*/char first[50][50],follow[50][50]; /*各产生式右部的FIRST和左部的FOLLOW 集合*/char first1[50][50]; /*所有单个符号的FIRST集合*/char select[50][50]; /*各单个产生式的SELECT集合*/char f[50],F[50]; /*记录各符号的FIRST和FOLLOW是否已求过*/char empty[20]; /*记录可直接推出@的符号*/char TEMP[50]; /*求FOLLOW时存放某一符号串的FIRST集合*/int validity=1; /*表示输入文法是否有效*/int ll=1; /*表示输入文法是否为LL(1)文法*/int M[20][20]; /*分析表*/char choose; /*用户输入时使用*/char empt[20]; /*求_emp()时使用*/char fo[20]; /*求FOLLOW集合时使用*/ /*******************************************判断一个字符是否在指定字符串中********************************************/int in(char c,char *p){int i;if(strlen(p)==0)return(0);for(i=0;;i++){if(p[i]==c)return(1); /*若在,返回1*/if(i==strlen(p))return(0); /*若不在,返回0*/}}/*******************************************得到一个不是非终结符的符号********************************************/ char c(){char c='A';while(in(c,non_ter)==1)c++;return(c);}/*******************************************分解含有左递归的产生式********************************************/void recur(char *point){ /*完整的产生式在point[]中*/ int j,m=0,n=3,k;char temp[20],ch;ch=c(); /*得到一个非终结符*/k=strlen(non_ter);non_ter[k]=ch;non_ter[k+1]='\0';for(j=0;j<=strlen(point)-1;j++){if(point[n]==point[0]){ /*如果'|'后的首符号和左部相同*/ for(j=n+1;j<=strlen(point)-1;j++){while(point[j]!='|'&&point[j]!='\0')temp[m++]=point[j++];left[count]=ch;memcpy(right[count],temp,m);right[count][m]=ch;right[count][m+1]='\0';m=0;count++;if(point[j]=='|'){n=j+1;break;}}}else{ /*如果'|'后的首符号和左部不同*/ left[count]=ch;right[count][0]='@';right[count][1]='\0';count++;for(j=n;j<=strlen(point)-1;j++){if(point[j]!='|')temp[m++]=point[j];else{left[count]=point[0];memcpy(right[count],temp,m);right[count][m]=ch;right[count][m+1]='\0';printf(" count=%d ",count); m=0;count++;}}left[count]=point[0]; memcpy(right[count],temp,m); right[count][m]=ch;right[count][m+1]='\0';count++;m=0;}}}void non_re(char *point){int m=0,j;char temp[20];for(j=3;j<=strlen(point)-1;j++) {if(point[j]!='|')temp[m++]=point[j];else{left[count]=point[0];memcpy(right[count],temp,m); right[count][m]='\0';m=0;count++;}}left[count]=point[0];memcpy(right[count],temp,m); right[count][m]='\0';count++;m=0;}/*******************************************读入一个文法********************************************/char grammer(char *t,char *n,char *left,char right[50][50]) {char vn[50],vt[50];char s;char p[50][50];int i,j,k;printf("请输入文法的非终结符号串:");scanf("%s",vn);getchar();i=strlen(vn);memcpy(n,vn,i);n[i]='\0';printf("请输入文法的终结符号串:");scanf("%s",vt);getchar();i=strlen(vt);memcpy(t,vt,i);t[i]='\0';printf("请输入文法的开始符号:");scanf("%c",&s);getchar();printf("请输入文法产生式的条数:");scanf("%d",&i);getchar();for(j=1;j<=i;j++){printf("请输入文法的第%d条(共%d条)产生式:",j,i); scanf("%s",p[j-1]);getchar();}for(j=0;j<=i-1;j++)if(p[j][1]!='-'||p[j][2]!='>'){ printf("\ninput error!");validity=0;return('\0');} /*检测输入错误*/for(k=0;k<=i-1;k++){ /*分解输入的各产生式*/if(p[k][3]==p[k][0])recur(p[k]);elsenon_re(p[k]);}return(s);}/*******************************************将单个符号或符号串并入另一符号串********************************************/void merge(char *d,char *s,int type){ /*d是目标符号串,s是源串,type=1,源串中的' @ '一并并入目串; type=2,源串中的' @ '不并入目串*/int i,j;for(i=0;i<=strlen(s)-1;i++)if(type==2&&s[i]=='@');else{for(j=0;;j++){if(j<strlen(d)&&s[i]==d[j]) break;if(j==strlen(d)) {d[j]=s[i];d[j+1]='\0';break;}}}}}/*******************************************求所有能直接推出@的符号********************************************/ void emp(char c){ /*即求所有由' @ '推出的符号*/ char temp[10];int i;for(i=0;i<=count-1;i++){if(right[i][0]==c&&strlen(right[i])==1){temp[0]=left[i];temp[1]='\0';merge(empty,temp,1);emp(left[i]);}}}/*******************************************求某一符号能否推出' @ '********************************************/int _emp(char c){ /*若能推出,返回1;否则,返回0*/ int i,j,k,result=1,mark=0;char temp[20];temp[0]=c;temp[1]='\0';merge(empt,temp,1);if(in(c,empty)==1)return(1);for(i=0;;i++){if(i==count)return(0);if(left[i]==c) /*找一个左部为c的产生式*/ {j=strlen(right[i]); /*j为右部的长度*/if(j==1&&in(right[i][0],empty)==1)return(1);else if(j==1&&in(right[i][0],termin)==1)return(0);else{for(k=0;k<=j-1;k++)if(in(right[i][k],empt)==1) mark=1;if(mark==1)continue;else{for(k=0;k<=j-1;k++){result*=_emp(right[i][k]);temp[0]=right[i][k];temp[1]='\0';merge(empt,temp,1);}}}if(result==0&&i<count)continue;else if(result==1&&i<count)return(1);}}}/******************************************* 判断读入的文法是否正确********************************************/ int judge(){int i,j;for(i=0;i<=count-1;i++){if(in(left[i],non_ter)==0){ /*若左部不在非终结符中,报错*/printf("\nerror1!");validity=0;return(0);}for(j=0;j<=strlen(right[i])-1;j++){if(in(right[i][j],non_ter)==0&&in(right[i][j],termin)==0&&right[i][j]!='@') { /*若右部某一符号不在非终结符、终结符中且不为' @ ',报错*/ printf("\nerror2!");validity=0;return(0);}}}return(1);}/*******************************************求单个符号的FIRST********************************************/void first2(int i){ /*i为符号在所有输入符号中的序号*/ char c,temp[20];int j,k,m;c=v[i];char ch='@';emp(ch);if(in(c,termin)==1) /*若为终结符*/{first1[i][0]=c;first1[i][1]='\0';}else if(in(c,non_ter)==1) /*若为非终结符*/{for(j=0;j<=count-1;j++){if(left[j]==c){if(in(right[j][0],termin)==1||right[j][0]=='@') {temp[0]=right[j][0];temp[1]='\0';merge(first1[i],temp,1);}else if(in(right[j][0],non_ter)==1){if(right[j][0]==c)continue;for(k=0;;k++)if(v[k]==right[j][0])break;if(f[k]=='0'){first2(k);f[k]='1';}merge(first1[i],first1[k],2);for(k=0;k<=strlen(right[j])-1;k++){empt[0]='\0';if(_emp(right[j][k])==1&&k<strlen(right[j])-1){for(m=0;;m++)if(v[m]==right[j][k+1])break;if(f[m]=='0'){first2(m);f[m]='1';}merge(first1[i],first1[m],2);}else if(_emp(right[j][k])==1&&k==strlen(right[j])-1) {temp[0]='@';temp[1]='\0';merge(first1[i],temp,1);}elsebreak;}}}}}f[i]='1';}/******************************************* 求各产生式右部的FIRST********************************************/ void FIRST(int i,char *p){int length;int j,k,m;char temp[20];length=strlen(p);if(length==1) /*如果右部为单个符号*/ {if(p[0]=='@'){if(i>=0){first[i][0]='@';first[i][1]='\0';}else{TEMP[0]='@';TEMP[1]='\0';}}else{for(j=0;;j++)if(v[j]==p[0])break;if(i>=0){memcpy(first[i],first1[j],strlen(first1[j])); first[i][strlen(first1[j])]='\0';}else{memcpy(TEMP,first1[j],strlen(first1[j]));TEMP[strlen(first1[j])]='\0';}}}else /*如果右部为符号串*/{for(j=0;;j++)if(v[j]==p[0])break;if(i>=0)merge(first[i],first1[j],2);elsemerge(TEMP,first1[j],2);for(k=0;k<=length-1;k++){empt[0]='\0';if(_emp(p[k])==1&&k<length-1){for(m=0;;m++)if(v[m]==right[i][k+1])break;if(i>=0)merge(first[i],first1[m],2);elsemerge(TEMP,first1[m],2);}else if(_emp(p[k])==1&&k==length-1) {temp[0]='@';temp[1]='\0';if(i>=0)merge(first[i],temp,1);elsemerge(TEMP,temp,1);}else if(_emp(p[k])==0)break;}}}/******************************************* 求各产生式左部的FOLLOW********************************************/ void FOLLOW(int i){int j,k,m,n,result=1;char c,temp[20];c=non_ter[i]; /*c为待求的非终结符*/temp[0]=c;temp[1]='\0';merge(fo,temp,1);if(c==start){ /*若为开始符号*/temp[0]='#';temp[1]='\0';merge(follow[i],temp,1);}for(j=0;j<=count-1;j++){if(in(c,right[j])==1) /*找一个右部含有c的产生式*/ {for(k=0;;k++)if(right[j][k]==c)break; /*k为c在该产生式右部的序号*/for(m=0;;m++)if(v[m]==left[j])break; /*m为产生式左部非终结符在所有符号中的序号*/ if(k==strlen(right[j])-1){ /*如果c在产生式右部的最后*/if(in(v[m],fo)==1){merge(follow[i],follow[m],1);continue;}if(F[m]=='0'){FOLLOW(m);F[m]='1';}merge(follow[i],follow[m],1);}else{ /*如果c不在产生式右部的最后*/for(n=k+1;n<=strlen(right[j])-1;n++){empt[0]='\0';result*=_emp(right[j][n]);}if(result==1){ /*如果右部c后面的符号串能推出^*/ if(in(v[m],fo)==1){ /*避免循环递归*/merge(follow[i],follow[m],1);continue;}if(F[m]=='0'){FOLLOW(m);F[m]='1';}merge(follow[i],follow[m],1);}for(n=k+1;n<=strlen(right[j])-1;n++)temp[n-k-1]=right[j][n]; temp[strlen(right[j])-k-1]='\0';FIRST(-1,temp);merge(follow[i],TEMP,2);}}}F[i]='1';}/*******************************************判断读入文法是否为一个LL(1)文法********************************************/int ll1(){int i,j,length,result=1;char temp[50];for(j=0;j<=49;j++){ /*初始化*/first[j][0]='\0';follow[j][0]='\0';first1[j][0]='\0';select[j][0]='\0';TEMP[j]='\0';temp[j]='\0';f[j]='0';F[j]='0';}for(j=0;j<=strlen(v)-1;j++)first2(j); /*求单个符号的FIRST集合*/ printf("\n各非终结符导出的first集:");for(j=0;j<=strlen(v)-1;j++)printf("%c:%s ",v[j],first1[j]);printf("\n能导空的非终结符集合:%s",empty);// printf("\n_emp:");//for(j=0;j<=strlen(v)-1;j++)// printf("%d ",_emp(v[j]));for(i=0;i<=count-1;i++)FIRST(i,right[i]); /*求FIRST*/for(j=0;j<=strlen(non_ter)-1;j++){ /*求FOLLOW*/if(fo[j]==0){fo[0]='\0';FOLLOW(j);}}//printf("\nfirst:");//for(i=0;i<=count-1;i++)// printf("%s ",first[i]);printf("\nfollow集合:");for(i=0;i<=strlen(non_ter)-1;i++)printf("%s ",follow[i]);for(i=0;i<=count-1;i++){ /*求每一产生式的SELECT集合*/ memcpy(select[i],first[i],strlen(first[i]));select[i][strlen(first[i])]='\0';for(j=0;j<=strlen(right[i])-1;j++)result*=_emp(right[i][j]);if(strlen(right[i])==1&&right[i][0]=='@')result=1;if(result==1){for(j=0;;j++)if(v[j]==left[i])break;merge(select[i],follow[j],1);}}printf("\nselect集合顺序是:");for(i=0;i<=count-1;i++)printf("%s ",select[i]);memcpy(temp,select[0],strlen(select[0]));temp[strlen(select[0])]='\0';for(i=1;i<=count-1;i++){ /*判断输入文法是否为LL(1)文法*/ length=strlen(temp);if(left[i]==left[i-1]){merge(temp,select[i],1);if(strlen(temp)<length+strlen(select[i]))return(0);}else{temp[0]='\0';memcpy(temp,select[i],strlen(select[i])); temp[strlen(select[i])]='\0';}}return(1);}/*******************************************构造分析表M********************************************/ void MM(){int i,j,k,m;for(i=0;i<=19;i++)for(j=0;j<=19;j++)M[i][j]=-1;i=strlen(termin);termin[i]='#'; /*将#加入终结符数组*/ termin[i+1]='\0';for(i=0;i<=count-1;i++){for(m=0;;m++)if(non_ter[m]==left[i])break; /*m为产生式左部非终结符的序号*/ for(j=0;j<=strlen(select[i])-1;j++){if(in(select[i][j],termin)==1){for(k=0;;k++)if(termin[k]==select[i][j])break; /*k为产生式右部终结符的序号*/ M[m][k]=i;}}}}/*******************************************判断符号串是否是该文法的句型********************************************/void syntax(){int i,j,k,m,n,p,q;char ch;char S[50],str[50];printf("请输入该文法的句型:");scanf("%s",str);getchar();i=strlen(str);str[i]='#';str[i+1]='\0';S[0]='#';S[1]=start;S[2]='\0';j=0;ch=str[j];while(1){if(in(S[strlen(S)-1],termin)==1){if(S[strlen(S)-1]!=ch){printf("该符号串不是文法的句型!");return;}else if(S[strlen(S)-1]=='#'){printf("该符号串是文法的句型."); return;}else{S[strlen(S)-1]='\0'; j++;ch=str[j];}}else{for(i=0;;i++)if(non_ter[i]==S[strlen(S)-1]) break;for(k=0;;k++){if(termin[k]==ch)break;if(k==strlen(termin)){printf("词法错误!");return;}}if(M[i][k]==-1){printf("语法错误!");return;}else{m=M[i][k];if(right[m][0]=='@')S[strlen(S)-1]='\0';else{p=strlen(S)-1;q=p;for(n=strlen(right[m])-1;n>=0;n--)S[p++]=right[m][n]; S[q+strlen(right[m])]='\0';}}}printf("S:%s str:",S);for(p=j;p<=strlen(str)-1;p++)printf("%c",str[p]);printf(" \n");}}/******************************************* 一个用户调用函数********************************************/ void menu(){syntax();printf("\n是否继续?(y or n):");scanf("%c",&choose);getchar();while(choose=='y'){menu();}}/*******************************************主函数********************************************/void main(){int i,j;start=grammer(termin,non_ter,left,right); /*读入一个文法*/ printf("count=%d",count);printf("\n开始符号为:%c",start);strcpy(v,non_ter);strcat(v,termin);printf("\n所有符号集为:%s",v);printf("\n非终结符集合:{%s",non_ter);printf("}");printf("\n终结符集合:{%s",termin); printf("}");printf("\n文法所有右边表达式依次是:");for(i=0;i<=count-1;i++)printf("%s ",right[i]);printf("\n文法所有左边开始符依次是:"); for(i=0;i<=count-1;i++)printf("%c ",left[i]);if(validity==1)validity=judge();//printf("\nvalidity=%d",validity);if(validity==1){ll=ll1();// printf("\nll=%d",ll);if(ll==0)printf("\n该文法不是一个LL1文法!"); else{printf("\n该文法是一个LL(1)文法!");MM();// printf("\n");//for(i=0;i<=19;i++)// for(j=0;j<=19;j++)// if(M[i][j]>=0)//printf("M[%d][%d]=%d ",i,j,M[i][j]); menu();}}运行结果:。
求FIRST(α) Follow LL(1)的算法

求FOLLOW( A ) 的算法
令#为句子的结束符,对于所有非终结符, 重复进行 以下计算
• 1) 将 # 加入到 FOLLOW(S)
• 2) 若 A→αBβ, – 则 FOLLOW(B)=FOLLOW(B)∪(FIRST(β)–{ε})
• 3) 如果A→αB或A→αBβ,且β*ε,A≠B,
– 则 FOLLOW(B)=FOLLOW(B)∪FOLLOW(A)
• ——文法G是 LL(1) 的充要条件
LL(1)文法
• 对G的任意变量A, A→α1|α2|…|αn是所有A产生式, 如果它们满足下列条件,则称G是LL(1)文法, – FIRST(αi)∩FIRST(αj)=Φ i≠j
– 且当ε∈FIRST(αj)时,FOLLOW(A)∩FIRST(αi)=Φ
• LL(1)文法是自顶向下方法能够处理的一类文法 – 第一个 L 表示从左向右扫描输入符号串 – 第二个 L 表示生成最左推导 – 1 表示读入一个符号可确定下一步推导
求FIRST(α) 的算法
• 令α= X1…Xn
• 初值 – FIRST(α)= FIRST(X1)-{ε}; – k=1; • 循环 – while ε∈FIRST(Xk)&k<n do • FIRST(α)= FIRST(α)∪(FIRST(Xk+1)-{ε}) ; • K=k+1; • 结束处理 – if k=n&ε∈FIRST(Xn) then FIRST(α)=FIRST(α)∪{ε}Biblioteka 自顶向下分析希望文法满足的条件
• 希望:从左到右扫描输入串,寻找它的一个最左推 导,每次有唯一的产生式可用
• 对于 G 的每个非终结符 A 的任何两个不同的候选式 A→α|β
求first集和follow集

{
cout<<s1[i]<<" "<<follow(s1[i])<<endl;
}
return 0;
}
四.实验截图
}
}
}
}
}
return s;
}
//******************************
int main()
{
int i;
string s1,s2;
char b;
cout<<"\t************求First集和Follow集**************"<<endl;
cout<<"请输入产生式的数目:";
}
else
{
rights=p[pos.front()].right;
for(i=0;i<rights.size();i++)
{
if(find(rights[i]))
{
s+=first(rights[i]);
index= s.find_last_of('@');
s=s.erase(index,1);
}
编译原理实验
实验名称:求first集和follow集
姓名:
学号:
教师签字:
成绩:
一.实验目的:
.掌握和了解first集和follow集的求解过程。
二.实验原理:
1.first集的求解:(1)若X∈Vt,则FIRST(X)={X};
(2)若X∈Vn,且有产生式X->a……,a∈Vt,则a∈FIRST(X);
【编译原理】语法分析LL(1)分析法的FIRST和FOLLOW集

【编译原理】语法分析LL(1)分析法的FIRST和FOLLOW集 近来复习编译原理,语法分析中的⾃上⽽下LL(1)分析法,需要构造求出⼀个⽂法的FIRST和FOLLOW集,然后构造分析表,利⽤分析表+⼀个栈来做⾃上⽽下的语法分析(递归下降/预测分析),可是这个FIRST集合FOLLOW集看得我头⼤。
教课书上的规则如下,⽤我理解的语⾔描述的:任意符号α的FIRST集求法:1. α为终结符,则把它⾃⾝加⼊FIRSRT(α)2. α为⾮终结符,则:(1)若存在产⽣式α->a...,则把a加⼊FIRST(α),其中a可以为ε(2)若存在⼀串⾮终结符Y1,Y2, ..., Yk-1,且它们的FIRST集都含空串,且有产⽣式α->Y1Y2...Yk...,那么把FIRST(Yk)-{ε}加⼊FIRST(α)。
如果k-1抵达产⽣式末尾,那么把ε加⼊FIRST(α) 注意(2)要连续进⾏,通俗地描述就是:沿途的Yi都能推出空串,则把这⼀路遇到的Yi的FIRST集都加进来,直到遇到第⼀个不能推出空串的Yk为⽌。
重复1,2步骤直⾄每个FIRST集都不再增⼤为⽌。
任意⾮终结符A的FOLLOW集求法:1. A为开始符号,则把#加⼊FOLLOW(A)2. 对于产⽣式A-->αBβ: (1)把FIRST(β)-{ε}加到FOLLOW(B) (2)若β为ε或者ε属于FIRST(β),则把FOLLOW(A)加到FOLLOW(B)重复1,2步骤直⾄每个FOLLOW集都不再增⼤为⽌。
⽼师和同学能很敏锐地求出来,⽽我只能按照规则,像程序⼀样⼀条条执⾏。
于是我把这个过程写成了程序,如下:数据元素的定义:1const int MAX_N = 20;//产⽣式体的最⼤长度2const char nullStr = '$';//空串的字⾯值3 typedef int Type;//符号类型45const Type NON = -1;//⾮法类型6const Type T = 0;//终结符7const Type N = 1;//⾮终结符8const Type NUL = 2;//空串910struct Production//产⽣式11 {12char head;13char* body;14 Production(){}15 Production(char h, char b[]){16 head = h;17 body = (char*)malloc(strlen(b)*sizeof(char));18 strcpy(body, b);19 }20bool operator<(const Production& p)const{//内部const则外部也为const21if(head == p.head) return body[0] < p.body[0];//注意此处只适⽤于LL(1)⽂法,即同⼀VN各候选的⾸符不能有相同的,否则这⾥的⼩于符号还要向前多看⼏个字符,就不是LL(1)⽂法了22return head < p.head;23 }24void print() const{//要加const25 printf("%c -- > %s\n", head, body);26 }27 };2829//以下⼏个集合可以再封装为⼀个⼤结构体--⽂法30set<Production> P;//产⽣式集31set<char> VN, VT;//⾮终结符号集,终结符号集32char S;//开始符号33 map<char, set<char> > FIRST;//FIRST集34 map<char, set<char> > FOLLOW;//FOLLOW集3536set<char>::iterator first;//全局共享的迭代器,其实觉得应该⽤局部变量37set<char>::iterator follow;38set<char>::iterator vn;39set<char>::iterator vt;40set<Production>::iterator p;4142 Type get_type(char alpha){//判读符号类型43if(alpha == '$') return NUL;//空串44else if(VT.find(alpha) != VT.end()) return T;//终结符45else if(VN.find(alpha) != VN.end()) return N;//⾮终结符46else return NON;//⾮法字符47 }主函数的流程很简单,从⽂件读⼊指定格式的⽂法,然后依次求⽂法的FIRST集、FOLLOW集1int main()2 {3 FREAD("grammar2.txt");//从⽂件读取⽂法4int numN = 0;5int numT = 0;6char c = '';7 S = getchar();//开始符号8 printf("%c", S);9 VN.insert(S);10 numN++;11while((c=getchar()) != '\n'){//读⼊⾮终结符12 printf("%c", c);13 VN.insert(c);14 numN++;15 }16 pn();17while((c=getchar()) != '\n'){//读⼊终结符18 printf("%c", c);19 VT.insert(c);20 numT++;21 }22 pn();23 REP(numN){//读⼊产⽣式24 c = getchar();25int n; RINT(n);26while(n--){27char body[MAX_N];28 scanf("%s", body);29 printf("%c --> %s\n", c, body);30 P.insert(Production(c, body));31 }32 getchar();33 }3435 get_first();//⽣成FIRST集36for(vn = VN.begin(); vn != VN.end(); vn++){//打印⾮终结符的FIRST集37 printf("FIRST(%c) = { ", *vn);38for(first = FIRST[*vn].begin(); first != FIRST[*vn].end(); first++){39 printf("%c, ", *first);40 }41 printf("}\n");42 }4344 get_follow();//⽣成⾮终结符的FOLLOW集45for(vn = VN.begin(); vn != VN.end(); vn++){//打印⾮终结符的FOLLOW集46 printf("FOLLOW(%c) = { ", *vn);47for(follow = FOLLOW[*vn].begin(); follow != FOLLOW[*vn].end(); follow++){48 printf("%c, ", *follow);49 }50 printf("}\n");51 }52return0;53 }主函数其中⽂法⽂件的数据格式为(按照平时做题的输⼊格式设计的):第⼀⾏:所有⾮终结符,⽆空格,第⼀个为开始符号;第⼆⾏:所有终结符,⽆空格;剩余⾏:每⾏描述了⼀个⾮终结符的所有产⽣式,第⼀个字符为产⽣式头(⾮终结符),后跟⼀个整数位候选式的个数n,之后是n个以空格分隔的字符串为产⽣式体。
构造FIRST集和FOLLOW集的方法

1、构造 FIRST 集的算法 (1) 对于 G 中的每个文法符号 X,为求 FIRST(X),反复应用如下规则,直到集合不再增大: ① 若 X∈VT,则 FIRST(X)是{X} ② 若 X∈VN ,且 X→aα (a∈VT ),则{ a } FIRST(X) X→ε, 则{ε} FIRST(X) ③ 若 X->Y1Y2 … Yi-1 Yi … YK∈P,Y1∈VN ,则 FIRST(Y1)-{ε} FIRST(X)
则 FIRST(Xi) -{} FIRST() 特别是,若所有的 FIRST(Xj)均含有,1jn,则{} FIRST()。 显然,若=则 FIRST()={}。
2、构造 FOLLOW 集的算法 对于 G 中的每一 AFOLLOW 集不再增大为止: ① 对于文法的开始符号 S,令# ∈ FOLLOW(S)。 ② 对于每一 A→αBβ∈P, 令 FIRST(β) - {ε} FOLLOW(B) 。 ③ 对于每一 A→αB∈P, 或 A→αBβ∈P,且ε∈FIRST(β), 则令 FOLLOW(A) FOLLOW(B) 。
∗
而对所有的 j(1≤j ≤i-1), Yj ∈VN,且 Yj⇒ ε,则令 FIRST(Yj)-{ε} FIRST(X) (1≤j ≤i) 特别,当ε∈FIRST(Yj) (1≤j ≤k)时,令ε∈FIRST(X)
(2) 对文法 G 的任何符号串=X1X2…Xn 构造集合 FIRST() ① 置 FIRST(X1)-{} FIRST() ② 若对任何 1ji-1,FIRST(Xj),
计算first集follow集

if(!capL(ch))
}
void getFirst(char ch, set<char> &First)//求单个元素的FIRST集
{
multimap<char, string>::iterator imul = sentence.find(ch);
if(imul==sentence.end())
return;
int sum = sentence.count(imul->first);
(1)若xi∈VT,则xi∈FIRST(α);
(2)若xi∈VN;
①若ε FIRST(xi),则FIRST(xi)∈FIRST(α);
②若ε∈FIRST(xi),则FIRST(xi)-{ε}∈FIRST(α);
(3)i=i+1,重复(1)、(2),直到xi∈VT,(i=2,3,…,n)或xi∈VN且若ε FIRST(xi)或i>n为止。
int cnt = sentence.count(ch);
for(int i=0; i<cnt; ++i, ++mIter) {
if(mIter->second=="^") {
return true;
}
else if(CapLString(mIter->second)){
string s(mIter->second);
bool flag2 = true;
for(int j=0; j<s.size(); j++) {
if(!isToEmpty(s[j]) || s[j]==ch) {
flag2 = false;
first集合和follow集合的求法

first集合和follow集合的求法
FIRST集合和FOLLOW集合的求法如下:
1、FIRST集合的求法:
直接收取:如果X是终结符或为空,则First(X) = {X}。
反复传送:如果X是非终结符,则First集合一直传送下去,直到遇到终结符。
第一个状态减去ε(即空字符串)后加入到First集合中。
注意传送时非终结符是否可以为空,如果可以为空,则看下一个字符。
对于形如“…UP…”(P是非终结符)的组合,把First(P)直接收入到First集合中。
遇到形如E →TE’这样的产生式时,先把First(T)放入First(E),然后查看T是否能推导出ε(即空字符串)。
如果能,则把First(E’)放入First(E),以此类推。
若T不能推出ε,则First(E)求完。
2、FOLLOW集合的求法:
对于文法的开始符号S,将识别符号“#”置于FOLLOW(S)中。
若存在产生式A →αBβ,则将First(β) - {ε}加至FOLLOW(B)中。
这里,First(β)表示β能推导出的第一个终结符或非终结符的集合,但要去掉ε。
如果β可以推导出ε,则将FOLLOW(A)加至FOLLOW(B)中。
这意味着,如果B有可能是最后一个符号,那么A的FOLLOW集合应该加入到B的FOLLOW集合中。
反复使用上述规则,直到所求FOLLOW集合不再增大为止。
以上是对FIRST集合和FOLLOW集合求法的简要概述。
在实际应用中,需要根据具体的文法和产生式进行具体的分析和计算。
编译原理 FIRST集和FOLLOW集的求法

First集合的求法:First集合最终是对产生式右部的字符串而言的,但其关键是求出非终结符的First集合,由于终结符的First集合就是它自己,所以求出非终结符的First集合后,就可很直观地得到每个字符串的First集合。
1. 直接收取:对形如U-a…的产生式(其中a是终结符),把a收入到First(U)中2. 反复传送:对形入U-P…的产生式(其中P是非终结符),应把First(P)中的全部内容传送到First(U)中。
Follow集合的求法:Follow集合是针对非终结符而言的,Follow(U)所表达的是句型中非终结符U所有可能的后随终结符号的集合,特别地,“#”是识别符号的后随符。
1. 直接收取:注意产生式右部的每一个形如“…Ua…”的组合,把a直接收入到Follow(U)中。
2.直接收取:对形如“…UP…”(P是非终结符)的组合,把First(P)除ε直接收入到Follow(U)中。
3.反复传送:对形如P-…U的产生式(其中U是非终结符),应把Follow(P)中的全部内容传送到Follow(U)中。
(或 P-…UB且First(B)包含ε,则把First(B)除ε直接收入到Follow(U)中,并把Follow(P)中的全部内容传送到Follow(U)中)例1:判断该文法是不是LL(1)文法,说明理由 S→ABc A→a|ε B→b|ε?First集合求法就是:能由非终结符号推出的所有的开头符号或可能的ε,但要求这个开头符号是终结符号。
如此题A可以推导出a和ε,所以FIRST(A)={a,ε};同理FIRST (B)={b,ε};S可以推导出aBc,还可以推导出bc,还可以推导出c,所以FIRST(S)={a,b,c}。
Follow集合的求法是:紧跟随其后面的终结符号或#。
但文法的识别符号包含#,在求的时候还要考虑到ε。
具体做法是把所有包含你要求的符号的产生式都找出来,再看哪个有用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LL(1)文法判别之First集合、Follow集合
说明:
所有大写字母代表非终结符,小写字母代表终结符,省略号代表未知数目(可能为0)的不确定类型的文法符号。
First集合:
First集合顾名思义就是求一个文法符号串所可能推导出的符号串的第一个终结符
的集合。
First(X)就是求X所有推导出的符号串的第一个符号的集合。
求First集合可分如下几种情况:
单个符号的First集合:
单个终结符的First集合就是它自己。
单个非终结符的First集合:
A-->a…产生式右部以终结符开头
根据定义,这种情况下显然可以看出a属于First(A)。
A-->B…产生式右部以非终结符开头
根据定义,既然可以把A替换成B……,也可以看出First(B)属于First(A)。
这是一个递归的推导。
多个符号形成的符号串的First结合:
符号串ABC…,并且A不能推导出空串ε
当A不能推导出空串ε,显然根据定义First(ABC…)=First(A)
符号串ABC…,并且A可能推导出空串ε
当A不是空串的时候,显然First(A)属于First(ABC…),但当A是空串的时候,ABC…就成了BC…,此时根据B是否能推出空串来决定是否将First(B)加入First (ABC…)。
这是一个递归的推导,综上所述,符号串中的第一个不能推出空串的符号前面所有符号的First集合减去空串ε都属于First(ABC…),第一个不能推出空串的符号的First集合也属于First(ABC…)。
也就是假设A、B都可以推出空串,C不能推出空串,First(ABC…)=First(A)-ε∪First(B)-ε∪First(C)。
符号串ABC…,并且所有的符号ABC…都可能推导出空串ε
此时First(ABC…)就是所有符号的First集合的并集
注意:First集合中的符号一定是终结符,终结符也包括空串ε。
Follow集合:
Follow集合也是顾名思义的,就是文法符号后面可能跟随的终结符的集合(不包括空串ε)。
Follow(X)就是求X后面可能跟随的符号集合。
求Follow集合可分如下几种情况:
终结符的Follow集合没有定义,只有非终结符才会有Follow集合。
A-->…Ua…要求的Follow集合的非终结符后跟终结符
根据定义,显然a属于Follow(U)。
这种情况下,Follow(U)和A没有任何关系,产生式左边是什么无所谓。
A-->…UP…要求的Follow集合的非终结符后跟非终结符
根据定义,显然P的第一个符号属于Follow(U),也就是First(P)属于Follow (U)。
A-->…UP并且ε属于First(P)要求的Follow集合的非终结符后跟非结尾的终结符,并且结尾非终结符的First集合包含空串。
这是上一种情况的一种特例,除了要按上一种情况处理,First(P)属于Follow(U)以外还要进行分析;因为当P推导为空串时,空串不能出现在Follow集合中,所以U 后面跟随的应该是P后面的东西,可P已经是结束的符号,此时U后面显然就是A 后面跟随的东西了。
所以在这种情况下Follow(A)也属于Follow(U)。
A-->…U 要求的Follow集合的非终结符在产生式结尾
这时候又要递归推导,U是A的结尾,所以U后面跟随的东西也就是A后面跟随的东西。
所以Follow(A)属于Follow(U)。
注意:Follow集合中的符号一定是终结符,并且不能包括空串ε,而且定义开始符号的Follow集合初始为{#(句子括号)}。