计算first集合和follow集合--编译原理教案资料
转First集合和Follow集合的求法(修改含例子)

转First集合和Follow集合的求法(修改含例⼦)对于终结符和⾮终结符的理解:终结符:通俗的说就是不能单独出现在推导式左边的符号,也就是说终结符不能再进⾏推导。
⾮终结符:不是终结符的都是⾮终结符。
如:A->B,则A是⾮终结符;A->id,则id是终结符。
(⼀般书上终结符⽤⼩写,⾮终结符⽤⼤写。
)⽂法产⽣语⾔句⼦的基本思想:从识别符号(开始符)开始,把当前产⽣的符号串中的⾮终结符替换为相应规则右部的符号串,直到全部由终结符组成。
所以⽂法产⽣句⼦的基本思想就是基于产⽣式(例如A->num)的替换,当所有的⾮终结符都被终结符替换时,推导结束。
FIRST集求法:我对First集的理解:first集应该就是求⼀个表⽰⽂法的字串(⼀般指⾮终结符,终结符的first集就是它⾃⾝)开头的所有可能出现的字符的集合。
例如A->aC | bB | cD,根据这个产⽣式,就可以知道,⾮终结符A,被替换后,它开头可能出现字符有a、b 、c, 所以 {a,b,c}是First(A)的⼀个⼦集。
求First集的步骤:1. 若X->a..,则将终结符a加⼊FIRST(X)中;(注意⾮终结符的情况)2. 若X->e ,则将终结符e加⼊FIRST(X)中(e表⽰空集);3. 若 X->BC..D,则将First(B)所有元素(除了空集)加⼊First(A),然后检测First(B),若First(B)中不存在空集, 即e,则停⽌,若存在则向B的后⾯查看,将First(C)中所有元素(除了空集)加⼊First(A),然后再检测First(C)中是否有e...直到最后,若D之前的所有⾮终结符的First集中都含有e,则检测到D时,将First(D)也加⼊First(A),若First(D)中含有e,则将 e加⼊First(A)。
对于第三条,其实也很好理解,就是说当X推导出⼀个字串时,D前⾯的⾮终结符都可能推出空串,这个时候,X推出的串的⾸部,就不是那些推出空串的⾮终结符了,⽽是这些推出空串的⾮终结符后⾯的⽂法符号所推导出的字串。
【编译原理】语法分析LL(1)分析法的FIRST和FOLLOW集

【编译原理】语法分析LL(1)分析法的FIRST和FOLLOW集 近来复习编译原理,语法分析中的⾃上⽽下LL(1)分析法,需要构造求出⼀个⽂法的FIRST和FOLLOW集,然后构造分析表,利⽤分析表+⼀个栈来做⾃上⽽下的语法分析(递归下降/预测分析),可是这个FIRST集合FOLLOW集看得我头⼤。
教课书上的规则如下,⽤我理解的语⾔描述的:任意符号α的FIRST集求法:1. α为终结符,则把它⾃⾝加⼊FIRSRT(α)2. α为⾮终结符,则:(1)若存在产⽣式α->a...,则把a加⼊FIRST(α),其中a可以为ε(2)若存在⼀串⾮终结符Y1,Y2, ..., Yk-1,且它们的FIRST集都含空串,且有产⽣式α->Y1Y2...Yk...,那么把FIRST(Yk)-{ε}加⼊FIRST(α)。
如果k-1抵达产⽣式末尾,那么把ε加⼊FIRST(α) 注意(2)要连续进⾏,通俗地描述就是:沿途的Yi都能推出空串,则把这⼀路遇到的Yi的FIRST集都加进来,直到遇到第⼀个不能推出空串的Yk为⽌。
重复1,2步骤直⾄每个FIRST集都不再增⼤为⽌。
任意⾮终结符A的FOLLOW集求法:1. A为开始符号,则把#加⼊FOLLOW(A)2. 对于产⽣式A-->αBβ: (1)把FIRST(β)-{ε}加到FOLLOW(B) (2)若β为ε或者ε属于FIRST(β),则把FOLLOW(A)加到FOLLOW(B)重复1,2步骤直⾄每个FOLLOW集都不再增⼤为⽌。
⽼师和同学能很敏锐地求出来,⽽我只能按照规则,像程序⼀样⼀条条执⾏。
于是我把这个过程写成了程序,如下:数据元素的定义:1const int MAX_N = 20;//产⽣式体的最⼤长度2const char nullStr = '$';//空串的字⾯值3 typedef int Type;//符号类型45const Type NON = -1;//⾮法类型6const Type T = 0;//终结符7const Type N = 1;//⾮终结符8const Type NUL = 2;//空串910struct Production//产⽣式11 {12char head;13char* body;14 Production(){}15 Production(char h, char b[]){16 head = h;17 body = (char*)malloc(strlen(b)*sizeof(char));18 strcpy(body, b);19 }20bool operator<(const Production& p)const{//内部const则外部也为const21if(head == p.head) return body[0] < p.body[0];//注意此处只适⽤于LL(1)⽂法,即同⼀VN各候选的⾸符不能有相同的,否则这⾥的⼩于符号还要向前多看⼏个字符,就不是LL(1)⽂法了22return head < p.head;23 }24void print() const{//要加const25 printf("%c -- > %s\n", head, body);26 }27 };2829//以下⼏个集合可以再封装为⼀个⼤结构体--⽂法30set<Production> P;//产⽣式集31set<char> VN, VT;//⾮终结符号集,终结符号集32char S;//开始符号33 map<char, set<char> > FIRST;//FIRST集34 map<char, set<char> > FOLLOW;//FOLLOW集3536set<char>::iterator first;//全局共享的迭代器,其实觉得应该⽤局部变量37set<char>::iterator follow;38set<char>::iterator vn;39set<char>::iterator vt;40set<Production>::iterator p;4142 Type get_type(char alpha){//判读符号类型43if(alpha == '$') return NUL;//空串44else if(VT.find(alpha) != VT.end()) return T;//终结符45else if(VN.find(alpha) != VN.end()) return N;//⾮终结符46else return NON;//⾮法字符47 }主函数的流程很简单,从⽂件读⼊指定格式的⽂法,然后依次求⽂法的FIRST集、FOLLOW集1int main()2 {3 FREAD("grammar2.txt");//从⽂件读取⽂法4int numN = 0;5int numT = 0;6char c = '';7 S = getchar();//开始符号8 printf("%c", S);9 VN.insert(S);10 numN++;11while((c=getchar()) != '\n'){//读⼊⾮终结符12 printf("%c", c);13 VN.insert(c);14 numN++;15 }16 pn();17while((c=getchar()) != '\n'){//读⼊终结符18 printf("%c", c);19 VT.insert(c);20 numT++;21 }22 pn();23 REP(numN){//读⼊产⽣式24 c = getchar();25int n; RINT(n);26while(n--){27char body[MAX_N];28 scanf("%s", body);29 printf("%c --> %s\n", c, body);30 P.insert(Production(c, body));31 }32 getchar();33 }3435 get_first();//⽣成FIRST集36for(vn = VN.begin(); vn != VN.end(); vn++){//打印⾮终结符的FIRST集37 printf("FIRST(%c) = { ", *vn);38for(first = FIRST[*vn].begin(); first != FIRST[*vn].end(); first++){39 printf("%c, ", *first);40 }41 printf("}\n");42 }4344 get_follow();//⽣成⾮终结符的FOLLOW集45for(vn = VN.begin(); vn != VN.end(); vn++){//打印⾮终结符的FOLLOW集46 printf("FOLLOW(%c) = { ", *vn);47for(follow = FOLLOW[*vn].begin(); follow != FOLLOW[*vn].end(); follow++){48 printf("%c, ", *follow);49 }50 printf("}\n");51 }52return0;53 }主函数其中⽂法⽂件的数据格式为(按照平时做题的输⼊格式设计的):第⼀⾏:所有⾮终结符,⽆空格,第⼀个为开始符号;第⼆⾏:所有终结符,⽆空格;剩余⾏:每⾏描述了⼀个⾮终结符的所有产⽣式,第⼀个字符为产⽣式头(⾮终结符),后跟⼀个整数位候选式的个数n,之后是n个以空格分隔的字符串为产⽣式体。
构造FIRST集和FOLLOW集的方法

1、构造 FIRST 集的算法 (1) 对于 G 中的每个文法符号 X,为求 FIRST(X),反复应用如下规则,直到集合不再增大: ① 若 X∈VT,则 FIRST(X)是{X} ② 若 X∈VN ,且 X→aα (a∈VT ),则{ a } FIRST(X) X→ε, 则{ε} FIRST(X) ③ 若 X->Y1Y2 … Yi-1 Yi … YK∈P,Y1∈VN ,则 FIRST(Y1)-{ε} FIRST(X)
则 FIRST(Xi) -{} FIRST() 特别是,若所有的 FIRST(Xj)均含有,1jn,则{} FIRST()。 显然,若=则 FIRST()={}。
2、构造 FOLLOW 集的算法 对于 G 中的每一 AFOLLOW 集不再增大为止: ① 对于文法的开始符号 S,令# ∈ FOLLOW(S)。 ② 对于每一 A→αBβ∈P, 令 FIRST(β) - {ε} FOLLOW(B) 。 ③ 对于每一 A→αB∈P, 或 A→αBβ∈P,且ε∈FIRST(β), 则令 FOLLOW(A) FOLLOW(B) 。
∗
而对所有的 j(1≤j ≤i-1), Yj ∈VN,且 Yj⇒ ε,则令 FIRST(Yj)-{ε} FIRST(X) (1≤j ≤i) 特别,当ε∈FIRST(Yj) (1≤j ≤k)时,令ε∈FIRST(X)
(2) 对文法 G 的任何符号串=X1X2…Xn 构造集合 FIRST() ① 置 FIRST(X1)-{} FIRST() ② 若对任何 1ji-1,FIRST(Xj),
构造FIRST集和FOLLOW集的方法

2、构造 FOLLOW 集的算法 对于 G 中的每一 A∈VN,为构造 FOLLOW(A),可反复使用如下的规则,直到每个
FOLLOW 集不再增大为止: ① 对于文法的开始符号 S,令# ∈ FOLLOW(S)。 ② 对于每一 A→αBβ∈P, 令 FIRST(β) - {ε} FOLLOW(B) 。 ③ 对于每一 A→αB∈P, 或 A→αBβ∈P,且ε∈FIRST(β), 则令 FOLLOW(A) FOLLOW(B) 。
∗ห้องสมุดไป่ตู้
而对所有的 j(1≤j ≤i-1), Yj ∈VN,且 Yj⇒ ε,则令 FIRST(Yj)-{ε} FIRST(X) (1≤j ≤i) 特别,当ε∈FIRST(Yj) (1≤j ≤k)时,令ε∈FIRST(X)
(2) 对文法 G 的任何符号串=X1X2…Xn 构造集合 FIRST() ① 置 FIRST(X1)-{} FIRST() ② 若对任何 1ji-1,FIRST(Xj),
构造 FIRST 集和 FOLLOW 集的方法
1、构造 FIRST 集的算法 (1) 对于 G 中的每个文法符号 X,为求 FIRST(X),反复应用如下规则,直到集合不再增大: ① 若 X∈VT,则 FIRST(X)是{X} ② 若 X∈VN ,且 X→aα (a∈VT ),则{ a } FIRST(X) X→ε, 则{ε} FIRST(X) ③ 若 X->Y1Y2 … Yi-1 Yi … YK∈P,Y1∈VN ,则 FIRST(Y1)-{ε} FIRST(X)
计算first集follow集

if(!capL(ch))
}
void getFirst(char ch, set<char> &First)//求单个元素的FIRST集
{
multimap<char, string>::iterator imul = sentence.find(ch);
if(imul==sentence.end())
return;
int sum = sentence.count(imul->first);
(1)若xi∈VT,则xi∈FIRST(α);
(2)若xi∈VN;
①若ε FIRST(xi),则FIRST(xi)∈FIRST(α);
②若ε∈FIRST(xi),则FIRST(xi)-{ε}∈FIRST(α);
(3)i=i+1,重复(1)、(2),直到xi∈VT,(i=2,3,…,n)或xi∈VN且若ε FIRST(xi)或i>n为止。
int cnt = sentence.count(ch);
for(int i=0; i<cnt; ++i, ++mIter) {
if(mIter->second=="^") {
return true;
}
else if(CapLString(mIter->second)){
string s(mIter->second);
bool flag2 = true;
for(int j=0; j<s.size(); j++) {
if(!isToEmpty(s[j]) || s[j]==ch) {
flag2 = false;
first集合和follow集合的求法

first集合和follow集合的求法
FIRST集合和FOLLOW集合的求法如下:
1、FIRST集合的求法:
直接收取:如果X是终结符或为空,则First(X) = {X}。
反复传送:如果X是非终结符,则First集合一直传送下去,直到遇到终结符。
第一个状态减去ε(即空字符串)后加入到First集合中。
注意传送时非终结符是否可以为空,如果可以为空,则看下一个字符。
对于形如“…UP…”(P是非终结符)的组合,把First(P)直接收入到First集合中。
遇到形如E →TE’这样的产生式时,先把First(T)放入First(E),然后查看T是否能推导出ε(即空字符串)。
如果能,则把First(E’)放入First(E),以此类推。
若T不能推出ε,则First(E)求完。
2、FOLLOW集合的求法:
对于文法的开始符号S,将识别符号“#”置于FOLLOW(S)中。
若存在产生式A →αBβ,则将First(β) - {ε}加至FOLLOW(B)中。
这里,First(β)表示β能推导出的第一个终结符或非终结符的集合,但要去掉ε。
如果β可以推导出ε,则将FOLLOW(A)加至FOLLOW(B)中。
这意味着,如果B有可能是最后一个符号,那么A的FOLLOW集合应该加入到B的FOLLOW集合中。
反复使用上述规则,直到所求FOLLOW集合不再增大为止。
以上是对FIRST集合和FOLLOW集合求法的简要概述。
在实际应用中,需要根据具体的文法和产生式进行具体的分析和计算。
编译原理:FIRST(x)FOLLOW(x)SELECT(x)的计算

编译原理:FIRST(x)FOLLOW(x)SELECT(x)的计算⽬录已知⽂法G[S]:S→MH|aH→LSo|εK→dML|εL→eHfM→K|bLM判断G是否是LL(1)⽂法。
First计算First集合的定义就是某个⾮终结符表达式可以推导出来的第⼀个字符可以是什么⽐如表达式S --> abb,它的First(S)={a}First(S)={a}+First(M)+First(H)+{ε}={a,b,d,e,ε}# S表达式存在单个的终结符a,添加{a}# S表达式以M开头,添加First(M)# 根据后⾯的表达式判断,M可以推出K,K可以推出空,所以M可以为空,此时S以H开头,添加First(H)# 由于H也可以推出空,所以S最终也会指向空,添加空集First(M)={b}+First(K)+{ε}={b,d,ε}# M表达式以终结符b开头,添加{b}# M表达式可以推导出单个的K表达式,所以添加First(K)# K有可能推导出空集,即M可以推导出空,所以添加空集First(K)={d}+{ε}={d,ε}# K可以以终结符d开头,添加{d}# K可以推导出空,添加空集First(H)=First(L)+{ε}={e,ε}# H可以推导出以L开头的表达式,所以添加First(L)# H可以推导出空,所以添加空集First(L)={e}# L只能推导出⼀个表达式,并且开头是终结符,所以添加{e}## 最后将已知的表达式代⼊到未知的表达式当中去,即可求出全部First集合Follow计算Follow表⽰某个⾮终结符后⾯可以跟着什么样的字符Follow集不存在空集为表达式编号1: S→MH|a2: H→LSo|ε3: K→dML|ε4: L→eHf5: M→K|bLMFollow(S)={$}+{o}={o,$}# 在表达式1中,S是⼀个⾮终结符,S是孤⽴的⼀个表达式,其Follow可以添加$,即添加{$}# 在表达式2中,S后⾯跟上了o,所以添加{o}Follow(H)=Follow(S)+{f}={f,o,$}# 在表达式1中,S后⾯跟了什么,MH后⾯就跟了什么,所以添加Follow(S)# 在表达式4中,H后⾯跟了f,所以添加{f}Follow(M)=First(H)+Follow(S)+First(L)={e,o,$}# 在表达式1中,M后⾯跟了H,所以添加First(H)# 在表达式2中可知,H可以推导出空,所以回到表达式1,S后⾯跟了什么,M后⾯就跟了什么,所以添加Follow(S)# 在表达式3中,M后⾯跟了⾮终结符L,所以添加First(L)# 在表达式5中,M后⾯跟了什么,bLM后⾯就跟什么,都是Follow(M),表达式不变Follow(L)=First(S)+Follow(K)+{o}+{$}+First(M)+Follow(M)={a,b,d,e,o,$}# 在表达式2中,L后⾯跟了⾮终结符S,所以添加First(S)# 在表达式2中,First(S)可以推出空,所以此时L后⾯跟着o,添加{o}# 在表达式3中,K后⾯跟了什么,dML后⾯就跟了什么,所以添加Follow(K)# 在表达式4中,L属于单⼀元素,所以添加$# 在表达式5中,L后⾯跟上了⾮终结符M,所以添加First(M)# 在表达式5中,从上得知,First(M)可以推导出空,所以此时M后⾯跟着什么,L后⾯就要跟着什么,所以添加Follow(M) Follow(K)={$}+Follow(M)={e,o,$}# 在表达式3中,K是单⼀字符,添加{$}# 在表达式5中,M后⾯跟着什么,K后⾯就跟着什么,所以添加Follow(M)注意:在书写Follow集中要时刻检查First集是否可以为空.Select计算分割表达式,如果⾮空则是First集,是空则为Follow集Select(S→MH)=First(M)+First(H)+Follow(S)={b,d,e,o,$}# S以M开头,加⼊First(M)# First(M)可以为空,加⼊First(H)# M和H都可以为空,加⼊Follow(S)Select(S→a)={a}# S只能推导出a,加⼊{a}Select(H→LSo)=First(L)={e}# H以L开头,并且First(L)不可以为空,即加⼊First(L)Select(H→ε)=Follow(H)={f,o,$}# H推导出空,加⼊Follow(H)Select(K→dML)={d}# K以终结符d开头,加⼊{d}Select(K→ε)=Follow(K)={e,o,$}# K可以为空,加⼊Follow(K)Select(L→eHf)={e}# L以终结符e开头,加⼊{e}Select(M→K)=First(K)+Follow(M)={d,e,o,$}# M可以推出K,加⼊First(K)# First(K)可以为空,即M可以加⼊Follow(M)Select(M→bLM)={b}# M可以推出以终结符b开头,加⼊{b}判断是否是LL(1)⽂法LL(1)⽂法就是同⼀⾮终结符推出来的Select集合相交为空,现在开始逐⼀判断Select(S→MH)∩Select(S→a)Select(H→LSo)∩Select(H→ε)Select(K→dML)∩Select(K→ε)# L只有⼀个表达式,省略LSelect(M→K)∩Select(M→bLM)易知,上述表达式都为空,所以这个表达式是LL(1)⽂法预测分析表的书写先列出First集和Follow集的表格First FollowS{a,d,b,e, ε}{$,o}H{e,ε}{f,o,$}K{d,ε}{e,o,$}L{e}{a,b,d,e,o,$}M{b,d,ε}{e,o,$}然后将⾮终结符、终结符作为横纵⾏,填⼊表达式。
编译原理 FIRST集和FOLLOW集的求法

First集合的求法:First集合最终是对产生式右部的字符串而言的,但其关键是求出非终结符的First集合,由于终结符的First集合就是它自己,所以求出非终结符的First集合后,就可很直观地得到每个字符串的First集合。
1. 直接收取:对形如U-a…的产生式(其中a是终结符),把a收入到First(U)中2. 反复传送:对形入U-P…的产生式(其中P是非终结符),应把First(P)中的全部内容传送到First(U)中。
Follow集合的求法:Follow集合是针对非终结符而言的,Follow(U)所表达的是句型中非终结符U所有可能的后随终结符号的集合,特别地,“#”是识别符号的后随符。
1. 直接收取:注意产生式右部的每一个形如“…Ua…”的组合,把a直接收入到Follow(U)中。
2.直接收取:对形如“…UP…”(P是非终结符)的组合,把First(P)除ε直接收入到Follow(U)中。
3.反复传送:对形如P-…U的产生式(其中U是非终结符),应把Follow(P)中的全部内容传送到Follow(U)中。
(或 P-…UB且First(B)包含ε,则把First(B)除ε直接收入到Follow(U)中,并把Follow(P)中的全部内容传送到Follow(U)中)例1:判断该文法是不是LL(1)文法,说明理由 S→ABc A→a|ε B→b|ε?First集合求法就是:能由非终结符号推出的所有的开头符号或可能的ε,但要求这个开头符号是终结符号。
如此题A可以推导出a和ε,所以FIRST(A)={a,ε};同理FIRST (B)={b,ε};S可以推导出aBc,还可以推导出bc,还可以推导出c,所以FIRST(S)={a,b,c}。
Follow集合的求法是:紧跟随其后面的终结符号或#。
但文法的识别符号包含#,在求的时候还要考虑到ε。
具体做法是把所有包含你要求的符号的产生式都找出来,再看哪个有用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算f i r s t集合和f o l l o w集合--编译原理计算first 集合和follow 集合姓名:彦清 学号:E10914127一、实验目的输入:任意的上下文无关文法。
输出:所输入的上下文无关文法一切非终结符的first 集合和follow 集合。
二、实验原理设文法G[S]=(V N ,V T ,P ,S ),则首字符集为:FIRST (α)={a | α⇒*a β,a ∈V T ,α,β∈V *}。
若α⇒*ε,ε∈FIRST (α)。
由定义可以看出,FIRST (α)是指符号串α能够推导出的所有符号串中处于串首的终结符号组成的集合。
所以FIRST 集也称为首符号集。
设α=x 1x 2…x n ,FIRST (α)可按下列方法求得:令FIRST (α)=Φ,i =1;(1)若x i ∈V T ,则x i ∈FIRST (α); (2) 若x i ∈V N ;① 若ε∉FIRST (x i ),则FIRST (x i )∈FIRST (α);② 若ε∈FIRST (x i ),则FIRST (x i )-{ε}∈FIRST (α);(3) i =i+1,重复(1)、(2),直到x i ∈V T ,(i =2,3,…,n )或x i ∈V N 且若ε∉FIRST (x i )或i>n 为止。
当一个文法中存在ε产生式时,例如,存在A →ε,只有知道哪些符号可以合法地出现在非终结符A 之后,才能知道是否选择A →ε产生式。
这些合法地出现在非终结符A 之后的符号组成的集合被称为FOLLOW 集合。
下面我们给出文法的FOLLOW 集的定义。
设文法G[S]=(V N ,V T ,P ,S ),则FOLLOW (A )={a | S ⇒… Aa …,a ∈V T }。
若S ⇒*…A ,#∈FOLLOW (A )。
由定义可以看出,FOLLOW (A )是指在文法G[S]的所有句型中,紧跟在非终结符A 后的终结符号的集合。
FOLLOW 集可按下列方法求得:(1)对于文法G[S]的开始符号S ,有#∈FOLLOW (S ); (2) 若文法G[S]中有形如B →xAy 的规则,其中x ,y ∈V *,则FIRST (y )-{ε}∈FOLLOW (A );(3) 若文法G[S]中有形如B →xA 的规则,或形如B →xAy 的规则且ε∈FIRST (y ),其中x ,y ∈V *,则FOLLOW (B )∈FOLLOW(A );三、源程序#include<iostream.h>#include<string.h>//产生式struct css{char left;char zhuan;//用“-”表示箭头char right[20];}; //空标志struct kong{int kongzuo;int kongyou;};struct biaoji//第三步扫描式子的右部标记号{int r[100];};struct first//初步求first集合时用{ char fjihe[200];};struct first2//保存最终的first集合{ char fjihe2[200];};struct follow//初步求follow集合时用{ char fow[200];};struct follow2//保存最终的follow集合{ char fow2[200];};void main(){ int i,n,k;//产生式条数css shizi[100];kong kongshi[100];cout<<"请输入产生式的条数n(n<100):"<<endl;cin>>n;cout<<"请从开始符输入产生式(空用“#”表示,产生式由字母组成):"<<endl;for(i=0;i<n;i++){cin>>shizi[i].left>>shizi[i].zhuan>>shizi[i].right;}int l,m,j,h,g,f;for(l=0;l<n;l++)for(m=0;m<sizeof(shizi[l].right);m++){ if(shizi[l].right[m]=='#'){kongshi[l].kongzuo=1;break;}else while(shizi[l].right[m]>='a' &&shizi[l].right[m]<='z' ){kongshi[l].kongyou=0; break;}}for(j=0;j<=n;j++)for(h=0;h<n;h++){ if(j==h)break;if(shizi[j].left==shizi[h].left){if(kongshi[j].kongyou==0 && kongshi[h].kongyou==0)kongshi[j].kongzuo=kongshi[h].kongzuo=0;break;}}int d,s,a,q,w,e;char linshi;biaoji biaoyou[100];for(d=0;d<n;d++){if(!(kongshi[d].kongzuo==1||kongshi[d].kongyou==0)){for(s=0;shizi[d].right[s]!='\0';s++)for(a=0;a<=n;a++){ linshi=shizi[d].right[s];if(linshi==shizi[a].left &&kongshi[a].kongzuo==1){ biaoyou[d].r[s]=1;}else {kongshi[d].kongyou=0;}}}}int sum,t,y;//第三部-1sum=0;for(e=0;e<n;e++){for(q=0;shizi[e].right[q]!='\0';q++){ t=biaoyou[e].r[q];if(t==1){ for(sum;shizi[e].right[q]!='\0';){sum++;y=sum-1;if(q==y)kongshi[e].kongzuo=1;break;}}else break;}}int a1,a2;/*第二次扫描判断转为否的式子*/for(a1=0;a1<=n;a1++)for(a2=0;a2<n;a2++){ if(a1==a2)break;if(shizi[a1].left==shizi[a2].left&&kongshi[a1].kongzuo!=1&&kong shi[a2].kongzuo!=1){if(kongshi[a1].kongyou==0 &&kongshi[a2].kongyou==0)kongshi[a1].kongzuo=kongshi[a2].kongzuo=0;break;}}//计算first集合first fji[100];int u,a3,a5,a6,a7,a8;//char linshi2[2]="-";//for(u=0;u<n;u++){ fji[u].fjihe[0]='\0';}for(a3=0;a3<=n;a3++){if(shizi[a3].right[0]>='a' && shizi[a3].right[0]<='z'){linshi2[0]=shizi[a3].right[0];strcat(fji[a3].fjihe,linshi2);}else { if(kongshi[a3].kongzuo==1){ strcat(fji[a3].fjihe,"#");}}}for(a5=0;a5<=n;a5++)for(a6=0;shizi[a5].right[a6]!='\0';a6++)if(shizi[a5].right[a6]>='A' &&shizi[a5].right[a6]<='Z'){ if(shizi[a5].right[0]>='a' &&shizi[a5].right[0]<='z')break;for(a7=0;a7<n;a7++)if(a5!=a7 &&shizi[a5].right[a6]==shizi[a7].left){{if(kongshi[a7].kongzuo!=1)strcat(fji[a5].fjihe,fji[a7].fjihe);if(a6==(strlen(shizi[a5].right)-1))for(a8=0;a8<n;a8++)if(a5!=a8 && shizi[a5].right[a6]==shizi[a8].left)if(kongshi[a5].kongzuo!=1){strcat(fji[a5].fjihe,fji[a8].fjihe);}else{strcat(fji[a5].fjihe,fji[a8].fjihe);strcat(fji[a5].fjihe,"#");}}}}//求follow集合follow fw[100];int b1,b2,b3,b4,b5,b6,b7,b8,b9,b10;char linshi5[2];for(b1=0;b1<n;b1++){ fw[b1].fow[0]='\0';}fw[0].fow[0]='#';fw[0].fow[1]='\0';for(b8=0;b8<n;b8++){ if(shizi[b8].left==shizi[0].left)fw[b8].fow[0]='#';fw[b8].fow[1]='\0';}int e1;for(e1=0;e1<2;e1++)for(b2=0;b2<n;b2++)for(b3=0;b3<n;b3++){ if(shizi[b2].right[b3]>='A'&&shizi[b2].right[b3]<='Z')if(shizi[b2].right[b3+1]>='a'&&shizi[b2].right[b3+1]<='z'){ linshi5[0]=shizi[b2].right[b3+1];linshi5[1]='\0';for(b9=0;b9<n;b9++){if(shizi[b2].right[b3]==shizi[b9].left)strcat(fw[b9].fow,linshi5);}}if(shizi[b2].right[b3+1]>='A'&&shizi[b2].right[b3+1]<='Z'){ for(b4=0;b4<n;b4++){if(shizi[b2].right[b3+1]==shizi[b4].left){ if(kongshi[b4].kongzuo!=1){for(b10=0;b10<n;b10++){if(shizi[b2].right[b3]==shizi[b10].left)strcat(fw[b10].fow,fji[b4].fjihe);}}else {for(b5=0;b5<n;b5++)if(shizi[b2].right[b3]==shizi[b5].left)strcat(fw[b5].fow,fw[b2].fow);}}}}if((b3+1)==strlen(shizi[b2].right)){ for(b7=0;b7<n;b7++)if(shizi[b2].right[b3]==shizi[b7].left)strcat(fw[b7].fow,fw[b2].fow);}}first2 fji2[100];int a11,a12,a13;for(a11=0;a11<n;a11++){ fji2[a11].fjihe2[0]='\0';}for(a12=0;a12<=n;a12++)for(a13=0;a13<n;a13++){ if(a12!=a13 && shizi[a12].left==shizi[a13].left)strcat(fji[a12].fjihe,fji[a13].fjihe);}char linshi3[100];char linshi4[2];int a15,a16,a17=0,a19=0,a21,a18;//for(a15=0;a15<n;a15++){ {for(a21=0;a21<99;a21++)linshi3[a21]='\0';}{for(a16=0;a16<strlen(fji[a15].fjihe);a16++){if(a16==0){linshi4[0]=fji[a15].fjihe[a16];linshi4[1]='\0';strcat(linshi3,linshi4);a16++;}for(a17=0;a17<=strlen(linshi3);a17++)if(linshi3[a17]==fji[a15].fjihe[a16])break;//if(linshi3[a17]=='\0'){ linshi4[0]=fji[a15].fjihe[a16];linshi4[1]='\0';strcat(linshi3,linshi4);}}}strcat(fji2[a15].fjihe2,linshi3);}follow2 fw2[100];int b11,b12,b13;for(b11=0;b11<n;b11++){ fw2[b11].fow2[0]='\0';}for(b12=0;b12<=n;b12++)for(b13=0;b13<n;b13++){ if(b12!=b13 && shizi[b12].left==shizi[b13].left)strcat(fw[b12].fow,fw[b13].fow);}char linshi6[100];char linshi7[2];int b15,b16,b17,b19=0,b21,b18;//for(b15=0;b15<n;b15++){ { {for(b21=0;b21<99;b21++)linshi6[b21]='\0';}{for(b16=0;b16<strlen(fw[b15].fow);b16++){if(b16==0){linshi7[0]=fw[b15].fow[b16];linshi7[1]='\0';strcat(linshi6,linshi7);b16++;}for(b17=0;b17<=strlen(linshi6);b17++)if(linshi6[b17]==fw[b15].fow[b16])break;//if(linshi6[b17]=='\0'){ linshi7[0]=fw[b15].fow[b16];linshi7[1]='\0';strcat(linshi6,linshi7);}}}}strcat(fw2[b15].fow2,linshi6);}int c1,c2;cout<<"非终结符"<<" "<<"first集合"<<endl;cout<<" "<<shizi[0].left<<" "<<fji2[0].fjihe2<<endl;for(c1=1;c1<n;c1++){for(c2=0;c2<c1;c2++){ if(shizi[c1].left!=shizi[c2].left&&c2==(c1-1))cout<<" "<<shizi[c1].left<<""<<fji2[c1].fjihe2<<endl;}}int d1,d2;cout<<"非终结符"<<" "<<"follow集合"<<endl;cout<<" "<<shizi[0].left<<" "<<fw2[0].fow2<<endl;for(d1=1;d1<n;d1++){for(d2=0;d2<d1;d2++){ if(shizi[d1].left!=shizi[d2].left&&d2==(d1-1))cout<<" "<<shizi[d1].left<<""<<fw2[d1].fow2<<endl;}}}四、运行截图。