(完整版)四年级数学行程问题
小学四年级行程问题练习及答案

1、AB 两地相距360千米,客车与货车从A 、B 两地相向而行,客车先行1小时,货车才开出,客车每小时行60千米,货车每小时行40千米,客车开出后几小时与货车相遇?相遇地点距B 地多远分析:由题意可知:客车先行1小时,货车才开出,先求出剩下的路程,再根据路程÷速度和小时,货车才开出,先求出剩下的路程,再根据路程÷速度和==相遇时间,求出相遇时间再加上1小时即可,然后用总路程减去客车4小时行驶的路程问题即可得到解决小时行驶的路程问题即可得到解决..解答:解:相遇时间:(360-(360-60)÷(60+40)+1,60)÷(60+40)+1,=300÷100+1,=3+1=3+1,,=4(=4(小时小时小时)),360-360-60×4,60×4,=360-240=360-240,,=120(=120(千米千米千米)),答:客车开出后4小时与货车相遇,相遇地点距B 地120千米千米. .2、甲、乙两车同时从A 、B 两地出发相向而行,两车在离B 地64千米处第一次相遇千米处第一次相遇..相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A 地48千米处第二次相遇,千米处第二次相遇,A A 、B 之间的距离是多少?解答:【分析】甲、乙两车共同走完一个AB 全程时,乙车走了64千米,从上图可以看出:它们到第二次相遇时共走了3个AB 全程,因此,我们可以理解为乙车共走了3个64千米,再由上图可知:减去一个48千米后,正好等于一个AB 全程全程.AB .AB 间的距离是64×364×3-48=144(-48=144(-48=144(千米千米千米) )3、一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行..这两只蚂蚁每秒分别爬行5.5厘米和3.5厘米厘米..它们每爬行1秒,秒,33秒,秒,55秒…(连续的奇数秒…(连续的奇数)),就调头爬行,就调头爬行..那么,它们相遇时已爬行的时间是多分析:这道题难在蚂蚁爬行的方向不断地发生变化,那么如果这两只蚂蚁都不调头爬行,相遇时它们已经爬行了多长时间呢?非常简单,由于半圆周长为:1.26÷2=0.63米=63厘米,所以可列式为:1.26÷2÷(5.5+3.5)=7(秒厘米,所以可列式为:1.26÷2÷(5.5+3.5)=7(秒));我们发现蚂蚁爬行方向的变化是有规律可循的,它们每爬行1秒、秒、33秒、秒、55秒、…(连续的奇数秒、…(连续的奇数))就调头爬行就调头爬行..每只蚂蚁先向前爬1秒,然后调头爬3秒,再调头爬5秒,这时相当于在向前爬1秒的基础上又向前爬行了2秒;同理,接着向后爬7秒,再向前爬9秒,再向后爬11秒,再向前爬13秒,这就相当于一共向前爬行了1+2+2+2=7(1+2+2+2=7(秒秒),正好相遇,正好相遇. . 4、两汽车同时从A 、B 两地相向而行,在离A 城52千米处相遇,到达对方城市后立即以原速沿原路返回,在离A 城44千米处相遇。
(完整版)四年级数学行程问题

行程问题一、基本简单行程及变速问题1、强强跑100米用10秒,旗鱼每小时能游120 千米,请问:谁的速度更快?2、墨墨练习慢跑,12 分钟跑了3000 千,按照这个速度慢跑25000 米需要多少分钟?如果他每天都以这个速度跑10 分钟,连续跑一个月,他一共跑了多少千米?3、A、B两城相距240千米,一辆汽车原计划用6小时从A城到B城,那么汽车每小时应该行驶多少千米?实际上汽车行驶了一半路程后发生故障,在途中停留了 1 小时,如果要按照原定的时间到达B城,汽车在后一半行程上每小时应该行驶多少千米?4、甲乙两架飞机同时从机场起飞,向同一方向飞行,甲每小时飞行300千米,乙每小时飞行340千米, 4 小时后它们相距多少千米?这时甲提高速度打算用 2 小时追上乙,那么甲每小时应该飞行多少千米?5、萱萱一家开车去外地旅游,原计划每小时行驶45 千米,实际上由于高速公路堵车,汽车每小时只行驶30 千米,这样就晚到两小时,问:萱萱一家在路上实际花了几个小时?6、甲从A地出发去B地办事情,下午 1 点出发,晚上7 点准时到达,如果他想下午两点出发,晚上7点准时到达,每小时就必须多行2千米,求AB两地之间的距离。
7、小欣家离学校1000米,平时他步行25 分钟后准时到校。
有一天他晚出发10 分钟,为避免迟到,小欣先乘公共汽车,然后步行,结果仍然准时到校,已知公共汽车的速度是小欣步行速度的 6 倍,问:小欣这天上学步行了多少米?8、甲乙两人分别从AB两地同时出发, 6 小时后相遇在中点,如果甲延迟 1 小时出发,乙每小时少走 4 千米,两人仍在中点相遇,问:甲乙两地相距多少千米?二、基本相遇问题:1、A、B两地相距4800 米,甲乙两人分别从A、B两地同时出发,相向而行,如果甲每分钟走60 米,乙每分钟走100米,请问:(1)甲从A走到B需要多长时间?(2)两人从出发地到相遇需要多长时间?2、在第 4 题中,如果甲乙两人的速度大小不变,但甲出发时改变方向,即两人同时同向出发,问:乙出发后多久可以追上甲?3、甲乙两地相距350 千米,A车在早上8 点从甲地出发,以每小时40 千米的速度开往乙地。
完整版)四年级行程问题的应用题

完整版)四年级行程问题的应用题1.快车用3小时,慢车用5小时,慢车速度为45千米/时。
求快车每小时比慢车多行多少千米。
解:慢车行驶距离为5小时×45千米/时=225千米。
快车行驶距离为3小时×v千米/时,设快车每小时比慢车多行x千米,则3v=225+x,解得x=36.所以,快车每小时比慢车多行36千米。
2.(1) A、B两车同时从相距380千米的两地出发相向而行,A车速度为45千米/时,B车速度为50千米/时。
相遇时A、B 两车各行驶了多少千米?解:设A、B两车相遇时行驶时间为t小时,则A车行驶距离为45t千米,B车行驶距离为50t千米。
由于A、B两车相向而行,所以它们的行驶距离之和等于380千米,即45t+50t=380,解得t=4.所以,A、B两车各行驶了45×4=180千米和50×4=200千米。
2) A、B两车同时从相距430千米的两地出发相向而行,A车速度为45千米/时,B车速度为50千米/时。
途中A车因有事停留1小时,相遇时A、B两车各行驶了多少千米?解:设A、B两车相遇时行驶时间为t小时,则A车行驶距离为45(t+1)千米,B车行驶距离为50t千米。
由于A、B两车相向而行,所以它们的行驶距离之和等于430千米,即45(t+1)+50t=430,解得t=5.所以,A、B两车各行驶了45×6=270千米和50×5=250千米。
3.XXX、XXX两人分别从甲、乙两地同时乘汽车相向而行,小王乘的汽车速度为48千米/时,XXX乘的汽车速度为44千米/时,两车在距中点6千米处相遇。
求甲、乙两地的距离?解:设甲、乙两地的距离为x千米,小王、XXX两车相遇时行驶时间为t小时,则小王行驶距离为48t千米,XXX行驶距离为44t千米。
由于小王、XXX两车相向而行,所以它们的行驶距离之和等于x千米,即48t+44t=x,解得x=4(t+6)。
又因为小王、XXX两车在中点相遇,所以它们行驶距离相等,即48t=44t+6,解得t=3/2.所以,甲、乙两地的距离为x=4(t+6)=42千米。
(完整版)奥数四年级行程问题

(完整版)奥数四年级行程问题第三部分行程问题【专题知识点概述】行程问题是一类常见的重要应用题,在历次数学竞赛中经常出现。
行程问题包括:相遇问题、追及问题、火车过桥问题、流水行船问题、环形行程问题等等。
行程问题思维灵活性大,辐射面广,但根本在于距离、速度和时间三个基本量之间的关系,即:距离=速度?时间,时间=距离÷速度,速度=距离÷时间。
在这三个量中,已知两个量,即可求出第三个量。
掌握这三个数量关系式,是解决行程问题的关键。
在解答行程问题时,经常采取画图分析的方法,根据题意画出线段图,来帮助我们分析、理解题意,从而解决问题。
一、行程基本量我们把研究路程、速度、时间以及这三者之间关系的一类问题,总称为行程问题.我们已经接触过一些简单的行程应用题,行程问题主要涉及时间(t)、速度(v)和路程(s)这三个基本量,它们之间的关系如下:(1)速度×时间=路程可简记为:s = vt(2)路程÷速度=时间可简记为:t = s÷v(3)路程÷时间=速度可简记为:v = s÷t显然,知道其中的两个量就可以求出第三个量.二、平均速度平均速度的基本关系式为:平均速度=总路程÷总时间;总时间=总路程÷平均速度;总路程=平均速度?总时间。
【重点难点解析】1.行程三要素之间的关系2.平均速度的概念3.注意观察运动过程中的不变量【竞赛考点挖掘】1.注意观察运动过程中的不变量【习题精讲】【例1】(难度等级※)邮递员早晨7时出发送一份邮件到对面山里,从邮局开始要走12千米上坡路,8千米下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,又从原路返回,邮递员什么时候可以回到邮局?【分析与解】法一:先求出去的时间,再求出返回的时间,最后转化为时刻。
①邮递员到达对面山里需时间:12÷4+8÷5=4.6(小时);②邮递员返回到邮局共用时间:8÷4+12÷5+1+4.6 =2+2.4+1+4.6 = l0(小时)③邮递员回到邮局时的时刻是:7+10-12=5(时).邮递员是下午5时回到邮局的。
小学四年级行程问题30题

1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?3、A,B两地相距540千米。
甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。
设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。
那么两车第三次相遇为止,乙车共走了多少千米?4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。
如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走 25 米才能按老师的要求准时到校。
问:小明家到学校多远?(第六届《小数报》数学竞赛初赛题第1题)5、小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?6、小王的步行速度是 4.8千米/小时,小张的步行速度是 5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去. 他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?7、邮递员早晨7时出发送一份邮件到对面的山坳里,从邮局开始要走12千米的上坡路,8千米的下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地后停留1小时,又从原路返回,邮递员什么时候可以回到邮局?8、小明从甲地到乙地,去时每小时走6千米,回时每小时走9千米,来回共用5小时。
小明来回共走了多少千米?9、A、B两城相距240千米,一辆汽车原计划用6小时从A城开到B城,汽车行驶了一半路程,因故在途中停留了30分钟。
人教版2023-2024学年四年级数学上册第6单元行程问题篇(解析版)

2023-2024学年四年级数学上册第六单元行程问题篇(解析版)编者的话:《2023-2024学年四年级数学上册典型例题系列》是基于教材知识点和常年考点考题总结与编辑而成的,该系列主要包含典型例题、专项练习、分层试卷三大部分。
典型例题部分是按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。
专项练习部分是从常考题和期末真题中选取对应练习,其优点在于选题经典,题型多样,题量适中。
分层试卷部分是根据试题难度和掌握水平,主要分为基础卷、提高卷、拓展卷三大部分,其优点在于考点广泛,分层明显,适应性广。
本专题是第六单元行程问题篇。
本部分内容是行程问题,包括普通行程问题、相遇问题、追及问题、火车过桥问题等等,考点和题型偏于应用,题目综合性稍强,建议作为核心内容进行讲解,一共划分为十四个考点,欢迎使用。
【知识总览】1.行程问题是小学数学中非常常见的类型题,一般包含三个基本量:(1)路程:一共行了多长的路,一般用米或千米作单位;(2)速度:每小时(或每分钟)行的路程,速度的单位常常是路程单位与时间单位的结合,例如:千米/时、米/分、米/秒等等;(3)时间:行了几小时(分钟)。
2.行程问题的基本数量关系:速度×时间=路程;路程÷速度=时间;路程÷时间=速度【考点一】速度的认识及意义。
【方法点拨】速度是指每小时(或每分钟)行的路程,速度的单位常常是路程单位与时间单位的结合,是一个复合单位,例如:千米/时、米/分、米/秒等等。
【典型例题1】一辆汽车的速度是55千米/时,表示( ),光传播的速度是300000千米/秒,表示( )。
解析:每小时行驶55千米;每秒传播300000千米【典型例题2】(1)一辆小轿车每小时行90千米,记作( )。
读作( )。
解析:90千米/时;90千米每时(2)声音在空气中传播的速度是每秒340米,可以写成( )。
解析:340米/秒(3)一个成年人正常步行的速度是每分钟90米,可写作( )。
(完整word版)小学四年级下册数学行程问题思维训练题及答案

小学四年级下册数学行程问题思维训练题及答案【1】上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上小明。
然后,爸爸立即回家,到家后又立即回头去追小明,再追上小明的时候,离家恰好是8千米,问这时是几点几分?【2】自行车队出发24分钟后,通信员骑摩托车去追他们。
在距出发点9千米处追上自行车队。
通信员立即返回出发点,然后又返回去追自行车队,在追上时恰好离出发点18千米,求自行车队和摩托车的速度。
【3】某学校与某工厂之间有一条公路,该校下午2点钟派车到工厂接劳模作报告,往返需要1小时,这位劳模在下午1点钟便离厂步行去学校,途中遇到接他的车就立即上车驶往学校,于下午2点40分到达学校,汽车的速度是劳模步行速度的几倍?【4】家住郊外的工程师,每天在同一时候乘火车到达某站,这时工厂接工程师的汽车也同时到达,他乘车准时到达工厂。
有一天,工程师提前55分钟到某站,接他的汽车还未到,他就步行向工厂走去,在路上遇到接他的车,他再坐车,结果比平时提前10分钟到达工厂,问汽车的速度是工程师的几倍?【5】甲、乙两人在相距50米的A、B两端的水池里沿直线来回有用,甲的速度是1米/秒,乙的速度是2米/秒。
他们同时分别从水池的两端出发,来回游了10分钟,如果不计转向的时间,那么在这段时间内他们共相遇了多少次?【6】甲、乙两人在相距120米的直路上来回跑步,甲的速度为4米/秒,乙的速度为5米/秒。
如果他们同时分别从两个端点出发,且每人跑10分钟,问他们共相遇了多少次?【答案】【1】上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上小明。
然后,爸爸立即回家,到家后又立即回头去追小明,再追上小明的时候,离家恰好是8千米,问这时是几点几分?先得出小明的速度是时是爸爸速度的3倍.爸爸从家到第一次追上小明,小明走了4千米,若爸爸与小明同时出发,则爸爸应走出12千米,但是由于爸爸晚出发8分钟,所以只走了4千米,所以爸爸8分钟应走8千米.由于爸爸从出发到第二次追上小明共走了16千米,所以爸爸用了16分钟,此时离小明出发共用了8+16=24分钟,所以爸爸第二次追上小明时是8点32分【2】自行车队出发24分钟后,通信员骑摩托车去追他们。
四年级奥数行程问题

行程问题专题分析:行程问题是专门讲物体运动的速度、时间和路程的应用题。
行程问题的主要数量关系是:路程=速度×时间、路程和÷速度和=相遇时间、路程差÷速度差=相遇时间。
练习一:1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇。
东西两地相距多少千米?思路:两车在距中点32千米处相遇,意思是:两车行的路程相差64千米。
有了路程差和速度差就可以求出相遇时间了为8小时。
其他计算就容易了。
2、小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校到少年宫有多少米?3、一辆汽车和一辆摩托车同时从甲乙两地相对开出,汽车每小时行40千克,摩托车每小时行65千米。
当摩托车行到两地中点处,与汽车相距75千米。
甲乙两地相距多少千米?4、小轿车每小时行60千米,比客车每小时多行5千米,两车同时从甲乙两地相向而行,在距中点20千米处相遇,求甲乙两地之间的路程。
练习二:1、快车和慢车同时从甲乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,。
慢车每小时行多少千米?思路:先计算快车3小时行120千米,再减去25千米就是路程的一半,这时快车与慢车还相距7千米,则慢车行了63千米。
因此慢车的速度为21千米/小时。
2、兄弟二人同时从学校和家中出发,相向而行。
哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。
弟弟每分钟行多少米?3、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?4、学校运来一批树苗,五(1)班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵。
如果这批树苗平均分给五(1)班的同学去植,平均每人植多少棵?练习三:1、甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行程问题一、基本简单行程及变速问题1、强强跑100米用10秒,旗鱼每小时能游120 千米,请问:谁的速度更快?2、墨墨练习慢跑,12 分钟跑了3000 千,按照这个速度慢跑25000 米需要多少分钟?如果他每天都以这个速度跑10 分钟,连续跑一个月,他一共跑了多少千米?3、A、B两城相距240千米,一辆汽车原计划用6小时从A城到B城,那么汽车每小时应该行驶多少千米?实际上汽车行驶了一半路程后发生故障,在途中停留了 1 小时,如果要按照原定的时间到达B城,汽车在后一半行程上每小时应该行驶多少千米?4、甲乙两架飞机同时从机场起飞,向同一方向飞行,甲每小时飞行300千米,乙每小时飞行340千米, 4 小时后它们相距多少千米?这时甲提高速度打算用 2 小时追上乙,那么甲每小时应该飞行多少千米?5、萱萱一家开车去外地旅游,原计划每小时行驶45 千米,实际上由于高速公路堵车,汽车每小时只行驶30 千米,这样就晚到两小时,问:萱萱一家在路上实际花了几个小时?6、甲从A地出发去B地办事情,下午 1 点出发,晚上7 点准时到达,如果他想下午两点出发,晚上7点准时到达,每小时就必须多行2千米,求AB两地之间的距离。
7、小欣家离学校1000米,平时他步行25 分钟后准时到校。
有一天他晚出发10 分钟,为避免迟到,小欣先乘公共汽车,然后步行,结果仍然准时到校,已知公共汽车的速度是小欣步行速度的 6 倍,问:小欣这天上学步行了多少米?8、甲乙两人分别从AB两地同时出发, 6 小时后相遇在中点,如果甲延迟 1 小时出发,乙每小时少走 4 千米,两人仍在中点相遇,问:甲乙两地相距多少千米?二、基本相遇问题:1、A、B两地相距4800 米,甲乙两人分别从A、B两地同时出发,相向而行,如果甲每分钟走60 米,乙每分钟走100米,请问:(1)甲从A走到B需要多长时间?(2)两人从出发地到相遇需要多长时间?2、在第 4 题中,如果甲乙两人的速度大小不变,但甲出发时改变方向,即两人同时同向出发,问:乙出发后多久可以追上甲?3、甲乙两地相距350 千米,A车在早上8 点从甲地出发,以每小时40 千米的速度开往乙地。
2小时后B车以每小时50千米的速度从乙地开往甲地。
问:什么时候两车在途中相遇?4、一辆公共汽车和一辆小轿车从相距350 千米的两地同时出发,相向而行,公共汽车每小时行40千米,小轿车每小时行60 千米。
问:(1)2 小时后两车相距多少千米?(2)经过几小时后两车第一次相距50 千米?5、甲乙两车分别从AB两地同时出发相向而行,已知甲车每小时行驶40千米,两车6小时后相遇,相遇后他们继续前行,又经过 3 小时,甲车到达 B 地,问:乙车还要过多久才能到达 A 地?6、甲乙两地相距450 千米,快车和慢车分别从甲乙两地出发相向而行,快车每小时行60千米,慢车每小时行30 千米,问:(1)如果两车同时出发,几小时后相遇?(2)如果慢车比快车早出发 3 小时,当两车相遇时快车走了多远?7、甲乙两车同时从东西两地出发,相向而行,甲车每小时行36 千米,乙车每小时行30 千米,两车在距离中点9 千米处相遇,求东西两地间的距离。
8、甲乙两人分别在A地和B地,甲从A地到B地需要20 分钟,乙从B 地到 A 地需要30 分钟,如果两人同时出发相向而行,多长时间可以相遇?9、甲乙两人分别从AB两地同时出发,相向而行,AB两地相距48 千米,甲的速度是乙的速度的 3 倍,请问:当甲乙相遇的时候,甲走了多远?10、AB两地相距400 千米,甲乙两车分别从AB同时出发,相向而行,甲车的速度为每小时60 千米,乙车的速度为每小时40 千米,问:(1)从出发算起,多久后甲乙两车第一次相距100 千米?(2)从出发算起,多久后甲乙两车第二次相距100 千米?11、甲乙两人分别从AB两地同时出发相向而行,已知甲每分钟走50 米,乙走完全程要18 分钟,出发 3 分钟后,甲乙仍相距450 米,问还要过多少分钟,甲乙两人才能相遇?12、甲乙两车分别从AB两站同时出发,相向而行。
已知甲车的速度是乙车的 2 倍,甲乙到达途中C站的时刻依次为5点和17 点,问:两车何时相遇?13、甲乙两人分别从相距24 千米的AB两地同时出发同向而行,一段时间后甲在C点追上乙,如果甲每小时多走 1 千米,而乙每小时少走 1 千米,则甲追上乙的时间就少用两小时,且追上的地点与C点相距12 千米,问:如果甲乙两人以原速分别从AB两地同时出发相向而行,几个小时相遇?三、基本追及问题:1、小李和小明分别从相距720 米的两地出发同向而行,小明在前,小李在后,且小明比小李先出发 2 分钟,已知小李的速度是每分钟60 米,小明的速度是每分钟50 米,问:当小李追上小明时,小明已经走了多少米?2、一辆公共汽车和一辆小轿车从相距300 千米的两地同时出发,同向而行,公共汽车在前,每小时行40 千米,小轿车在后,每小时行60 千米。
问:(1)经过 6 小时后两车相距多少千米?(2)经过几小时后两车第一次相距100 千米?3、甲乙两架飞机同时从机场起飞,向同一方向飞行,甲每小时飞行300千米,乙每小时飞行340千米, 4 小时后它们相距多少千米?这时甲提高速度打算用 2 小时追上乙,那么甲每小时应该飞行多少千米?4、小高步行上学,每分钟行75 千米,小高离家12 分钟后,爸爸发现他忘记带文具盒,马上骑自行车去追,每分钟375 米,求爸爸追上小高所需要的时间。
4、小轿车和大货车上午9 点同时同向从甲地出发,小轿车每小时行60 千米,大货车每小时行48 千米,请问:下午几点的时候小轿车领先大货车72 千米?,5、一辆公共汽车早上6点从A城出发,以每小时40 千米的速度向 B 城驶去,3 小时后一辆小轿车以每小时75 千米的速度也从A 城出发到B城。
当小轿车到达B城时,公共汽车离B城还有160 千米,问:公共汽车什么时候到达 B 城?6、甲乙两人分别从AB两地同时出发,如果相向而行, 1 小时候后两人相遇,如果同向而行, 3 小时后甲追上乙,问:甲的不行速度是乙的几倍?7、猎狗追兔子,猎狗的速度是兔子的 2 倍,兔子径直往洞里跑,猎狗则紧随其后,现在,猎狗距离洞口还有1000 米,当猎狗跑到兔子现在的位置时,兔子距离洞口将还剩100 米,问:(1)现在兔子距离洞口多少米?(2)最终兔子会被猎狗追上吗?四,列车行程问题:列车过桥:1、一列火车长180 米,每秒行20 米,这列火车通过320 米的大桥,需要多长时间?2、一列火车以每秒20 米的速度通过一座长200 米的大桥,共用21 秒,这列火车长多少米?3、一列火车长400米,以每分钟800米的速度通过一条长2800 米的隧道,需要多长时间?4、一列火车长720 米,每秒行驶15 米,全车通过一个山洞用了64 秒,这个山洞长多少米?5、一列火车通过一座长1000 米的桥,从火车车头上桥,到车尾离开桥共用了120 秒,而火车完全在桥上的时间是80 秒,你知道火车有多长吗?它的速度是多少?列车与人的相遇追及:1、王老师沿着一条与铁路平行的公路散步,每分钟走60 米,迎面开过来一列长300 米的火车,从火车头与王老师相遇到火车尾离开他共用了20 秒,求火车的速度。
2、小高站在火车轨道旁,一辆200米的火车以每秒钟10 米的速度开过,问:火车从他身边经过需要多少秒?3、与铁路平行的一条小路上,有一个行人与一个骑自行车的人同时向南行驶,行人速度为每小时 3.6 千米,骑车人速度为每小时10.8千米,这时,有一列火车从他们背后开过来,火车通过这行人用了22 秒,通过骑车人用了26秒钟,问:这列火车的车身总长是多少米?,4、墨墨在一条与铁路平行的小路上行走,有一列客车迎面开过来,40秒后经过墨墨,如果这列客车从墨墨背后开来,60秒后经过墨墨试问:如果墨墨站在原地不动,客车多长时间可以经过墨墨?5、铁路旁有一条小路,一列长110 米的火车以每小时30 千米的速度向北缓缓驶去,14时10分追上向北行走的一位工人,15秒后离开这个工人;14时16分迎面遇到一个向南走的学生,12 秒钟后离开这个学生。
问:工人与学生将在何时相遇?6、快中慢三辆车同时从甲地出发追赶前方的骑车人,分别用 6 分钟,12 分钟,20 分钟追上。
已知快车每小时行24 千米,中车每小时行20 千米,那么慢车每小时行多少千米?7、铁路旁的一条平行小路上,有一行人与一骑自行车人早上同时从A 城出发向南前进,行人速度为每小时7.2 千米,骑车人速度为每小时18 千米,途中,有一列火车从他们背后开过来,9 点10 分恰好追上行人,而且从行人身边通过用了20秒;9点18分恰好追上骑车人,从骑车人身边通过用了26 秒,问:(1)这列火车车身总长是多少?(2)行人与汽车人早上何时从 A 城出发?(3)他们出发时,火车离 A 城还有多少千米?列车与列车间的相遇追及:8、一列火车长180米,每秒行20 米,另一列火车长200米,每秒行18 米,两车相向而行,它们从车头相遇到车尾相离要经过多长时间?9、甲乙两列火车相向而行,甲车每小时行48 千米,乙车每小时行60 千米,坐在甲车上的小明从乙车车头经过他的车窗时开始计时,到车尾经过他的车窗为止共用13 秒,问:乙车全长多少?10、货车和客车相向而行,两车在A点迎面相遇,在B点错开,A点和 B 点之间的距离为150 米,已知客车的长度为450 米,速度为每小时108 千米,货车的速度为每小时72 千米。
如果货车比客车长,那么货车的长度是多少?12、甲火车长370 米,每秒行15 米,乙火车长350 米,每秒行21 米,两车同向行驶,乙车从追上甲车到完全超过甲车需要多长时间?13、有一列客车和一列货车,客车长400 米,每秒行驶20 米,货车长800 米,每秒行驶10 米,问:如果两车相向而行,它们从相遇到错开需要多长时间?如果两车同向而行,客车赶超货车需要多长时间?14、一列客车和一列货车同向而行,货车在前,客车在后,已知客车通过460米长的隧道用了30秒,通过410长的隧道用了28 秒,又已知货车长160米,每小时行驶54 千米,问:客车从追上到离开这列货车需要多少秒?15、两列火车同时同向齐头前进,快车每秒18米,慢车每秒10 米,行12 秒后快车超过慢车。
如果两列火车车尾对齐,同时同方向行进,则9 秒后快车超过慢车,问:快车和慢车的车身长分别是多少?,16、一列货车和一列客车同向行驶,由于货车有紧急任务,因此开车赶超客车,小明在客车内沿着客车前进的方向行走,发现货车用了14 秒钟就超过了他,已知小明在客车内的行走速度为每秒 1 米,客车的速度为每秒20米,客车长350 米,货车长280 米,求货车从追上客车到完全超过客车所需要的时间。