2020九年级数学上册 第二十三章 旋转 23.2 中心对称 23.2.2 中心对称图形教案2

合集下载

人教版九年级数学上册23.2.2:中心对称图形(教案)

人教版九年级数学上册23.2.2:中心对称图形(教案)
3.实践活动中的分组讨论和实验操作,学生们表现得积极主动,这让我很欣慰。但同时,我也注意到有些学生在讨论过程中过于依赖同伴,缺乏独立思考。在接下来的教学中,我会加强对学生的引导,鼓励他们提出自己的观点,培养他们的独立思考能力。
4.学生小组讨论环节,大家在分享成果时表现出很高的热情。但在讨论过程中,我发现有些小组在解决问题时过于依赖教师,缺乏自主解决问题的能力。针对这个问题,我将在后续的教学中,逐步减少对学生的干预,让他们在探讨中学会自主分析和解决问题。
(4)中心对称图形的创新能力:学生在创作中心对称图形时,往往局限于教材中的例子,缺乏创新意识。
突破方法:鼓励学生发挥想象,尝试将中心对称知识应用于不同的场景和领域,提高学生的创新能力和实践能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《中心对称图形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否见过一些美丽的图案,它们看起来是完全对称的?”(举例说明)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索中心对称图形的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调中心对称的定义和性质这两个重点。对于难点部分,如对称中心的寻找,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与中心对称相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示中心对称的基本原理。
5.总结回顾环节,学生对中心对称图形的基本概念和性质有了较好的掌握,但在实际应用方面还显得有些吃力。为了提高学生的应用能力,我计划在课后布置一些具有实际背景的作业,让学生在完成作业的过程中,进一步巩固所学知识。

人教版数学九年级上册23.2.2中心对称图形课件(29张PPT)

人教版数学九年级上册23.2.2中心对称图形课件(29张PPT)

美丽的中心对称图形
你能设计出中心对称图形吗?
巩固训练
1. 剪纸是我国具有独特艺术风格的民间艺术,反 映了劳动人民对现实生活的深刻感悟. 下列剪纸 图案中,是中心对称图形的有( A )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
2. 下列图形是轴对称图形但不是中心对称 图形的是( D )
A
B
C
D
3. 如图,直线 a⊥b 于点O,曲线 c 关于点 О 成中心对称,点 A 的对称点是 A',AB⊥a 于点B,A'D⊥b 于点 D. 若 OB=3,OD=2,则 阴影部分的面积为___6___.
4. 图①②都是由边长为 1 的小等边三角形构成 的网格,每个网格图中有3个小等边三角形已涂上阴 影. 请在余下的空白小等边三角形中,分别按下列要 求选取一个涂上阴影: (1)使得4个阴影小等边三角形组成一个轴对称图形. (2)使得4个阴影小等边三角形组成一个中心对称图形.
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题.
【画一画】
1. 下图是中心对称图形的一部分及对称中心,请你
补如全何它寻的找另中一心部对分称. A
B
图形的对称中心?
H G
C
D
F
E
2. 如图,请你用无刻度的直尺画一条直线,把下 面的平行四边形分成完全相等的两部分.
几何画板演示
【归纳】过对称中心的直线将中心对称图 形分成全等的两部分.
练习
如图,直线 EF 经过▱ABCD 的对角线的交 点O,若 AE=3,四边形 AEFB 的面积为15, 则 CF=__3___,四边形 EDCF 的面积为__1_5___.
后的图形能够与原来的图形重合,那么这个图形叫

九年级数学上册 23.2.2 中心对称图形 课件(共24张PPT)

九年级数学上册 23.2.2 中心对称图形 课件(共24张PPT)

(2)中心对称图形的对称点
O
连线被_对__称__中__心__平__分__
C
B
性质:中心对称图形上的每一对对称点的连线都经过对称
中心且被对称中心平分.
知识归纳
中心对称图形的性质
知识点二
中心对称与中心对称图形的区别与联系:
中心对称
中心对称图形
1.针对两个图形而言的
1.针对一个图形而言的
区 2.是指两个图形的(位置)关系2.是指具有某种性质的一个图形
探究新知
中心对称图形的概念
【问题】将下面的图形绕O点旋转,你有什么发现?
知识点一
AO B
O
O
O
共同点:(1)都绕一点旋转了180度; (2)都与原图形完全重合.
中心对称图形的定义 注意 中心对称图形是指一个图形.
把一个图形绕某个点旋转180º,如果旋转后的图形能与原来的图 形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中
ABCDEFGH I J KLM
NOPQRSTUVWXYZ
2.在线段、角、等腰三角形、等边三角形、等腰梯形、平行四 边形、矩形、菱形、正方形、正六边形、圆中,既是轴对称图形, 又是中心对称图形的图形有( D ) A.3个 B.4个 C.5个 D.6个
针对训练
中心对称图形的概念
知识点一
3.下列图形中,既是轴对称图形,又是中心对称图形的是( B )
分别交AD和BC于点E,F,AB=2,BC=3,则图中阴影部分的面积为_3__.
A
ED
O
BF
C
针对训练
中心对称图形的性质
知识点二
1.如图,有一个平行四边形请你用无刻度的直尺画一条直线把他

九年级数学上册第二十三章23.2《中心对称》PPT课件

九年级数学上册第二十三章23.2《中心对称》PPT课件

C
A
BO● B′
A′
C′
找一找:
下图中△A′B′C′与△ABC关于点O是成中心对称,你 能从图中找到哪些等量关系?
(1) OA=OA′、OB=OB′、 OC=OC′
(2)△ABC≌△A′B′C′
知识要点
中心对称的性质 1.成中心对称的两个图形中,对应点所连线段经 过对称中心,且被对称中心平分.(即对称点与 对称中心三点共线)
A.1组
B.2组
C.3组 D.4组
3.如图,已知△AOB与△DOC成中心对称,△AOB的
面积是6,AB=3,则△DOC中CD边上的高是( B )
A.2
B.4
C
D
C.6
D.8
O
A
B
4.如图,已知等边三角形ABC和点O,画△A′B′C′,使 △A′B′C′和△ABC关于点O成中心对称.
A
B′ C′
O
B
3 翻转后和另一个图形重合 旋转后和另一个图形重合
趣味题1:一天,吝啬的地主被农夫救了一命,在众目 睽睽下不得不奖励农夫,而这个地主还心有不甘,于是 想难为农夫一下,地主说:我这有个圆盘和足够多的棋 子,咱俩人轮流下棋,要求棋子不能重合,不能下出圆 盘,最后哪个人棋子放不下了,那么这个人就算输,如 果你胜了,我就给你金币.聪明的农夫略一思考就答应 了地主的要求,但农夫要求先下, 随后轻松的胜了地主. 你知道农夫是怎么下的吗?
观察与思考
问题1:观察下列图形的运动,说一说它们有什么
共同点.
C
O
D

B
旋转角为180° 重合 A
知识要点
如果把一个图形(如△ABO)绕定点O旋转180º, 它能够与另一个图形(如△CDO)重合,那么就说这 两个图形△ABO与图形△CDO关于点O的对称或中 心对称,点O就是对称中心.

23.2.2中心对称图形-2020秋人教版九年级数学上册点拨训练习题课件(共24张PPT)

23.2.2中心对称图形-2020秋人教版九年级数学上册点拨训练习题课件(共24张PPT)
(3)还有哪些正多边形是中心对称图形? 解:只要边数是偶数的正多边形都是中心对称图形.
13.(2019·宁波)图①、图②都是由边长为 1 的小等边三角形构成的 网格,每个网格图中有 5 个小等边三角形已涂上阴影,请在余 下的空白小等边三角形中,按下列要求选取一个涂上阴影;
(1)使得 6 个阴影小等边三角形组成一个轴对称图形; 解:如图①所示.(答案不唯一)
6.(2019·安顺)在平面直角坐标系中,点 P(-3,m2+1)关于原点 的对称点在( D ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
7.四张扑克牌(如图①所示)放在桌面上,小敏把其中一张旋转 180°后得到图②,则她所旋转的牌从左数是( A ) A.第一张 B.第二张 C.第三张 D.第四张
9.根据中心对称图形的性质可知,任何一对对应点连线的 __中__点____就是该中心对称图形的对称中心,或两对对应点连 线的__交__点____是对称中心.
10.(中考·河北)图甲和图乙中所有的小正方形都全等,将图甲的 正方形放在图乙中①②③④的某一位置,使它与原来 7 个小 正方形组成的图形是中心对称图形,这个位置是( C ) A.① B.② C.③ D.④
*8.(中考·宁波)如图,小明家的住房平面图呈长方形,被分割成 3 个正方形和 2 个长方形后仍是中心对称图形.若只知道原住 房平面图长方形的周长,则分割后不用测量就能知道周长的 图形的标号为( ) A.①② B.②③ C.①③ D.①②③
【点拨】由题意知标①的两个长方形全等,标②的两个正方形全
等.设长方形①的长为 a,宽为 c,正方形②的边长为 b,正方
形③的边长为 d,则 a+b=2-d,于是有 a+c=2b.
又因为大长方形的周长已知,不妨设为 l,

初中数学 九年级 上册 第二十三章 旋转 23.2 中心对称

初中数学 九年级 上册 第二十三章 旋转 23.2 中心对称

23.2中心对称23.2.1中心对称1.如图,正方形ABCD 与正方形A 1B 1C 1D 1关于某点中心对称,已知A,D 1,D 三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标.(2)写出顶点B,C,B 1,C 1的坐标.2.判断正误:(1)轴对称的两个图形一定是全等形,但全等的两个图形不一定是轴对称的图形.()(2)成中心对称的两个图形一定是全等形.但全等的两个图形不一定是成中心对称的图形.()(3)全等的两个图形,不是成中心对称的图形,就是成轴对称的图形.()3.如下所示的4组图形中,左边数字与右边数字成中心对称的有()A.1组B.2组C.3组D.4组4.如图,已知△AOB与△DOC成中心对称,△AOB的面积是6,AB=3,则△DOC中CD边上的高是()A.2B.4C.6D.85.如图,已知等边三角形ABC和点O,画△A′B′C′,使△A′B′C′和△ABC关于点O成中心对称.6.如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△FEC.(1)试猜想AE与BF有何关系?说明理由;(2)若△ABC的面积为3cm2,求四边形ABFE的面积.参考答案1.解:(1)根据对称中心的性质,可得对称中心的坐标是D 1D的中点,∵D1、D的坐标分别是(0,3),(0,2),∴对称中心的坐标是(0,2.5).(2)∵A、D的坐标分别是(0,4)、(0,2),∴正方形ABCD与正方形A1B1C1D1的边长都是:4﹣2=2,∴B、C的坐标分别是(﹣2,4),(﹣2,2),∵A1D1=2,D1的坐标是(0,3),∴A1的坐标是(0,1),∴B1、C1的坐标分别是(2,1)、(2,3),综上,可得:顶点B、C、B1、C1的坐标分别是(﹣2,4),(﹣2,2)、(2,1)、(2,3).2.⑴√⑵√⑶×3.D4.B5.作法:1.连接AO并且延长AO至A′,使AO=A′O;2.连接BO并且延长BO至B′,使BO=B′O;3.连接CO并且延长CO至C′,使CO=C′O;则△A′B′C′即为所求.6.解:(1)AE∥BF,AE=BF;理由:∵△ABC 绕点C 顺时针旋转180°得到△FEC,∴△ABC≌△FEC,∴AB=FE,∠ABC=∠FEC,∴AB∥FE,∴四边形ABFE 为平行四边形⑵S 四边形ABFE =4S △ABC =12cm 2.23.2中心对称23.2.2中心对称图形1.下列几何图形:其中是轴对称图形但不是中心对称图形的共有()A.4个B.3个C.2个D.1个2.下列图案都是由字母“m”经过变形、组合而成的,其中不是中心对称图形的是()A B C D3.下列图形中既是轴对称图形又是中心对称图形的是()A.角B.等边三角形C.线段D.平行四边形4.观察图形,并回答下面的问题:①哪些只是轴对称图形?②哪些只是中心对称图形?③哪些既是轴对称图形,又是中心对称图形?5.世界上因为有了圆的图案,万物才显得富有生机,以下来自现实生活的图形中都有圆,它们看上去是那么美丽与和谐,这正是因为圆具有轴对称和中心对称性.请问以下三个图形中是轴对称图形的有,是中心对称图形的有.6.图中网格中有一个四边形和两个三角形,(1)请你先画出三个图形关于点O的中心对称图形;(2)将(1)中画出的图形与原图形看成一个整体图形,请写出这个整体图形对称轴的条数;这个整体图形至少旋转多少度与自身重合?参考答案1.C2.B3.C4.解:①⑶⑷⑹②⑴③⑵⑸5.①②③;①③6.解:⑴如图所示:⑵如图所示,对称轴有4条;整体图形至少旋转90°与自身重合.23.2中心对称23.2.3关于原点对称的点的坐标1.已知点P(a+1,+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是()2.在平面直角坐标系中,已知A(2,3),B(0,1),C (3,1),若线段AC与BD互相平分,则点D关于坐标原点的对称点的坐标为.3.下列各点中哪两个点关于原点O对称?A(-5,0)B(0,2)C(2,-1)D(2,0)E(0,5)F(-2,1)G(-2,-1)4.写出下列各点关于原点的对称点的坐标.A(3,1)B(-2,3)C(-1,-2)D(2,-3)5.在如图所示编号为①、②、③、④的四个三角形中,关于y轴对称的两个三角形的编号为;关于坐标原点O对称的两个三角形的编号为________.6.如图,阴影部分组成的图案,既是关于x轴成轴对称的图形又是关于坐标原点O成中心对称的图形.若点A的坐标是(1,3),则点M和点N的坐标分别是:.7.如图,已知A的坐标为(-,2),点B的坐标为(-1,),菱形ABCD的对角线交于坐标原点O.求C,D两点的坐标.8.试写出直线y=3x-5关于原点对称的直线的函数解析式.初中数学人教版九年级上册第二十三章旋转-11-参考答案1.C2.(-5,-3)3.C 与F4.A(-3,-1);B(2,-3);C(1,2);D(-2,3)5.①与②;①与③6.M(-1,-3);N(1,-3)7.解:C(,-2)).8.解:y=3x+5.。

九年级数学上册第二十三章旋转23.2中心对称同步课件(新版)新人教版

九年级数学上册第二十三章旋转23.2中心对称同步课件(新版)新人教版

第一步,画出△ABC;
第二步,以三角板的
A’
一个顶点O为中心,
把三角板旋 转180°, C’
B’
画出△A′B′C′;
OB
C
第三步,移开三角板.
A
分别连接AA’,BB’,CC’。点O在线段AA′上吗?如果在, 在什么位置? △ABC与△A′B′C ′有什么关系?
(1)点O是线段AA ′的
中点 (为什么?)
轴对称 有一条对称轴---直线
中心对称 有一个对称中心—点
图形沿对称轴对折(翻折 图形绕对称中心旋转180°后重
180°)后重合

对称点的连线被对称轴垂 对称点连线经过对称中心,且被
直平分
对称中心平分
A
O
B C
C1 B1
A1
轴对称
中心对称
1 有一条对称轴——直线 有一个对称中心——点
2 图形沿轴对折(翻转 180°) 图形绕中心旋转 180°
C、A、E三点在一条直线上或∠CAE= 180° AC=AE
汉代铜镜——中心对称图形
观察图形,并回答下面的问题: (1)哪些只是轴对称图形? (3)(4)(6) (2)哪些只是中心对称图形? (1) (3)哪些既是轴对称图形,又是中心对称图形? (2)(5)
(1)
(2)
(3)
(4)
(5)
(6)
旋转三角板,画关于点O对称的两个三角形:
教学课件
数学 九年级上册 RJ版
第二十三章 旋转
23.2 中心对称
23.2 中心对称
图形的旋转?
在平面内,将一个图形绕一个定点旋转一定的角度, 这样的图形变换称为图形的旋转。 这个定点称为旋转中心。 转的角度称为旋转角。

人教版九年级数学上册 23.2.2 中心对称图形(22张PPT)课件

人教版九年级数学上册 23.2.2 中心对称图形(22张PPT)课件

并且被对称中心平分
如果一个图形绕着一个 点旋转180后的图形能 够与原来的图形重合, 那么这个图形叫做中心 对称图形,这个点就是 它的对称中心
________
①两个图形的关系
区别
②对称点在两个图形上
①具有某种性质的一个图形 ②对称点在一个图形上
若把中心对称图形的两部分分别看作两图,则它们成中心对称. 联系 若把中心对称的两图看作一个整体,则成为中心对称图形.
(2)平行四边形、长方形和正方形都是中心对称 图形,对角线的交点是它们的对称中心. ( )
(3)角是轴对称图形也是中心对称图形. ( )
(4)在成中心对称的两个图形中,对应线段平行
(或在同一直线上)且相等.
()
3. 判断下列图形是否是中心对称图形:

√ ×





4. 观察图形,并回答下面的问题: (1)哪些只是轴对称图形?(3)(4)(6) (2)哪些只是中心对称图形?(1) (3)哪些既是轴对称图形,又是中心对称图形?
D
O
B
C
如果一个图形绕一个点旋转180°后,能和原来的图形
互相重合,那么这个图形叫做中心对称图形;这个点
叫做它的对称中心;互相重合的点叫做对称点.
图中____A_B_C__D_是中心对称图形 对称中心是__点__O__
点A的对称点是_点__C___
点D的对称点是_点__B___
小练习
下列图形是中心对称图形吗?
复习中心对称的概念
把一个图形绕着某一点旋转 180°,如果它能够与另一个 图形重合,那么就说这两个图形关于这个点对称或中心对 称.这个点叫做对称中心.
这两个图形在旋转后能重合的对应点叫做关于对称中心的 对称点.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

23.2.2 中心对称图形
01 教学目标
1.掌握中心对称图形的定义.
2.准确判断某图形是否为中心对称图形.
02 预习反馈
自学课本P66~67.思考什么样的图形是中心对称图形.
知识探究
中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合.那么这个图形叫做中心对称图形,这个点就是它的对称中心.
自学反馈
1.中心对称图形与中心对称有哪些区别与联系.
区别:中心对称指两个全等图形的相互位置关系;中心对称图形指一个图形本身成中心对称.
联系:如果将成中心对称的两个图形看成一个整体,那么它们是中心对称图形;如果将中心对称图形对称的部分看成两个图形,那么它们成中心对称.
2.将下面左图的四张扑克牌中的一张旋转180°后,得到右图,你知道旋转了哪一张扑克吗?议一议.
【点拨】这里相当于问哪一张扑克牌是中心对称图形.
03 新课讲授
例我们已学过许多几何图形,下列几何图形中,哪些是中心对称图形?对称中心是什么?(出示课件图片)
①平行四边形;②矩形;③菱形;④正方形;⑤正三角形;⑥线段;⑦角.
【解答】线段的对称中心为线段中点、平行四边形、矩形、菱形、正方形的对称中心都是对角线交点.【跟踪训练1】下列图形中,是中心对称图形的为(B)
【点拨】怎样判断不常见几何图形是否为中心对称图形的妙法:将书本转180°,即倒过来后,看图形是否与原来一样.
【跟踪训练2】说一说:在生活中你还见过哪些中心对称图形?学生思考、举例、回答问题,教师展示图片、归纳总结.
【跟踪训练3】想一想:你学过的几何图形具有怎样的对称性?
【点拨】边数为奇数的正多边形只是轴对称图形而不是中心对称图形,边数为偶数的正多边形既是轴对称图形,又是中心对称图形.
04 巩固训练
1.观察下列图形,是中心对称图形的是(B)
2.如图,将四个“米”字格的正方形内涂上阴影,其中既是轴对称图形,又是中心对称图形的是(B)
3.下列图形:①等边三角形;②菱形;③函数y=kx+b的图象;④函数y=ax2(a≠0)的图象.其中是中心对称图形的有②③(填序号).
4.设计师:如果公园里的草坪是下面的形状,你能否只修一条笔直的小路就将这块草坪分成面积相等的两部分?
解:略.
【点拨】由两个中心对称图形构成的图形,过两个对称中心的直线,把这个图形分成的两部分面积相等.
05 课堂小结
1.中心对称图形的定义.
2.怎样准确判断某图形是否为中心对称图形.。

相关文档
最新文档