命题逻辑II 范式与推理理论
合集下载
命题逻辑2

q∧r (┐p∨p)∧q∧r (┐p∧q∧r)∨(p∧q∧r) m3∨m7 而简单合取式p∧┐q∧┐r已是极小项m4 于是 (p→q) r m1∨m3∨m4∨m7 极小项与公式的成真赋值、成假赋值的关系:
若公式A中含n个命题变项,A的主析取范式含s(0≤s≤2n) 个极小项,则A有s个成真赋值,它们是所含极小项角 标的二进制表示,其余2n-s个赋值都是成假赋值。
三、主析取范式和主合取范式
定义
设有命题变元P1,P2,…,Pn
n
形如 Pi * , i 1
n
的命题公式称为是由命题变元P 1,P2,…,Pn所产生
的极小项。而形如 Pi * 的命题公式称为是由命题变元 i 1
P1,P2,…,Pn所产生的极大项 。其中Pi*为Pi或为
Pi(i=1,2,…n).
极小项,故F不是重言式和矛盾式,只是可满足式。
例 某科研所要从3名科研骨干A,B,C中挑 选1~2名出国进修。由于工作原因,选派时 要满足以下条件: (1)若A去,则C同去。 (2)若B去,则C不能去。 (3)若C不去,则A或B可以去。 问应如何选派他们去?
解 设 p:派A去 q:派B去 r:派C去 由已知条件可得公式 (p→r)∧(q→┐r)∧(┐r→(p∨q) 经过演算可得 (p→r)∧(q→┐r)∧(┐r→(p∨q)) m1∨m2∨m5 由于 m1 = ┐p∧┐q∧r m2 =┐p∧q∧┐r m5 = p∧┐q∧r 可知,选派方案有3种: (a)C去,而A,B都不去。 (b)B去,而A,C都不去。 (c)A,C去,而B不去。
因此利用真值表也可以求公式的主析取范式
练 求公式 F1 = p(p(qp))的主析取范式
解
F1p∨(p∧(q∨p)) p∨(p∧q)∨(p∧p)
命题逻辑的推理理论,证明方法

31
⑨p
前提引入
⑩ pp
⑧⑨合取
推理正确, q是有效结论
.
武汉大学国际软件学院
唐存琛 刘峰
32
课堂实训
应用实例1 分析下列事实“如果我有很高的收 入,那么我就能资助许多贫困学生;如果我能资 助许多贫困学生,那么我很高兴;但我不高兴, 所以我没有很高的收入。”试指明前提和结论, 并给予证明。
.
武汉大学国际软件学院
.
武汉大学国际软件学院
唐存琛 刘峰
20
归谬法(反证法)的说明
欲证明
前提:A1, A2, … , Ak 结论:B
将B加入前提, 若推出矛盾, 则得证推理正确.
理由: A1A2…AkB (A1A2…Ak)B (A1A2…AkB)
括号内部为矛盾式当且仅当 (A1A2…AkB)为重言式
.
武汉大学国际软件学院
12
一、自然推理系统P的定义(续)
3. 推理规则 (1) 前提引入规则 (2) 结论引入规则 (3) 置换规则 (4) 假言推理规则 (5) 附加规则 (6) 化简规则
(7) 拒取式规则 (8) 假言三段论规则 (9) 析取三段论规则 (10)构造性二难推理
规则 (11) 破坏性二难推理
规则 (12) 合取引入规则
.
武汉大学国际软件学院
唐存琛 刘峰
16
(5)分情况证明法
为了证明 A1 A2 An B , 只需证明对任意的 i (1 i n) ,均有 Ai B 。
(6)附加前提证明法
为了证明 A1 A2 An A B ,
只需证明 A1 A2 An A B
.
武汉大学国际软件学院
武汉大学国际软件学院唐存琛 刘峰
命题逻辑_ls第2章_2.1

例:人不犯我,我不犯人;人若犯我,我必犯人。 解:令 P:人犯我。 Q:我犯人。 该命题符号化为: (PQ)∧(PQ) 或: PQ
2.1.2 命题公式及分类
本节主要讨论:
命题公式的定义 命题公式的层次 命题公式的真值表 命题公式的分类
一、命题公式的概念
命题常项:简单命题。 命题变项:真值可以变化的陈述句。
p∧q 的逻辑关系是 p与q同时为真
p∧q真值表如图所示:
P
Q
P∧ Q
0
0
0
0
1
0
1
0
0
1
1
1
(2) 合取联结词“∧” --且
例如,p: 李军聪明 q: 李军用功 则命题 “李军既聪明又用功” 可描述为: p∧q
以下自然语言中的联结词等都可以抽象为“∧” 。 “并且”、“既…又…”、 “与”、“和”、“以及”、
一、命题公式的概念
例: (1) A = p ∨q,
则 A是2层公式。
(2) A = p ∧ q ∧ r , 则 A是2层公式。
(3) A =(p ∧q) (r ∨s), 则A为4层公式。
二、公式的赋值或解释
定义2.8 (P.44) --公式的赋值或解释
设A 为含有命题变项 p1, p2,…, pn的命题公式, 给 p1, p2, …, pn 一组确定的真值, 称作对公式 A
举例:
令:p:天气好。
q:我去公园。
如果天气好,我就去公园。符号化为:pq
只要天气好,我就去公园。
pq
仅当天气好,我才去公园。
qp
只有天气好,我才去公园。
qp
我去公园玩,除非天气好。
qp
例2.5 将下列命题符号化,并求其真值。
2.1.2 命题公式及分类
本节主要讨论:
命题公式的定义 命题公式的层次 命题公式的真值表 命题公式的分类
一、命题公式的概念
命题常项:简单命题。 命题变项:真值可以变化的陈述句。
p∧q 的逻辑关系是 p与q同时为真
p∧q真值表如图所示:
P
Q
P∧ Q
0
0
0
0
1
0
1
0
0
1
1
1
(2) 合取联结词“∧” --且
例如,p: 李军聪明 q: 李军用功 则命题 “李军既聪明又用功” 可描述为: p∧q
以下自然语言中的联结词等都可以抽象为“∧” 。 “并且”、“既…又…”、 “与”、“和”、“以及”、
一、命题公式的概念
例: (1) A = p ∨q,
则 A是2层公式。
(2) A = p ∧ q ∧ r , 则 A是2层公式。
(3) A =(p ∧q) (r ∨s), 则A为4层公式。
二、公式的赋值或解释
定义2.8 (P.44) --公式的赋值或解释
设A 为含有命题变项 p1, p2,…, pn的命题公式, 给 p1, p2, …, pn 一组确定的真值, 称作对公式 A
举例:
令:p:天气好。
q:我去公园。
如果天气好,我就去公园。符号化为:pq
只要天气好,我就去公园。
pq
仅当天气好,我才去公园。
qp
只有天气好,我才去公园。
qp
我去公园玩,除非天气好。
qp
例2.5 将下列命题符号化,并求其真值。
命题逻辑推理理论

9
4.2.2 自然推理系统P
自然推理系统P由下述3部分组成: 1. 字母表 (1) 命题变项符号: p,q,r,…, pi,qi,ri,… (2) 联结词: , , , , (3) 括号与逗号: ( ), , 2. 合式公式 3. 推理规则 (1) 前提引入规则 (2) 结论引入规则:将结论作为后继证明前提 (3) 置换规则:子公式用与之等值的公式置换
26
归结证明法(续)
在自然推理系统P中只需下述推理规则(P70-71): (1) 前提引入规则 (2) 结论引入规则 (3) 置换规则 (4) 化简规则
(5) 合取引入规则
(6) 归结规则
27
归结证明法的基本步骤
1. 将每一个前提化成等值的合取范式, 设所有合取范式的 全部简单析取式为A1, A2,…, At 2. 将结论化成等值的合取范式B1B2…Bs, 其中每个Bj 是简单析取式 3. 以A1,A2,…,At为前提, 使用归结规则推出每一个Bj, 1js
r:我有课, 前提: (pq)r, s:我备课
r s,
s 结论: pq
15
实例(续)
前提: (pq)r, rs, s 结论: pq 证明 ① r s 前提引入 ② s 前提引入 ③ r ①②拒取式 ④ (pq)r 前提引入 ⑤ (pq) ③④拒取式 ⑥ pq ⑤置换 结论有效, 即明天不是星期一和星期三
23
实例
例5 构造下面推理的证明
前提: (pq)r, rs, s, p
结论: q 证明 用归缪法
①q 结论否定引入 ② r s 前提引入 ③ s 前提引入 ④ r ②③拒取式 ⑤ (pq)r 前提引入 ⑥ (pq) ④⑤析取三段论 ⑦ pq ⑥置换 ⑧ p ①⑦析取三段论 ⑨p 前提引入 ⑩ pp ⑧⑨合取 推理正确, q是有效结论
27 命题逻辑的推理讲解

解:该公式的命题变元为:p, q
q ( p q) q ( p q) q p q
(q ( p p)) ( p (q q)) (q ( p p))
(q p) (q p) ( p q) ( p q) (q p) (q p)
所以,正确推理不一定推出正确结论,只是(逻辑)有效结论。 因为前提不一定正确。 如果前提正确,那么正确推理一定推出正确结论。
2. 要证明“由前提A1, A2 , … , An 推结论B 的推理”是否有效, 只要证明 A1 A2 … An B 是否为重言式即可。
3.以下说法是同一个意思:
(1)“由前提A1, A2 , … , An 推结论B 的推理”是有效推理。 (2)“由前提A1, A2 , … , An 推结论B 的推理”是正确推理。 (3)公式 A1 A2 … An B 是重言式。 (4)B 是 A1, A2 , … , An 的逻辑结论。 (5)B 是 A1, A2 , … , An 的有效结论。 (6)A1 A2 … An B (7)A1, A2 , … , An B (8)B 可由 A1, A2 , … , An 逻辑推出。 4.证明 A1 A2 … An B 是重言式的方法,常用的
( p q) (p q) ( p q) ( p q) ( p q) (p q)
m10 m00 m11 m10 m11 m01 m10 m00 m11 m01 m00 m01 m10 m11
有四种:真值表法、等值演算法、主范式法、形式证明法
(也称推理规则推导法)。到目前为止,我们学会了三种:
真值表法、等值演算法和主范式法。
q ( p q) q ( p q) q p q
(q ( p p)) ( p (q q)) (q ( p p))
(q p) (q p) ( p q) ( p q) (q p) (q p)
所以,正确推理不一定推出正确结论,只是(逻辑)有效结论。 因为前提不一定正确。 如果前提正确,那么正确推理一定推出正确结论。
2. 要证明“由前提A1, A2 , … , An 推结论B 的推理”是否有效, 只要证明 A1 A2 … An B 是否为重言式即可。
3.以下说法是同一个意思:
(1)“由前提A1, A2 , … , An 推结论B 的推理”是有效推理。 (2)“由前提A1, A2 , … , An 推结论B 的推理”是正确推理。 (3)公式 A1 A2 … An B 是重言式。 (4)B 是 A1, A2 , … , An 的逻辑结论。 (5)B 是 A1, A2 , … , An 的有效结论。 (6)A1 A2 … An B (7)A1, A2 , … , An B (8)B 可由 A1, A2 , … , An 逻辑推出。 4.证明 A1 A2 … An B 是重言式的方法,常用的
( p q) (p q) ( p q) ( p q) ( p q) (p q)
m10 m00 m11 m10 m11 m01 m10 m00 m11 m01 m00 m01 m10 m11
有四种:真值表法、等值演算法、主范式法、形式证明法
(也称推理规则推导法)。到目前为止,我们学会了三种:
真值表法、等值演算法和主范式法。
谓词逻辑II 等值演算、前束范式与推理理论29页PPT

谢谢
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利
谓词逻辑II 等值演算、前束范式与推理
理论
21、没有人陪你走一辈子,所以你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留下的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--温 斯顿. 丘吉尔放上一 段时间 ,以便 让别一 只脚能 够再往 上登。
离散数学课件03命题逻辑的推理理论
③ p
④ q ⑤ q→r
Hale Waihona Puke ②化简②化简 ①③假言推理
⑥ r
⑦ r∨s ⑧ ┐r→s
④⑤假言推理
⑥附加 ⑦置换
例题
例3.4 在自然推理系统P中构造下面推理的证明: 若数a是实数,则它不是有理数就是无理数;若a不能表 示成分数,则它不是有理数;a是实数且它不能表示成分数。 所以a是无理数。 构造证明: (1)将简单命题符号化: 设 p:a是实数。 r:a是无理数。 (2)形式结构: 前提:p→(q∨r), ┐s→┐q, p∧┐s 结论:r q:a是有理数。 s:a能表示成分数。
若一个推理的形式结构与某条推理定律对应的蕴涵 式一致,则不用证明就可断定这个推理是正确的。
2.1节给出的24个等值式中的每一个都派生出两条推 理定律。例如双重否定律A A产生两条推理定 律A A和 AA。 由九条推理定律可以产生九条推理规则,它们构成了 推理系统中的推理规则。
–推理的形式结构 –自然推理系统P
本章与后续各章的关系
–本章是第五章的特殊情况和先行准备
3.1 推理的形式结构 3.2 自然推理系统P
本章小结
习题
作业
3.1 推理的形式结构
数理逻辑的主要任务是用数学的方法来研究数学中的 推理。 推理是指从前提出发推出结论的思维过程。
前提是已知命题公式集合。
(┐q∨p) ∨ q 1
推理定律--重言蕴含式
(1) A (A∨B) (2) (A∧B) A (3) (A→B)∧A B (4) (A→B)∧┐B ┐A 附加律 化简律 假言推理 拒取式
(5) (A∨B)∧┐B A
(6) (A→B) ∧ (B→C) (A→C) (7) (AB) ∧ (BC) (A C)
3第三章 命题逻辑的推理理论
从语言角度, 推理分为语义和语法两种。 从语言角度, 推理分为语义和语法两种。 语义(semantics)推理注重内涵的正确性 也就是从真 语义(semantics)推理注重内涵的正确性, 也就是从真 推理注重内涵的正确性, 要推出真的结论来, 的前提出发要推出真的结论来 推理过程考虑得少, 的前提出发要推出真的结论来, 推理过程考虑得少,关 心的是结论的正确性。 心的是结论的正确性。 语法推理则注重形式上的有效, 注重推理过程是否符 语法推理则注重形式上的有效, 注重推理过程是否符 则注重形式上的有效 合某些事先规定的逻辑规则, 结论是严格遵循规则 合某些事先规定的逻辑规则, 若结论是严格遵循规则 有效的 得到的, 那便是有效 得到的, 那便是有效的。 数理逻辑主要采用语法推理, 数理逻辑主要采用语法推理, 它关心的是结论的有效 不关心前提的实际真值, 性,而不关心前提的实际真值, 当然语法推理作为一 种推理方法, 种推理方法, 它必须能反映客观事物中真实存在的逻 辑关系, 语法推理必须保证语义上的正确性 必须保证语义上的正确性。 辑关系, 即 语法推理必须保证语义上的正确性。
3、2.1节给出的24个等值式中的每个都可以 2.1节给出的 个等值式中的每个都可以 节给出的24 派生出两条推理定律。 派生出两条推理定律。 例如:双重否定律 A⇔¬¬A ⇔¬¬A 例如: 可以产生两条推理定律 A⇒¬¬A ¬¬A ¬¬A ¬¬A ⇒A
§3.2 自然推理系统P 自然推理系统P
由上一节知识可知,可以利用真值表法、等值演算法 由上一节知识可知,可以利用真值表法、 真值表法 和主析取范式法三种方法来判断推理是否正确。 和主析取范式法三种方法来判断推理是否正确。 三种方法来判断推理是否正确 但是,当推理中包含的命题变项较多时,以上三种 命题变项较多时 但是,当推理中包含的命题变项较多 方法的演算量太大。因此对于由前提A1, A2,…,Ak推 方法的演算量太大。因此对于由前提A B的正确推理应给出严谨的证明。 正确推理应给出严谨的证明。 证明是一个描述推理过程的命题公式序列, 证明是一个描述推理过程的命题公式序列,其中的每 是一个描述推理过程的命题公式序列 个公式是已知前提或者是由某些前提应用推理规则得 个公式是已知前提或者是由某些前提应用推理规则得 已知前提或者是 到的结论。 到的结论。
离散数学--第二章 命题逻辑的推理理论
1 2 k
Dr Chen Guangxi
第二章 命题逻辑的推理理论
(4)构造证明法 构造证明法 当前提与结论中命题变项较多时,前几种方法 的工作量太大,不方便,而构造证明法较为方 便。构造证明法必须在给定的推理规则下进行。 常用的推理规则有以下11条: (1)前提引入规则:在证明的任何步骤上,都可 以引入前提。 (2)结论引入规则:在证明的任何步骤上,所得 中间结果都可以作为后继证明的前提。 (3)置换规则:在证明的任何步骤上的公式中的 子公式均可用与之等值的公式置换。
离散数学
Discrete Mathematics
Chen Guangxi
School of Mathematics and Computing Science
第二章 命题逻辑的推理理论
目标:
掌握推理形式结构 熟练运用构造推理方法 了解命题逻辑归结证明
学习建议:
与初中平面几何证明进行对比 勤做练习
Dr Chen Guangxi
第二章 命题逻辑的推理理论
(8)假言三段论 :
A→B B→C ∴A→C
(9)析取三段论规则: A∨ B A∨ B ¬A ¬B 或者 ∴B ∴A
Dr Chen Guangxi
第二章 命题逻辑的推理理论
(10)构造性二难推理规则:
A → B C → D A∨C ∴B∨ D
(11)合取引入规则:
A B ∴A∧ B
Dr Chen Guangxi
第二章 命题逻辑的推理理论
是重言式类似, 与用 A ⇔ B 表示 A ↔ B是重言式类似,用 A ⇒ B表示A → B 是重言式, 不是联结词 是重言式, ⇒ 符。 推出B的推理正确 的推理正确, 若 A , A ,⋯, A 推出 的推理正确,则记作 ( A1 ∧ A2 ∧ ⋯ ∧ Ak ) ⇒ B 为蕴涵式。 称A⇒B为蕴涵式。 ⇒ 为蕴涵式
Dr Chen Guangxi
第二章 命题逻辑的推理理论
(4)构造证明法 构造证明法 当前提与结论中命题变项较多时,前几种方法 的工作量太大,不方便,而构造证明法较为方 便。构造证明法必须在给定的推理规则下进行。 常用的推理规则有以下11条: (1)前提引入规则:在证明的任何步骤上,都可 以引入前提。 (2)结论引入规则:在证明的任何步骤上,所得 中间结果都可以作为后继证明的前提。 (3)置换规则:在证明的任何步骤上的公式中的 子公式均可用与之等值的公式置换。
离散数学
Discrete Mathematics
Chen Guangxi
School of Mathematics and Computing Science
第二章 命题逻辑的推理理论
目标:
掌握推理形式结构 熟练运用构造推理方法 了解命题逻辑归结证明
学习建议:
与初中平面几何证明进行对比 勤做练习
Dr Chen Guangxi
第二章 命题逻辑的推理理论
(8)假言三段论 :
A→B B→C ∴A→C
(9)析取三段论规则: A∨ B A∨ B ¬A ¬B 或者 ∴B ∴A
Dr Chen Guangxi
第二章 命题逻辑的推理理论
(10)构造性二难推理规则:
A → B C → D A∨C ∴B∨ D
(11)合取引入规则:
A B ∴A∧ B
Dr Chen Guangxi
第二章 命题逻辑的推理理论
是重言式类似, 与用 A ⇔ B 表示 A ↔ B是重言式类似,用 A ⇒ B表示A → B 是重言式, 不是联结词 是重言式, ⇒ 符。 推出B的推理正确 的推理正确, 若 A , A ,⋯, A 推出 的推理正确,则记作 ( A1 ∧ A2 ∧ ⋯ ∧ Ak ) ⇒ B 为蕴涵式。 称A⇒B为蕴涵式。 ⇒ 为蕴涵式
命题逻辑的推理理论
10:44:53
16
直接证明法
(2) 写出证明的形式结构
前提:(pq)r, rs, s
结论:pq (3) 证明 ① r s ② s ③ r ④ (p q) r 前提引入 前提引入 ①②拒取式 前提引入
⑤ (p q)
⑥ pq
③④拒取式
⑤置换
10:44:53
17
附加前提证明法
可见,推理的有效性是一回事,前提与结论的 真实与否是另一回事。所谓推理有效,指它的结 论是它的前提的合乎逻辑的结果,也即,如果它 的前提都为真,那么所得结论也必然为真,而并 不是要求前提或结论一定为真或为假。如果推理 是有效的话,那么不可能它的前提都为真时而它 的结论为假。
10:44:53
4
推理的形式结构
10:44:53
25
练习1解答
方法二:主析取范式法, (pq)qp ((pq)q)p pq M2 m0m1m3 未含m2, 不是重言式, 推理不正确.
10:44:53
26
10:44:53
27
练习1解答
(2) 前提:qr, pr 结论:qp 解 推理的形式结构: (qr)(pr)(qp) 用等值演算法
附加前提证明法: 适用于结论为蕴涵式
欲证
前提:A1, A2, …, Ak
结论:CB 前提:A1, A2, …, Ak, C 结论:B
等价地证明
理由:(A1A2…Ak)(CB) ( A1A2…Ak)(CB) ( A1A2…AkC)B
(A1A2…AkC)B
10:44:53
8
推理定律——重言蕴涵式
1. A (AB)
附加律
2. (AB) A
3. (AB)A B 4. (AB)B A