电感耦合等离子体质谱ICP-MS的原理与操作
ICPMS的原理和使用PPT课件

• 由于等离子体的电离环境由 Ar限定, 所以大多数分析元
15
素被有效地电离为单电荷离子
.
接口
接口是ICP-MS仪器的心脏,采样锥和截取锥是 其关键部件 (一个冷却的采样锥(大约1mm孔径) 和截取锥(大约0.4-0.8mm孔径)组成, 两孔相 距6-7mm。
接口的功能是将等离子体中的离子有效传输到质谱仪
5
.
原理:
(2)通过ICP-MS的接口将等离子体中的离子有效传 输到质谱仪; (3)质谱是一个质量筛选和分析器,通过选择不同 质核比(m/z)的离子通过来检测到某个离子的强度, 进而分析计算出某种元素的强度。
ICP-MS灵敏度非常高,可以测量ppb及ppb以下浓度 的微量元素。
6
.
总结起来:
原子化 将原子化的原子大部分转化为离子 离子按照质荷比分离 计算各种离子的数目
11
.
样品引入系统(气动雾化系统)
等离子气 辅助气 Peltier 冷却雾室
混合气 载气
ICP 炬管 等离子体
RF 线 圈 雾化器 蠕动泵
内标/稀释
12
样品
.
ICP(电离源):
电离源是电感耦合等离子体(ICP),其主体是一个由 三层石英套管组成的炬管,炬管上端绕有负载线圈,三 层管从里到外分别通载气,辅助气和冷却气,负载线圈 由高频电源耦合供电,产生垂直于线圈平面的磁场。如 果通过高频装置使氩气电离,则氩离子和电子在电磁场 作用下又会与其它氩原子碰撞产生更多的离子和电子, 形成涡流。
真空度直接影响离子传输效率、质谱波形及检测器寿命。
18
.
ICP-MS的使用和注意事项
19
.
仪器的使用
一、仪器的准备: 1、开机抽真空: 抽到Penning 压力 小于6.0×10-7mbar。 长时间不用抽真空约需 一天一夜,一般只需要 一晚上。抽真空的过程 中涡轮泵速一般都保持 在999.98。
电感耦合等离子体质谱(icp-ms)

电感耦合等离子体质谱(icp-ms)电感耦合等离子体质谱(ICP-MS)简介电感耦合等离子体质谱(ICP-MS)是一种分析化学技术,采用高温等离子体将样品离解,从而分析样品中的元素。
采用ICP-MS技术可以在单个分析中检测多种元素、低浓度下的元素、分子异构体等。
ICP-MS常被用于研究化学以及生物医学领域的元素分析。
ICP-MS步骤ICP-MS主要包括四个步骤:样品制备、样品进样、等离子体产生和测量。
样品制备:样品制备步骤通常需要根据不同实验目的采取不同的方法。
例如,对于土壤或岩石样品,需要先进行湿燥并研磨成粉末;对于生物样品,需要使用有机溶剂提取目标元素。
因此,样品制备是ICP-MS分析的关键步骤之一。
样品进样:样品进样有两种方式:液体进样和固体进样。
液体进样主要是通过取样器将待测液体进入ICP。
固体进样需要将样品先通过转化成气态或液态的方式,并通过雾化器达到液体态,进入高温等离子体中。
等离子体产生:产生等离子体可采用两种方式:射频感应和直流放电。
射频感应通过在射频电场中通过高频驱动电势,生成高温等离子体。
而直流放电则是通过加热、高电压电弧作用、激光加热等方式,将样品蒸发、溅射成气态,并与气态惰性气体混合后,通过喷雾头进入高温等离子体中。
测量:测量步骤通常与其他仪器相结合,例如,ICP-MS可以与气质谱计(GC-ICP-MS)或液相色谱计(LC-ICP-MS)结合进行气/液样品的分析。
ICP-MS的测量步骤产生的是离子信号,通过质谱扫描方式进行质谱谱图测量。
在测量信号强度与目标元素数量之间会有一定的关联性,因此需要通过标准样本的建立,建立信号强度与元素数量之间的关联性。
1. 应用于环境科学领域:ICP-MS可以用于水、土壤和空气等环境样品中的痕量元素测定,且可以同时测定多种元素。
2. 应用于材料科学领域:ICP-MS技术可以分析材料中的有毒元素、金属元素及其化合物含量,以及其他重要元素和分子的含量。
ICP-MS基本原理

ICP-MS基本原理ICP-MS(电感耦合等离子体质谱)是一种高灵敏度、高选择性和高分辨率的质谱分析技术,广泛应用于地质、环境、生物、医药等领域。
它通过将样品离子化并加速到高速,然后通过质量分析器分离和检测离子,从而实现对样品中元素的定量和定性分析。
ICP-MS的基本原理包括样品进样、离子化、质量分析和检测四个步骤。
首先,样品进样是ICP-MS分析的第一步。
样品通常以溶液形式进入进样系统,然后被喷雾器雾化成微小的液滴,进入等离子体中。
在等离子体中,样品被分解成原子和离子,形成带电的粒子。
其次,离子化是ICP-MS的关键步骤。
在等离子体中,通过加热和激发,样品中的原子和分子被激发成带电的离子。
这些离子具有不同的电荷和质量,可以通过质量分析器进行分离和检测。
然后,质量分析是ICP-MS的核心部分。
分离和检测离子的质量是通过质量分析器实现的。
ICP-MS中常用的质量分析器是四极质谱仪,它可以根据离子的质荷比进行分离和检测。
通过调节电场和磁场的强度,可以实现对不同质荷比的离子的选择性分离和检测。
最后,检测是ICP-MS的最后一步。
经过质量分析器分离和检测后,离子的信号被转换成电信号,并传输到数据系统进行处理和分析。
通过测量离子的信号强度,可以计算出样品中元素的含量,并进行定量和定性分析。
总的来说,ICP-MS是一种高灵敏度、高选择性和高分辨率的质谱分析技术,其基本原理包括样品进样、离子化、质量分析和检测四个步骤。
通过这些步骤,可以实现对样品中元素的定量和定性分析,为地质、环境、生物、医药等领域的研究和应用提供了重要的技术支持。
ICP-MS在科学研究和工业生产中具有广阔的应用前景,将为人类社会的发展和进步做出重要贡献。
电感耦合等离子体质谱检测水中的汞

电感耦合等离子体质谱(ICP-MS)是一种高灵敏度、高选择性的分析技术,被广泛应用于环境监测和地质研究等领域。
其中,ICP-MS在水中汞元素的检测方面表现出色,成为了水质监测的重要手段之一。
本文将从ICP-MS原理、水中汞元素的危害性、ICP-MS在水质监测中的应用以及未来发展方向等几个方面探讨电感耦合等离子体质谱检测水中的汞的相关内容。
一、ICP-MS原理及优势1. ICP-MS的工作原理ICP-MS利用高温等离子体将样品中的元素转化成离子,再利用质谱仪进行分离和检测。
其高灵敏度、多元素检测能力以及低检测限等优点,使其成为了汞元素检测的首选技术之一。
2. ICP-MS的优势ICP-MS技术具有高分辨率、高灵敏度、多元素检测能力和低检测限等优势,尤其适用于微量元素的检测和分析。
在水中汞元素的检测中,ICP-MS可以快速、准确地确定其浓度,为水质监测和环境保护提供了可靠的数据支持。
二、水中汞元素的危害性1. 水中汞元素的来源水中汞元素主要来自工业废水、农药残留、矿山废水等,其主要形式包括有机汞和无机汞两种。
2. 水中汞元素的危害水中汞元素对人体健康和环境造成严重威胁,长期摄入会导致神经系统、免疫系统和生殖系统等多个系统的损害,对人体健康和生态环境造成潜在风险。
三、ICP-MS在水质监测中的应用1. 水中汞元素的检测方法ICP-MS技术具有高灵敏度和高选择性,对水中微量汞元素的检测具有明显优势,能够准确、快速地测定水样中的汞元素含量。
2. 水质监测案例分析ICP-MS技术在实际水质监测中取得了显著成果,通过对不同水体样品的检测分析,能够确定汞元素的来源、分布规律以及汞元素的污染程度,为水质治理和环境保护提供了有力支持。
四、未来发展方向1. 技术改进和创新随着科学技术的不断进步,ICP-MS技术还将不断改进和创新,进一步提高其检测灵敏度和分辨率,降低其检测成本和仪器体积,使其在水质监测中得到更广泛的应用。
ICP-MS的原理和使用

四极杆滤质器。四极杆的工作是基于在四根电极之间的
空间产生一随时间变化的特殊电场,只有给定M/Z的离 子才能获得稳定的路径而通过极棒,从其另一端出射。 其它离子将被过分偏转,与极棒碰撞,并在极棒上被中 和而丢失。四极杆扫描速度很快,大约每100毫秒可扫描
整个元素覆盖的质量范围。
质谱分析器
ICP-MS采用的是三级动态真空系统,使真空逐级达到要
ICP-MS的原理和使用
2017-2-9
主要内容
一、原理
二、结构
三、使用和注意事项
四、日常维护
ICP-MS仪器的原理
ICP-MS:
全称是电感耦合等离子体-质谱法 (Inductively coupled plasma-Mass Spectrometry) 它是一种将ICP技术和质谱结合在一起的分析仪器,它 能同时测定几十种痕量无机元素,可进行同位素分析、 单元素和多元素分析,以及有机物中金属元素的形态分 析。 比如食品药品中常测的:铅、砷、铬、汞、镉、铝、钙、 镁、锌、铁、铜、钾、锰、钠、钴、钡等。(可以直接 购买混合标液)
线圈处外管的内壁得到冷却。气流量一般为10-15 L/min。
为什么要用氩气?
Ar是惰性气体 Ar 相对便宜 易于获得高纯度的氩气 更重要的是 Ar 的第一电离电位是 15.75 电子伏特 (eV) • 高于大多数元素的第一电离电位 (除了 He, F, Ne) • 低于大多数元素的第二电离电位 (除了 Ca, Sr, Ba,etc) 由于等离子体的电离环境由 Ar限定, 所以大多数分析 元素被有效地电离为单电荷离子
候放在纯水中超声30分钟)
维护保养
3、定期清洗矩管和中心管(清洗的时候拆下来用5%的 HNO3浸泡过夜)
ICP-MS的原理和使用

仪器的准备
(3)检查并确认进样系统(炬管、雾化室、雾化器、泵 管等)是否正确安装。 (4)上好样品管和废液管,检漏; (5)点击Instrument Control 左上角的“ON”点火; (6)点火后,先用娃哈哈的水冲洗5min,再用 2%HNO3冲洗5min,稳定仪器,同时注意观察进液和出 液是否顺畅。
2023最新整理收集 do something
ICP-MS的原理和使用
2017-2-9
主要内容
一、原理 二、结构 三、使用和注意事项
四、日常维护
ICP-MS仪器的原理
ICP-MS:
全称是电感耦合等离子体-质谱法 (Inductively coupled plasma-Mass Spectrometry) 它是一种将ICP技术和质谱结合在一起的分析仪器,它 能同时测定几十种痕量无机元素,可进行同位素分析、 单元素和多元素分析,以及有机物中金属元素的形态分 析。
素被有效地电离为单电荷离子
接口
接口是ICP-MS仪器的心脏,采样锥和截取锥是 其关键部件 (一个冷却的采样锥(大约1mm孔径) 和截取锥(大约0.4-0.8mm孔径)组成, 两孔相 距6-7mm。
接口的功能是将等离子体中的离子有效传输到质谱仪
质谱分析器(四级杆)
利用静电透镜系统将穿过截取锥的离子拉出来,输送到 四极杆滤质器。四极杆的工作是基于在四根电极之间的 空间产生一随时间变化的特殊电场,只有给定M/Z的离 子才能获得稳定的路径而通过极棒,从其另一端出射。 其它离子将被过分偏转,与极棒碰撞,并在极棒上被中 和而丢失。四极杆扫描速度很快,大约每100毫秒可扫描 整个元素覆盖的质量范围。
止机械泵过热自动保护熄火了。
icpms的原理与应用

ICP-MS的原理与应用1. ICP-MS的原理ICP-MS(Inductively Coupled Plasma Mass Spectrometry)是一种高灵敏度的元素分析技术,结合了ICP和MS两种技术的优点。
以下是ICP-MS的工作原理:1.电感耦合等离子体(ICP)–ICP是一种高温等离子体,由RF发生器产生。
–ICP中的气体被电磁场加热并电离,形成充满活跃离子和电子的等离子体。
–ICP提供了一个高温、高离子浓度的环境,有利于样品中元素的离子化。
2.离子光学系统–ICP产生的离子通过一系列的离子光学器件,如离子镜和偏转器,按质荷比被传输到质谱仪。
–离子光学系统的设计和参数设定决定了进入质谱仪的离子束的取向和调制。
3.质谱分析(MS)–质谱仪分析样品中的离子,并根据离子的质量/荷比进行分离和检测。
–典型的ICP-MS使用磁扇形质量过滤器(如四极杆)来分离离子。
4.检测器–检测器通常是一个具有高增益和高分辨率的电子倍增器。
–离子的到达在检测器上形成的电荷被放大并转换成电信号。
–通过测量电荷或电压信号的幅度,可以确定样品中的元素含量。
2. ICP-MS的应用ICP-MS作为一种高灵敏度、高选择性的分析技术,在多个领域中被广泛应用。
以下是一些ICP-MS的应用:1.环境分析–ICP-MS可以用于分析水和土壤中的微量元素。
–它可以检测重金属、有机物和其他环境污染物的含量。
–ICP-MS还可以用来研究大气颗粒物的组成和来源。
2.地质学研究–ICP-MS可用于研究地质样品中的稀有元素、硫化物、矿物和岩石的成分。
–它可以提供有关岩石的年龄、起源和地壳演化的信息。
3.生物医学研究–ICP-MS在药物代谢、毒理学和临床分析中起着重要作用。
–它可以用于分析人体组织和血液中的微量元素,如铁、锰和铬。
4.食品和农产品检测–ICP-MS可以用于检测食品和农产品中的农药残留、重金属污染和营养元素含量。
–它被广泛应用于食品安全检测和农产品质量控制。
icp-ms的原理和使用

能够应对各种样品浓度,从痕量到高浓度均可。
ICP-MS的元素分析范围
金属元素
如钙、铁、锌等。
稀土元素如镧、铈、钆等。Fra bibliotek非金属元素
如硫、氮、碳等。
放射性元素
如铀、钚、镭等。
icp-ms的原理和使用
简要介绍icp-ms的原理和使用,包括什么是ICP-MS,其优点和历史渊源。
ICP-MS的组成和结构
电离器
负责将样品中的分子转化成离子状态。
数据处理系统
用于记录和分析质谱仪产生的数据。
质谱仪
用来分析离子的结构和浓度。
进样系统
将样品引入质谱仪进行分析。
ICP-MS的工作原理
4 样品保存
根据待测元素的浓度进行适当的稀释或浓缩。
采用适当的方法保存样品,避免污染和降解。
ICP-MS的离子化
1
电离源
通过高温等离子体将样品中的原子或分
电子轰击
2
子转化为离子。
使用电子束轰击样品,使其电离。
3
电感耦合等离子体
利用电场和离子磁场使样品中的分子离 子化。
ICP-MS的质谱分析
质量分析
等离子体
通过高温和高能量的等离子体使 样品中的分子离子化。
质谱仪
通过磁场将离子进行分离,并计 算其相对质量和浓度。
检测器
测量离子的相对质量和浓度,并 生成质谱图谱。
ICP-MS的样品制备
1 样品选择
选择合适的样品类型和来源,减小干扰物含 量。
2 样品预处理
消除样品中的杂质,如沉淀、胶体和颗粒。
3 稀释和浓缩
通过磁场将离子进行分离和排 列,得到质谱图。
相对丰度分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电感耦合等离子体质谱ICP-MS1.ICP-MS仪器介绍测定超痕量元素和同位素比值的仪器。
由样品引入系统、等离子体离子源系统、离子聚焦和传输系统、质量分析器系统和离子检测系统组成。
工作原理:样品经预处理后,采用电感耦合等离子体质谱进行检测,根据元素的质谱图或特征离子进行定性,内标法定量。
样品由载气带入雾化系统进行雾化后,以气溶胶形式进入等离子体的轴向通道,在高温和惰性气体中被充分蒸发、解离、原子化和电离,转化成带电荷的正离子,通过铜或镍取样锥收集的离子,在低真空约133.322帕压力下形成分子束,再通过1~2毫米直径的截取板进入质谱分析器,经滤质器质量分离后,到达离子探测器,根据探测器的计数与浓度的比例关系,可测出元素的含量或同位素比值。
仪器优点:具有很低的检出限(达ng/ml或更低),基体效应小、谱线简单,能同时测定许多元素,动态线性范围宽及能快速测定同位素比值。
地质学中用于测定岩石、矿石、矿物、包裹体,地下水中微量、痕量和超痕量的金属元素,某些卤素元素、非金属元素及元素的同位素比值。
2.ICP产生原理ICP-MS所用电离源是感应耦合等离子体(ICP),它与原子发射光谱仪所用的ICP是一样的,其主体是一个由三层石英套管组成的炬管,炬管上端绕有负载线圈,三层管从里到外分别通载气,辅助气和冷却气,负载线圈由高频电源耦合供电,产生垂直于线圈平面的磁场。
如果通过高频装置使氩气电离,则氩离子和电子在电磁场作用下又会与其它氩原子碰撞产生更多的离子和电子,形成涡流。
强大的电流产生高温,瞬间使氩气形成温度可达10000k 的等离子焰炬。
样品由载气带入等离子体焰炬会发生蒸发、分解、激发和电离,辅助气用来维持等离子体,需要量大约为1 L/min。
冷却气以切线方向引入外管,产生螺旋形气流,使负载线圈处外管的内壁得到冷却,冷却气流量为10-15 L/min。
使用氩气作为等离子气的原因:氩的第一电离能高于绝大多数元素的第一电离能(除He、F、Ne外),且低于大多数元素的第二电离能(除Ca、Sr、Ba等)。
因此,大多数元素在氩气等离子体环境中,只能电离成单电荷离子,进而可以很容易地由质谱仪器分离并加以检测。
焰火的三个温度区域:焰心区呈白色,不透明,是高频电流形成的涡流区,等离子体主要通过这一区域与高频感应线圈耦合而获得能量。
该区温度高达10000 K。
内焰区位于焰心区上方,一般在感应圈以上10-20mm左右,略带淡蓝色,呈半透明状态。
温度约为6000-8000 K,是分析物原子化、激发、电离与辐射的主要区域。
尾焰区在内焰区上方,无色透明,温度较低,在6000K以下,只能激发低能级的谱线。
最常用的进样方式是利用同心型或直角型气动雾化器产生气溶胶,在载气载带下喷入焰炬,样品进样量大约为1 mL/min,是靠蠕动泵送入雾化器的。
在负载线圈上面约10 mm处,焰炬温度大约为8000 K,在这么高的温度下,电离能低于7 eV的元素完全电离,电离能低于10.5 eV的元素电离度大于20%。
由于大部分重要的元素电离能低于10.5 eV,因此具有很高的灵敏度,少数电离能较高的元素,如C、O、Cl、Br等也能检测,只是灵敏度较低。
ICP-MS由ICP焰炬,接口装置和质谱仪三部分组成;若使其具有好的工作状态,必须设置各部分的工作条件。
3.ICP-MS系统介绍ICP主要包括ICP功率,载气、辅助气和冷却气流量。
样品提升量等,ICP功率一般为1 KW左右,冷却气流量为15 L/min,辅助气流量和载气流量约为1 L/min,调节载气流量会影响测量灵敏度。
样品提升量为1 ml/min。
3.1样品导入系统雾化器、雾化室。
最常用的进样方式是利用同心型或直角型气动雾化器产生气溶胶,在载气载带下喷入焰炬,样品进样量大约为1 mL/min,是靠蠕动泵送入雾化器的。
标准样品引入系统由两个主要部分组成:样品提升部分和雾化部分。
样品提升部分可以使用蠕动泵或自提升的雾化器。
蠕动泵用于提升样品或提升经T 接头混合的样品/内标混和液,可以便捷地实现内标的在线加入。
使用标准的1.02 mm内径的样品管时,在0.1 rps转速下,蠕动泵提升样品的能力大约为0.4 ml/min。
而内标管的直径为0.19 mm,因此内标液的流速更慢,在0.1 rps转速下,蠕动泵提升内标的能力大约为20 µl/min。
也就是说,内标溶液相对于被稀释20倍,所以虽然我们要求引入系统的内标元素浓度为50 ppb,但使用的内标溶液浓度为1ppm(1000ppb)。
注:即使用自提升的雾化器,仍需要使用蠕动泵,因为雾化器里的废液是通过蠕动泵排到废液桶中的。
如果雾化器不排废液,将导致信号不稳定,如果过多的液体流入炬管,将导致熄火,对仪器造成危害。
样品引入系统的第二部分是雾化器和雾化室。
样品以泵入方式或者自提升方式进入雾化器后,在载气作用下形成小雾滴,并进入雾化室。
大的、重的雾滴碰到雾化室壁后被排至废液中,只有小雾滴才可进入等离子体内。
载气的流量决定了雾化效率,当载气流量不够大时,可以增加混合气流量以保证雾化效率(例如:进行冷等离子体实验时)。
雾化室的主要目的是去除大液滴,阻止其进入炬管,保证只有小颗粒的气溶胶可以进入等离子体。
使用雾化室可以提高等离子体的稳定性和离子化的效率。
大液滴碰撞到雾化室的室壁,并由废液管排出。
炬管和雾化室可以通过计算机x、y、z三维调控,调节精确度可达0.1mm;使用接头夹固定炬管和连接管,方便器件的维护、更换;通过化学工作站软件可以控制、移动整个炬管箱至后方,方便用户直接维护锥和提取透镜。
Agilent 7500 ICP-MS使用的是ICP仪器上通用的Fassel型炬管。
这种炬管由三个同心石英管组成,每层管路中流经的气体也有所不同。
如果最中心的管路使用铂或蓝宝石材质的内插管,则可检测含HF的样品。
炬管的一端深入工作线圈中,工作线圈可以诱导产生用于样品离子化的等离子体。
为防止等离子体的高温将炬管融化(等离子体的温度可以达到10,000K),系统向炬管的最外层石英管中引入冷却气(又称等离子体气),其流量达15L/min。
冷却气/等离子体气的主要作用是将等离子体推离炬管内壁,避免炬管融化,同时也为等离子体的形成提供了支持气。
在炬管第二层石英管中引入的是辅助气,其流量大约为1L/min,其作用是将等离子体推离中心样品引入管的末端,同时维持等离子体“火焰”。
载气从炬管的最中心管路进入炬管,同时将雾化室内形成的气溶胶带入炬管。
载气流路(包括雾化器中引入的载气和混合气)的流量要足够大,保证可以在等离子体中心吹出一个“孔”,以将样品引入到等离子体中,实现样品的离子化;但载气流量又不能太大,以免降低气溶胶解离和离子化效率,并避免降低等离子体温度。
一般说来,使用标准2.5mm 的炬管时,推荐的载气流速为1.2L/min。
3.2接口系统ICP产生的离子通过接口装置进入质谱仪,接口装置的主要参数是采样深度,也即采样锥孔与焰炬的距离,要调整两个锥孔的距离和对中,同时要调整透镜电压,使离子有很好的聚焦。
3.3 质谱仪主要是设置扫描的范围。
为了减少空气中成分的干扰,一般要避免采集N2、O2、Ar 等离子,进行定量分析时,质谱扫描要挑选没有其它元素及氧化物干扰的质量。
同时还要有合适的倍增器电压。
事实上,在每次分析之前,需要用多元素标准溶液对仪器整体性能进行测试,如果仪器灵敏度能达到预期水平,则仪器不再需要调整,如果灵敏度偏低,则需要调节载气流量,锥孔位置和透镜电压等参数。
扇形磁场质量分析器:由于洛伦兹力的作用,磁场能够对垂直磁场方向入射的带电粒子进行偏转,偏转的角度与粒子的质量、所带电量、初速度有关。
对于相同动能的离子而言,偏转角度就只与离子的质荷比(m/z)有关。
由于需要用到高强度匀强磁场(一般为1.5T),经典的扇形磁场质量分析器的体积一般比较大。
扇形磁场是历史上最早出现的质量分析器,除了在质谱学发展史上具有重要意义外,还具有很多优点,如重现性良好的峰形与同位素丰度,分辨率与质量大小无关,能够比较快地进行扫描(每秒10个质荷比单位)。
在目前出现的小型化质量分析器中,扇形磁场所占的比重不是很大,主要是因为如果把磁场体积和重量降低后将极大地影响磁场的强度,从而大大削弱其分析性能。
但是,随着新材料和新技术的不断出现,这种局面可望在将来得到改观。
Agilent 7500 四级杆:Agilent 7500系列使用的是四级杆质量过滤器。
四级杆由四根精密加工的双曲面杆平行成对儿排列而成。
四级杆由纯钼材料制成,四个杆的中央空隙部分排列着离子束。
RF电压和DC电压加在对角的两个杆上,而在另外两个杆上加的是相同大小的负电压。
电压的交替改变,产生了电磁场,与离子束发生相互作用。
在特定的电压下,只有特定质量数的离子才能稳定的沿轨道穿过四级杆。
因此,通过快速扫描、变换电压的方式,不同质量数的离子可以在不同时间内稳定,并穿过四级杆到达检测器。
四级杆质量过滤器的扫描速度超过每秒3000amu,相对于每秒时间内可以对整个质量范围扫描10次。
因为四极杆的扫描速度毕竟是有限的,所以如果离子进入四级杆的速度太快,就会导致四极杆分离离子的能力降低。
因此,仪器在四级杆之前使用了一个Plate Bias透镜,并在其上施加电压以降低离子进入质量过滤器的速度。
如果在该透镜上施加的是正电压(最大为+5V),那么就更可以有效地降低离子速率,得到更好的峰形。
4.ICP-MS使用事项4.1 ICP离子源中的物质1)已电离的待测元素:As+, Pb +, Hg +, Cd +, Cu +, Zn +, Fe +, Ca +, K +, •••••• 2)主体:Ar原子(>99.99%)3)未电离的样品基体:Cl, NaCl(H2O) n, SOn, POn, CaO, Ca(OH)n, FeO, Fe(OH) n,••••••这些成分会沉积在采样锥、截取锥、第一级提透镜、第二级提取透镜(以上部件在真空腔外)、聚焦透镜、W偏转透镜、偏置透镜、预四极杆、四极杆、检测器上(按先后顺序依次减少),是实际样品分析时使仪器不稳定的主要因素,也是仪器污染的主要因素;4)已电离的样品基体:ArO+, Ar +, ArH+, ArC +, ArCl +, ArAr +,(Ar基分子离子)CaO+, CaOH +, SOn +, POn +, NOH +, ClO + ••••••(样品基体产生),这些成分因为分子量与待测元素如Fe, Ca, K, Cr, As, Se, P, V, Zn, Cu等的原子量相同,是测定这些元素的主要干扰;特别需要注意的是,1ppt浓度的样品元素在0.4mL/min(Babinton雾化器,0.1rps)速度进样时,相当于每秒进入仪器>10,000,000个原子;而在检测器得到的离子数在10-1000之间,即>99.99%的样品及其基体停留在仪器内部或被排废消除;因此,加大进样量提高灵敏度的后果是同时加大仪器受污染速度。