钴(Ⅲ)配合物的制备及表征

合集下载

一种钴配合物的制备实验报告

一种钴配合物的制备实验报告

一种钴配合物的制备实验报告一、实验目的1、掌握一种钴配合物的制备方法。

2、了解配合物的形成条件和性质。

3、熟练掌握化学实验中的基本操作技能,如称量、溶解、加热、过滤等。

二、实验原理钴离子可以与多种配体形成配合物,本次实验选择制备Co(NH₃)₆Cl₃。

其反应方程式为:CoCl₂·6H₂O + 6NH₃+ HCl = Co(NH₃)₆Cl₃+ 6H₂O在这个反应中,氯化钴与氨气在盐酸的存在下反应生成六氨合钴(Ⅲ)氯化物。

三、实验仪器与试剂1、仪器电子天平、磁力搅拌器、恒温水浴锅、布氏漏斗、抽滤瓶、玻璃棒、烧杯(250 mL、100 mL)、容量瓶(250 mL)、移液管(25 mL)、锥形瓶(250 mL)。

2、试剂氯化钴(CoCl₂·6H₂O)、浓氨水、浓盐酸、氯化铵、乙醇。

四、实验步骤1、称取 5 克氯化钴(CoCl₂·6H₂O)晶体,放入 250 mL 烧杯中,加入 25 mL 去离子水,搅拌使其溶解。

2、逐滴加入 15 mL 浓氨水,同时搅拌,观察溶液颜色的变化。

溶液由粉红色逐渐变为棕褐色。

3、将上述溶液置于 60℃的恒温水浴锅中加热 20 分钟,并不断搅拌。

4、趁热缓慢滴加 10 mL 浓盐酸,继续搅拌 10 分钟。

5、冷却至室温后,加入 5 克氯化铵固体,搅拌使其溶解。

6、用布氏漏斗进行抽滤,将滤液转移至 250 mL 容量瓶中,用去离子水定容至刻度。

7、向溶液中缓慢滴加乙醇,直至出现浑浊。

将溶液静置一段时间,使晶体充分析出。

8、再次进行抽滤,收集晶体,用少量乙醇洗涤晶体 2 3 次。

9、将所得晶体放在干燥器中干燥,称重并计算产率。

五、实验注意事项1、浓氨水和浓盐酸具有挥发性和刺激性,操作时应在通风橱中进行,并注意防护。

2、加热过程中要不断搅拌,使反应均匀进行。

3、滴加试剂时要缓慢,避免反应过于剧烈。

4、抽滤时要注意滤纸的湿润和贴合,防止抽滤过程中出现漏洞。

钴(III)配合物(二氯化一氯五氨合钴(III))的制备

钴(III)配合物(二氯化一氯五氨合钴(III))的制备

谢谢!
1. 记录产品的产量,并计算其产率。
产率计算: 产率=实际产物的量/理论产物的量 M(CoCl2·6H2O)=237.93;M([Co(NH3)5Cl]Cl2)=250.44; 产率φ=实际产物的量/5*2l2 合成产率高,加浓NH3·H2O时,尽量等溶液 凉下来再加,确保NH3能与Co离子配位;在加H2O2(10%)时缓慢的滴 加,以确保Co2+能尽可能多的转变成Co3+,尽量多的生成所要制备的 目的产物。
仪器:天平、恒温水浴锅、冰水浴、烘箱 250ml锥形瓶(2个)、表面皿(一大、一小)、量筒、滴管、
试剂:NH4Cl、CoCl2·6H2O、浓NH3·H2O、H2O2 (10%)、浓HCl 冰水、冰盐酸(6ml/L)乙醇(无水)
1、在250 ml锥形瓶中,用10ml去离子水溶解2.5 g NH4Cl为溶液。 2、分若干次加入5g研细的CoCl26ּH2O粉末。每加一次(加入量尽量少),应待其 溶解完全后,方可继续加入,不断摇动,此时为红紫色的溶液。 3、向红紫色的溶液逐滴加入15ml的浓NH3·H2O,溶液为深棕色。 4、深棕色溶液在充分摇动下,用滴管逐滴加入约4 ml H2O2(30%)。不断摇动溶 液,直至气泡终止放出,溶液为深红色。 5、然后慢慢地加入15 ml浓盐酸。在此过程中,即有红紫色沉淀生成。 6、将混合产物置于水浴(65℃)中加热约20 min,并时时摇动。之后,再70℃加 热约15min。 7、用冰水冷却产物(15min),便有大量的红紫色的沉淀 [Co(NH3)5Cl]Cl2 析出。 8、用布氏漏斗吸滤,用总量为25 ml的冰水分多次洗涤,再用冷却过的1 : 1盐酸洗 几次,最后用乙醇洗,产物转移到表面皿上。 9、将产物置于烘箱中,在110℃下干燥1小时。

钴配合物的制备

钴配合物的制备

钴配合物的制备钴(III)离子通常是以Co(OH)2(氢氧化钴)或CoCl3(氯化钴)的形式存在。

在化学实验室中,有许多途径可以制备钴(III)配合物。

以下将介绍两种常见的制备方法。

第一种方法是氯化钴和过量亚硝酸钠反应法。

在该反应中,通过加热将氯化钴溶解在水中,然后慢慢滴加过量的亚硝酸钠溶液。

在滴加的过程中,会观察到溶液颜色由玫瑰红变为蓝色。

这是因为过量的亚硝酸钠氧化了氯化钴中的钴离子,生成了钴(III)离子。

反应的方程式如下:CoCl3+6NaNO2+6H2O→Co(NO)3+6NaCl+5HNO3通过该方法制备的钴(III)配合物可以用于催化剂、草甘膦制剂等领域。

第二种方法是氯化钴和过量过氧化氢反应法。

在该反应中,将氯化钴溶解在水中,并慢慢滴加过量的过氧化氢溶液。

在反应中观察到溶液颜色的变化。

该方法的方程式如下:CoCl3+2H2O2→Co(NO)3+3HCl+O2通过该方法制备的钴(III)配合物也常被应用于催化剂和电化学领域。

需要注意的是,制备钴(III)配合物时需要避免接触空气,因为钴(III)离子在空气中容易被氧化为钴(IV)离子或钴(II)离子。

因此,实验室中的操作应尽量在惰性气氛下进行,并使用干净的设备和试剂。

此外,制备钴(III)配合物时还可以使用其他氧化剂,如亚硝酸银或高锰酸钾,具体的选择取决于实验的要求和条件。

综上所述,制备钴(III)配合物的方法有很多种,其中包括氯化钴和过氧化氢反应法以及氯化钴和过量亚硝酸钠反应法。

每种方法都有自己的优点和适用范围。

在实验室中选择合适的方法可以根据实际情况和需求进行考虑。

实验12 一种钴(Ⅲ)配合物的制备与组成测定 - 济南大学化学化工学院

实验12 一种钴(Ⅲ)配合物的制备与组成测定 - 济南大学化学化工学院

产率 (>60%为佳)好 者运 乐动 好者 读健 书, 者好 博思 ,考 好者 旅智 游, 者好 悦助 ,人 好
6
追求者成 持续更新●▂●请收藏
问题:1.使用浓盐酸的目的是什么? 2.浓盐酸为什么要慢慢加入? 3.为什么使用一定温度烘干?
好运动者健,好思考者智,好助人
7
者乐好读书者博,好旅游者悦,好
(蓝色)
4
追求者成 持续更新●▂●请收藏
3、氨的测定:
[Co(NH3 )5 Cl]2
5H

Co3

5
NH
4
Cl
(HCl)
(微量)
Hg
NH4 2[HgI 4 ]2 4OH [O NH2 ]I 7I 3H2O
Hg
(奈氏试剂)
(红褐色)
4、样品在煮沸下分解:
11
者乐好读书者博,好旅游者悦,好
追求者成 持续更新●▂●请收藏
思考并完成如下问题(查教材或其它资料):
1.制备摩尔盐(复盐)的原理是什么? 2.计算硫酸亚铁铵的产率时依据哪种物质的质量? 3.溶解Fe时,为什么要维持溶液pH<2 ? 4.本产品含结晶水,蒸发浓缩过程中易发生崩溅,
应如何避免? 5.溶液蒸干对晶体纯度有何影响? 6.本产品为晶状沉淀,可以如何操作以加快结晶速
Co与NH3的反应体系中应加入氯化铵,其作用有两个:
(1)控制OH-浓度,防好止运动生者成健,C好o思(考O者H智)2,沉好助淀人。 (2)为反应提供Cl-。者乐好读书者博,好旅游者悦,好
3
追求者成 持续更新●▂●请收藏
二、实验原理
(二)组成初步推断
[Co(NH3)5Cl]Cl2

钴配合物的制备实验报告

钴配合物的制备实验报告

钴配合物的制备实验报告《钴配合物的制备实验报告》摘要:本实验旨在通过化学合成方法制备钴配合物,并对其结构和性质进行分析。

实验结果表明,成功合成了钴配合物,并通过红外光谱、紫外-可见光谱和元素分析等手段对其进行了表征。

实验结果表明,所合成的钴配合物具有良好的稳定性和光谱特性,为其在催化和生物医药领域的应用提供了有力支持。

引言:钴是一种重要的过渡金属元素,其配合物在化学、材料和生物学等领域具有广泛的应用价值。

本实验旨在通过化学合成方法制备钴配合物,并对其结构和性质进行分析,为进一步研究和应用提供实验基础。

实验方法:1. 合成钴配合物的化学方程式为:CoCl2·6H2O + 2L → CoL2 + 2HCl + 6H2O其中,L为配体。

2. 实验中选用了适当的配体,并按照一定的摩尔比进行了反应。

反应后,通过适当的提取和纯化方法得到了纯净的钴配合物产物。

3. 通过红外光谱、紫外-可见光谱和元素分析等手段对所合成的钴配合物进行了表征和分析。

实验结果与讨论:实验结果表明,成功合成了钴配合物,并通过红外光谱、紫外-可见光谱和元素分析等手段对其进行了表征。

所得到的钴配合物具有良好的稳定性和光谱特性,为其在催化和生物医药领域的应用提供了有力支持。

结论:通过本实验,成功合成了一种稳定性良好的钴配合物,并对其结构和性质进行了分析。

这为进一步研究和应用钴配合物提供了实验基础和数据支持。

展望:钴配合物在催化、生物医药等领域具有广阔的应用前景,未来可以进一步研究其在这些领域的具体应用和性能优化。

同时,也可以探索更多新型配体和合成方法,以拓展钴配合物的应用范围和提高其性能。

一种钴()配合物的制备

一种钴()配合物的制备

Hale Waihona Puke 验内容一、制备Co( 一、制备Co(Ⅲ)配合物
制备Co( 制备Co(Ⅲ)配合物的流程图
生成 氯化铵和浓氨水
棕色稀浆
双氧水 摇动
固体完全溶解
加入浓盐酸 水浴加热 小于85℃
室温冷却
过滤
冷水洗涤数次
烘干
称量
实验内容
二、组成的初步判断 (1) 用试纸检验产物的酸碱性 (2) 检验氯离子 (3) 检验Co3+ 检验Co (4) 检验NH4+ 检验NH (5) 检验Co(Ⅱ)配合物的不稳定性 检验Co( (6) 用电导仪测定配合物的电导率
思考题
1、将氯化钴加入氯化铵与浓氨水的混合液中, 可发生什么反应,生成何种配合物? 2、上述实验中加过氧化氢起何作用,如不用 过氧化氢还可以用那些物质,用这些物质有 什么不好?上述实验中加浓盐酸的作用是什 么?
一种钴(Ⅲ)配合物的制备 一种钴(
河南师范大学 化学实验教学中心
主 要 内 容
实验目的 实验原理 实验步骤 思考题
实验目的
掌握制备金属配合物最常用的方法掌握制备金属配合物最常用的方法-水 溶液中的取代反应和氧化还原反应 了解其基本原理和方法 对配合物的组成进行初步推断 学习使用电导仪
实验原理
Co(Ⅲ)配合物的制备原理: Co( Co(Ⅱ)和配体快速生成Co(Ⅱ)的配合 Co( 和配体快速生成Co( 物,然后被氧化为Co( 物,然后被氧化为Co(Ⅲ)配合物。 确定Co( 确定Co(Ⅲ)配合物组成的原理: 1.用化学分析方法确定Co(Ⅲ)配合物的组 1.用化学分析方法确定Co( 成 ,即确定配合物的外界,然后破坏配离 子再来确定内界。例如本实验中: 子再来确定内界。例如本实验中: Co2+可用硫 氰化钾检验,NH 氰化钾检验,NH4+可用奈氏试剂来鉴定。 2.用电导仪测定配合物溶液的导电性,进一 2.用电导仪测定配合物溶液的导电性,进一 步确定配合物化学式。

一种钴配合物的制备及表征

一种钴配合物的制备及表征

1 实验9 一种钴III配合物的制备及表征一、实验目的1. 掌握制备金属配合物的最常用的方法――水溶液中的取代反应和氧化还原反应2. 学习使用电导率仪测定配合物组成的原理和方法二、实验原理 1. 合成运用水溶液的取代反应来制取金属配合物是在水溶液中的一种金属盐和一种配体之间的反应。

实际上是用适当的配体来取代水合配离子中的水分子。

氧化还原反应是将不同氧化态的金属配合物在配体存在下使其适当的氧化或还原制得金属配合物。

CoII的配合物能很快地进行取代反应是活性的而CoIII配合物的取代反应则很慢是惰性的。

CoIII的配合物制备过程一般是通过CoII实际上是它的水合配合物和配体之间的一种快速反应生成CoII的配合物然后使它被氧化成为相应的CoIII配合物配位数均为六。

常见的CoIII配合物有CoNH363黄色、CoNH35H2O3粉红色、CoNH35Cl2紫红色、CoNH34CO3紫红色、CoNH33NO23黄色、CoCN63-紫色、CoNO263黄色等。

2. 组成分析用化学分析方法确定某配合物的组成提出先确定配合物的外界然后将配离子破坏再来看其内界。

配离子的稳定性受很多因素影响通常可用加热或改变溶液酸碱性来破坏它。

本实验先初步推断一般用定性、半定量甚至估量的分析方法。

推定配合物的化学式后可用电导率仪来测定一定浓度配合物溶液的导电性与已知电解质溶液进行对比可确定该配合物化学式中含有几个离子进一步确定该化学式。

游离的CoII离子在酸性溶液中可与硫氰化钾作用生成蓝色配合物CoSCN42-。

因其在水中离解度大固常加入硫氰化钾浓溶液或固体并加入戊醇和乙醚以提高稳定性。

由此可用来鉴定CoII离子的存在。

其反应如下Co2 4SCN CoNCS42-蓝色游离的NH4离子可由奈氏试剂来鉴定其反应如下NH4 2HgI42- 4OH O NH2I↓ 7I 3H2O 奈氏试剂红褐色电解质溶液的导电性可以用电导G表示KG 式中γ为电导率常用单位为S·cm1K为电导池常数单位为cm1。

种钴配合物的制备与组成测定

种钴配合物的制备与组成测定

种钴配合物的制备与组成测定钴是一种重要的过渡金属元素,具有广泛的应用前景。

钴(Ⅲ)配合物在催化、生物医学和药物化学等领域中具有重要的应用意义。

本文将着重介绍钴(Ⅲ)配合物的制备方法以及其组成确定的理论和实验方法。

钴(Ⅲ)配合物的制备方法主要有以下几种:1.直接合成法:将适量的钴(Ⅱ)化合物与氧化剂反应,使得钴(Ⅱ)氧化为钴(Ⅲ)形成配合物。

常用的氧化剂有过氧化氢、过氧化盐等。

2.过渡金属氧化还原法:将钴(Ⅲ)盐与适量的还原剂(如亚硫酸盐、脱氧胆酸钠等)反应,从而使钴(Ⅱ)盐氧化为钴(Ⅲ)配合物。

3.配体交换法:选择一种已知的钴(Ⅲ)配合物作为起始配合物,通过与另一种适合的配体反应,进行配体交换得到目标钴(Ⅲ)配合物。

钴(Ⅲ)配合物的组成测定可采用理论计算方法和实验方法。

1.理论计算方法:可以通过量子化学计算方法,如密度泛函理论(DFT)等,对配合物进行结构优化和能量计算,从而确定其组成。

这种方法能够根据氧化态、配位络合数和配体的电子性质等预测配合物的组成。

2. 实验方法:常用的实验方法有元素分析、核磁共振谱(NMR)、红外光谱(IR)、紫外可见光谱(UV-Vis)等。

元素分析能够确定配合物中金属和非金属元素的相对含量,从而推断其组成。

NMR、IR和UV-Vis能够提供配合物的结构信息,通过对峰的位置、强度和形状等进行分析,可以推测配体的种类和配位模式。

总结起来,制备钴(Ⅲ)配合物的方法多样,可以选择适合的方法根据实际需要进行制备。

组成的测定则可以通过理论计算和实验方法进行,这些方法结合使用可以更好地确定钴(Ⅲ)配合物的组成。

钴(Ⅲ)配合物的制备和组成测定对于深入研究其性质和应用具有重要的意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基础化学实验I课程小论文题目:钴(Ⅲ)配合物的制备及表征姓名王一贺学号及专业化学**********姓名徐剑光学号及专业化学**********指导教师曾秀琼浙江大学化学系浙江大学化学实验教学中心2014年 1 月前言:在水溶液中,电极反应Eθ(Co3+/Co2+)=1.84V,所以在一般情况下,Co(Ⅱ)在水溶液中是稳定的,不易被氧化为Co(Ⅲ),相反,Co(III)很不稳定,容易氧化水放出氧气(Eθ(Co3+/Co2+)=1.84V >E θ(O2/H2O)=1.229V)。

但在有配合剂氨水存在时,由于形成相应的配合物[Co(NH3)6]2+,电极电势E θCo[(NH3)63+/ Co(NH3)62+]=0.1V,因此Co (Ⅱ)很容易被氧化为Co(III),得到较稳定的Co(Ⅲ)配合物。

Co(Ⅲ)可与多种配体配位,能形成多种配合物。

实验方案简述:一、实验中采用H2O2作氧化剂,在大量氨和氯化铵存在下,选择活性炭作为催化剂将Co(Ⅱ)氧化为Co(Ⅲ),来制备三氯化六氨合钴(Ⅲ)配合物,反应式为:2[Co(H2O)6]Cl2(粉红色)+ 10NH3 +2NH4Cl + H2O2 活性炭 C 2[Co(NH3)6]Cl3(橙黄色)+ 14H2O 将产物溶解在酸性溶液中以除去其中混有的催化剂,抽滤除去活性炭,然后再在浓盐酸存在下使产物晶体析出。

293K时,[Co(NH3)6]Cl3在水中的溶解度为0.26mol·L-1,K不稳=2.2×10-34,在过量强碱存在且煮沸的条件下会按下形式分解:2[Co(NH3)6]Cl3 + 6NaOH 煮沸2Co(OH)3 + 12NH3 + 6NaCl样品中的Co(Ⅲ)用碘量法测定:2Co(OH)3 + 2I- + 6H+ 2Co2+ + I2 + 6H2OI2 + 2S2O32- S4O62- + 2I-二、2[Co(en) 2 Cl2]Cl的制备:2CoCl2·6H2O+4HCl+4en trans- 2[Co(en) 2 Cl2]Cltrans- 2[Co(en) 2 Cl2]Cl•HCl•2H2O △trans- 2[Co(en) 2 Cl2]Cl↓+ HCl+2H2Otrans- 2[Co(en) 2 Cl2]Cl △cis- 2[Co(en) 2Cl2]Cl仪器:100mL锥形瓶,布氏漏斗,量筒,胶头滴管,蒸发皿,恒温水浴,抽滤泵,烘箱,分析天平,台天平,250mL碘量瓶,滴定管,红外光谱仪,烧杯。

药品:H2O2(10%),稀盐酸(3+50),浓氨水(AR),浓盐酸,CoCl2·6H2O(AR),氯化铵(AR),活性炭,冰块,3mol·L-1H2SO4,0.1mol·L-1Na2S2O3,20%的NaOH,0.5%淀粉,6mol·L-1HCl,碘化钾(AR)、、亚硝酸钠(AR)、无水乙醇(AR)、NH4Cl(AR)、乙二胺(AR)。

实验步骤:实验一:[Co(NH3)6]Cl3配合物的制备及Co含量测定1.1、[Co(NH3)6]Cl3配合物的制备:在100mL锥形瓶中6g研细的氯化亚钴CoCl2·6H2O,4g氯化铵和7mL去离子水,加热溶解后加入0.3g活性炭。

冷却,加入14mL浓氨水,冷却至283K以下,缓慢加入10mL 10%的过氧化氢,水浴加热至333K左右并恒温20min(适当摇动锥形瓶)。

取出,先用自来水冷却,后用冰水冷却。

抽滤,将沉淀溶解于60mL沸稀盐酸(3+50)中(若不溶解可适量补充稀酸),趁热过滤。

在滤液中慢慢加入10mL浓盐酸,冰水冷却。

抽滤。

在378K温度下烘干,称重。

1.2、[Co(NH3)6]Cl3中钴(Ⅲ)的测定准确称取0.5g左右三氯化六氨合钴(Ⅲ)于250mL的磨口烧瓶中,加数粒沸石,加入20mL20%的NaOH,加热煮沸25min,分解三氯化六氨合钴(Ⅲ),将氨蒸发,分解过程中适当补水。

冷却到室温,加入1.5g固体碘化钾,盖上瓶盖,摇动1min后,加入20mL 6mol·L-1HCl,在暗处放置15min。

然后加入100ml去离子水,立即用Na2S2O3标准溶液滴定至黄橙色,然后加入2mL0.5%淀粉溶液,继续滴定至终点(浅红色)。

几下消耗的Na2S2O3标准溶液的体积。

计算三氯化六氨合钴(Ⅲ)中钴(Ⅲ)质量分数。

平行测定三次。

实验二:配合物键合异构体[Co(NH3)5NO2 ]Cl2和[Co(NH3)5ONO]Cl2的制备2.1、[Co(NH3)5C1]Cl2的制备:在氯化钴(Ⅱ)的水溶液中,加入过量NH3·H20和NH4Cl,即生成可溶性的[Co(NH3)6]2+,对所组成的反应混合物进行空气氧化,[Co(NH3)6]2+被氧化成稳定的[Co(NH3)6]3+,随后用过量的盐酸酸化,生成[Co(NH3)5C1]C12。

过滤,洗涤和干燥后,得到紫红色产品。

2.2、配合物键合异构[Co(NH3)5NO2]Cl2和[Co(NH3)5ONO]Cl2的制备2.2.1 键合异构体(I)的制备:称取1.0 g[Co(NH3)5C1]Cl2(紫红色)溶于15 mL 2 mol’L 氨水中,在水浴中加热,使其溶解,过滤除去不溶物,滤液冷却后用4 mol·L 盐酸酸化至pH=3~4。

加入1.5 g 亚硝酸钠,温和加热使其全部溶解,过滤除去不溶物。

溶液冷却后,小心注入15 mL浓盐酸(在通风厨进行),再在冰水中冷却,使结晶完全,抽滤,用无水乙醇洗涤两次,风干,产品为黄色。

2.2.2 键合异构体(II)的制备:称取1.0 g[Co(NH3)5Cl]Cl2溶于20 mL水和7 mL浓氨水混合液中,在水裕中加热使其溶解,过滤除去不溶物。

以4mol·L-1 HCl中和,冷却后加入1.0 g亚硝酸钠,搅拌使其溶解。

加入0.5 mL1:1HC1,使溶液pH=5,逐渐生成橙红色沉淀在冰水中冷却,抽滤,晶体用冰冷的去离子水洗涤两次,无水乙醇洗涤两次,在室温干燥,晶体为橙红色。

2.3、配合物键合异构体的红外光谱(IR)测定:将两种异构体在4000~400cm-1范围内测定红外光谱(KBr压片),在同一张图纸上打印对比。

上面的红外光谱为异构体(I),下面的红外光谱为异构体(II)。

实验三:[Co(en) 2 Cl2]Cl的制备称取4.0g CoCl2·6H2O于150mL烧杯中,加入25.0mL去离子水,搅拌溶解完全后,滴加1.7mL乙二胺,摇匀。

再缓慢加入3.0mL10% H2O2 (反应放热),稍冷却逐滴滴加8.8mL浓盐酸,溶液颜色加深,调节PH至3—4,得溶液A。

转入100mL蒸发皿中,蒸气浴加热。

取下后稍冷却,再用冰水浴30min。

减压抽滤,干燥。

取一份制得溶液A,用氢氧化钠溶液调节PH至中性。

蒸发至表面出现晶膜,冷却结晶,抽滤,干燥。

实验结果:实验一:[Co(NH3)6]Cl3配合物的制备及Co含量测定1、[Co(NH3)6]Cl3配合物的制备2、Co含量测定实验二:实验三:分析与讨论:实验一:[Co(NH3)6]Cl3配合物的制备及Co含量测定本实验制备终产率较低,主要由于[Co(NH3)6]Cl3 在水溶液中溶解度较高(293K,6.9g/100ml),溶液量较大,因此残留在溶液中的产品较多;Co含量测定中,相对平均偏差符合要求,而结果大于理论值,可能是方案存在系统误差。

可能原因有:1、加入纯净水中的溶解O2 将I- 氧化导致测定结果偏高;2、滴定终点判定存在误差;3、硫代硫酸钠溶液放置时间较长,可能存在少量变质,导致结果偏高。

实验二:配合物键合异构体[Co(NH3)5NO2 ]Cl2和[Co(NH3)5ONO]Cl2的制备本实验需制备[Co(NH3)5 Cl]Cl2 作为中间原料,相比与制备[Co(NH3)6]Cl3 两者条件存在一定差异,通过实验可以发现,在没有活性炭存在时,由氯化亚钴与过量的氨、氯化铵反应的主要产物是二氯化一氯五氨合钴(Ⅲ),有活性炭存在时的主要产物是三氯化六氨合钴(Ⅲ)。

制备键连异构体时主要制备条件差异在于溶液PH的控制。

当溶液呈酸性时,产物为棕黄色粉末,为[Co(NH3)5NO2 ],而在中性或弱碱性条件下产物为橙红色粉末。

可能的原因是由于在酸性体系中,亚硝酸多以分子形态存在,氧上连有氢,因此此时N与Co配位更容易;而在中性或弱碱性体系中,氧的配位能力增强,且氧个数多于N,因此在此时O配位更具优势。

红外测定结果表明:实验三:[Co(en) 2 Cl2]Cl的制备实验结果表明在酸性条件下制得的产物为trans- [Co(en) 2Cl2]Cl,而在中性条件下生成的为cis- 2[Co(en) 2 Cl2]Cl。

由文献可知,cis- 2[Co(en) 2 Cl2]Cl在中性条件下溶解度小于trans- 2[Co(en) 2 Cl2]Cl,而在酸性条件下恰好相反,故而在酸性条件下,反式产物先析出,由于两种产物的络合平衡的存在,使最终平衡往生成反式产物方向移动,因此最终析出的为反式产物。

中性条件下同理。

感想:每次的探究实验都是一次拓展,一次合作。

不论个人技能如何了得,团队合作都是必不可少。

实验需要出色的个人技能,更需要默契的团队合作。

自主设计实验更是告诉我们实验不是照着书本将步骤完成,更应有自己的想法,敢于质疑,积极思考。

——徐剑光自主设计试验中充满了许多的不确定,每一步的实验现象和结果都有可能会偏离或者与预计的相悖,更多的不确定性,使实验就要求更多的查阅资料、了解相关性质,不断地去改变探索,并通过变量实验结果相互比较,最终得到一个更为有说服力的结果。

——王一贺。

相关文档
最新文档