低压缸胀差的控制措施
胀差的控制

胀差的控制1、轴封:合理控制送轴封的时间,不宜过早;控制好轴封蒸汽的温度和压力;调整好各轴封调门及手动门的开度,不让转子先胀出来;轴封汽源的选择以及疏水、暖箱也有一定的影响。
轴封汽源低辅和冷再汽源的及时切换.2、真空:冲转时真空不应太高,汽轮机冷态启动时,可适当降低真空,适当提高排汽缸温度也可以减小正胀差。
注意监视低压缸温度,必要时调整喉部喷水。
3、油温:油温保持低一点对控制胀差也很有效4、冲转参数:主汽参数应正确选择,控制好升温升压速度:冲转时间及定速暖机检查要把握好。
参数匹配,冲转参数不要太高,否则造成进气流量太小,造成上下缸温差增大,转子膨胀过快于汽缸。
(鼓风摩擦)5、夹层加热:根据缸温选择投入夹层加热装置(我厂是300MW东方汽轮机,哈汽汽轮机好像没有夹层加热吧),控制好汽缸的膨胀;6、暖缸:暖缸一定要充分,让转子和汽缸的温度尽量接近。
冲转后既投入低加,并网随机投高加,利于增加暖机效果让汽缸的各部温度尽量均匀。
中速高速暖机要充分,等汽缸充分胀出,再升速并网。
初负荷暖机时间不能打折扣,暖机时在保证主汽温过热度的情况适当提高主汽压力,以增大暖机效果。
汽缸在此阶段膨胀快速增大,差胀应下降。
冲转带负荷暧机的时机要把握好,要综合考虑缸温胀差等参数,控制好参数,及时升负荷。
7、疏水:冲转前后汽机各管道及本体应充分疏水,主汽温至320℃以上时电动主汽门前疏水可关小节流,直至关闭。
其余像电动主汽门后和自动主汽门前疏水此时凝结放热基本结束,也可一定程度的节流,以避免排挤另外的疏水。
8、热态启动时除了各参数应正确选择外只有待差胀从负值回升后才能投入汽加热装置。
9、机组打闸前,如果差胀正值大,应先降低,打闸会出现胀差突增2MM左右。
停机过程中控制好参数平稳下滑。
(鼓风摩擦)10、停机时除了控制汽温汽压的下降速度、保证50℃以上的过热度外可保持相对应稍高的主汽压和略低的汽温,以加快冷却效果和停机时间。
加一点:规程上说的暧机时间或许长了点.注意:1、合理投入旁路系统:2、注意检查就地膨胀情况及滑销系统3、防止冷气汽冷水进入汽轮机4、启停过程中注意监视缸温的变化速度,胀差的变化往往滞后缸温变化近半小时。
低压缸差胀大的原因分析

低压缸差胀大的原因分析皖马发电有限公司“上大压小”两台机组1、2号660MW超临界机组主汽轮机由上海汽轮机有限公司生产,型式为超临界、一次中间再热、单轴、三缸四排汽、凝汽式,型号为N600-24.2/566/566,其中2号机组于2012年5月8日完成168小时试运转。
2号机组自投产以后,低压缸差胀(测点安装在6号与7号瓦之间)一直正向偏大,特别是每年入冬以后,低压缸差胀长期在+15.0 mm 左右,曾有冬季开机因低压缸差胀大而跳机事件,而同等情况下同型号的1号机组低压缸差胀值只有+13.0 mm左右,尤其在夜间低负荷情况下2号汽轮机的低压缸差胀值有时会超过报警值+15 mm,曾一度接近跳闸限值16mm,严重影响了机组的安全运行。
所谓的差胀,即转子与汽缸的膨差胀值。
当汽轮机启动加热或停止运行冷却时以及负荷发生变化时,汽缸和转子都会产生受热膨胀或冷却收缩。
由于转子受热表面积比汽缸大,且转子的质量比相对应的汽缸小,蒸汽对转子表面的放热系数较大。
因此,在相同条件下,转子的温度变化比汽缸快,转子与汽缸之间存在膨差胀,转子的膨胀值大于汽缸,其相对膨差胀值称为正差胀,反之,则为负差胀。
该厂2号机组低压缸差胀的保护定值是+16mm 和-1.02mm。
差胀正向限值大于负向限值,主要是因为汽轮机同一级的静叶和动叶的间距小于该级动叶与下一级静叶之间的距离,如果差胀正向增长则说明该级动叶与下一级静叶间的距离在减小,负向增长说明本级内动静间隙在减小,因此,差胀的正向限值要大于负向限值。
我们知道如汽轮机差胀过大,易引起动静部分碰磨,从而导致机组振动上升,危及转子及其叶片的安全,严重影响汽轮机组的安全运行。
所以当发生低压缸差胀过大时要谨慎对待,及时分析查找原因并出台《低压缸差胀大的执行措施》。
原因分析我们知道影响汽轮机差胀的因素通常有以下:(1)启动时暖机时间太短,升速太快或升负荷太快。
(2)汽缸夹层、法兰加热装置的加热汽温太低或流量较低,引起汽加热的作用较弱。
【最新精选】汽轮机高低压缸胀差的安装及调试

汽轮机高低压缸胀差的安装及调试汽轮机在启、停过程中,由于转子与汽缸的热交换条件不同,使得它们在膨胀或收缩时出现差别。
这些差别称为汽轮机转子与汽缸的相对膨胀差,简称胀差。
监视胀差是机组启停过程中的一项重要任务。
为避免轴向间隙变化到危险程度使动静部分发生摩擦,不仅应对胀差进行严格监视,而且应对各部分胀差对汽轮机正常运行的影响应有足够的认识。
下面介绍汽轮机胀差的安装及调试步骤。
1)传感器定零在汽轮机转子推轴定位以后,根据拟定的测量范围(通常情况下为±2mm),把传感器调整支架旋到合适的位置。
安装传感器时,应使传感器头端面与被测面保持平行。
测量前置器的输出电压,将零点间隙电压定到-12V(如果测量范围不对称的话,需要根据传感器的灵敏度,零点在量程中的位置,通过计算得出零点间隙电压),锁紧传感器紧固螺母(紧固时要特别注意电压值,稍不注意就会跑掉),传感器就安装好了。
将百分表顶在传感器支架上合适的地方(要能随手轮调节前后移动),根据量程调节百分表,定零。
2)离线采集传感器线性准备好记录纸,调节手轮,先往正方向转0.5mm,记录下此时前置器的间隙电压值。
以此类推,记录下1.0mm、1.5mm、2.0mm 时对应的电压值。
然后回零,检查一下零点间隙电压,差别应该不会超过±0.05v。
往负方向旋转0.5mm,记录下-0.5mm、-1.0mm、-1.5mm、-2.0mm时对应的电压值。
如有必要,可以采集更多的点,比如间隔0.2mm或者0.25mm 3)组态及线性化组态计算机连好模块,把刚才记录的电压值输入组态进行线性化。
好做以后,上传组态至模块。
4)测量值比对与步骤2中的过程相同,此过程需要记录在实际位置,此时组态计算机中对应的显示值。
5)报警和停机保护动作实验旋转手轮,位移量达到在模块中设定的报警和危险定值时,相应的保护回路要有开关量信号输出。
在此过程中还可以作报警迟滞实验,看是否与设定值吻合。
汽轮机汽缸、胀差、汽缸的死点、怎么控制胀差

汽轮机在启停和运行工况下——胀差讲义周国强关键词:汽轮机汽缸、胀差、汽缸的死点、怎么控制胀差、可谓汽轮机的泊桑效应。
汽轮机在启停和工况变化时,转子和汽缸分别以各自的死点为基准膨胀或收缩。
由于汽缸质量大,而接触蒸汽的面积小。
转子的质量小而接触蒸汽的面积大,因而各自的受热面不一样,使得汽缸和转子之间热膨胀的数值各不一样,其二者之间的差值称为相对膨胀,即转子和汽缸的胀差。
一般来说,冷态开机过程中是胀差是正值,稳定状态下胀差接近于零,降负荷和停机惰走时胀差向负向发展,单缸机组尤其明显。
但是对于多缸机组,即中间再热机组,其胀差较单缸机组更为复杂。
汽轮机转子与汽缸的相对膨胀,称为胀差。
1 习惯上规定1.1 转子膨胀大于汽缸膨胀时的胀差值为正胀差;1.2 汽缸膨胀大于转子膨胀时的胀差值为负胀差;1.3 根据汽缸分类又可分为:高差、中差、低I差、低II差。
1.4 胀差数值是很重要的运行参数,若胀差超限,则热工保护动作使主机脱扣。
1.5 汽缸是向后膨胀而转子是向前膨胀的。
释:单缸汽轮机的汽缸膨胀,它的死点是在低压缸排气口的中心线,即从低压缸向机头方向膨胀。
转子的膨胀是以机头推力瓦为死点,向发电机方向膨胀。
也就是说,汽缸的膨胀方向和转子的膨胀方向是反向的。
2 使胀差向正值增大的主要原因有2.1 启动时暖机时间太短,升速太快或升负荷太快;2.2 汽缸夹层、法兰加热装置的加热汽温太低或流量较低,引起汽加热的作用较弱;2.3 滑销系统或轴承台板的滑动性能差,易卡涩;2.4 轴封汽温度过高或轴封供汽量过大,引起轴颈过份伸长;2.5 机组启动时,进汽压力、温度、流量等参数过高;2.6 推力轴承磨损,轴向位移增大;2.7汽缸保温层的保温效果不佳或保温层脱落,在严禁季节里,汽机房室温太低或有穿堂冷风;2.8 双层缸的夹层中流入冷汽(或冷水);2.9 胀差指示器零点不准或触点磨损,引起数字偏差;2.10 多转子机组,相邻转子胀差变化带来的互相影响;2.11 真空变化的影响;2.12 转速变化的影响;2.13 各级抽汽量变化的影响,若一级抽汽停用,则影响高差很明显;2.14 轴承油温太高;2.15 机组停机惰走过程中由于“泊桑效应”的影响。
低缸胀差和轴向位移偏大的原因分析和调整方法

低缸胀差和轴向位移偏大的原因分析和调整方法运行中低缸胀差偏大或轴向位移偏大是常见的缺陷,由于产生原因不清楚,机组不得不降负荷运行,但有时候往往是虚惊一场,较多的是转子冷、热态在缸内的位置不清楚,元件调整和传动试验方法不对,本文以125MW机组为例,阐述它们之间的关系和调整方法,供其它类型机组的专业技术人员参考。
1.与动静间隙的关系1.1低缸胀差与动静间隙的关系低缸胀差传感器装在3号轴承盘车齿轮处,该轴承箱与低压缸没有直接连接,因此,3300表盘上所显示的低缸胀差值应是低压转子的绝对膨胀值。
整根转子的膨胀死点在推力轴承处,低压外缸的膨胀死点在低压缸靠2号轴承前端,低压内缸相对低压外缸的死点在低压进汽中心线处,因此,在热态下,低压内缸除沿进汽中心线向两侧膨胀外,还与低压外缸一起向发电机侧膨胀。
假设以低压缸进汽中心线为参考点则有:转子在该点的膨胀量为低缸差胀(A)的一半。
低压外缸在该点的膨胀值为低压外缸绝对膨胀值(B)的一半,B一般为1~1.2mm。
若取0.5~0.6mm的安全裕量。
设安装间隙为(X0),内缸膨胀量为C则膨胀后的轴向间隙(X)有:X=X0-A/2+B/2-C-0.6正向:低压缸动静碰摩最危险的部位是靠机头前的19、20、21级最小安装间隙为7mm。
中心线距21级约600mm,平均温度按250℃计,低压内缸在21级处与转子反向膨胀约1.5mm,要保证动静部分不发生摩擦就必须使X>0。
X=7-1.5-A/2+1~1.2/2-0.6>0A<10mm时,是安全的。
负向:低压缸动静碰摩最危险的部位是靠电机侧的25、26、27级最小安装间隙为3+0.5mm,在26级处,由于内缸与转子的温差很小,相对胀差可忽略,因此有:X=-(3+0.5)-A/2+1~1.2/2-0.6A<-5mm时,是安全的。
1.2轴向位移与动静间隙的关系轴向位移在正常运行时是一定的,它的显示值与机组的推力间隙和热工测量系统调整时的初始值有关,机组运行后基本不变,只有在推力瓦有磨损时它才发生变化。
汽轮发电机低压缸胀差大原因分析及处理

汽轮发电机低压缸胀差大原因分析及处理汽轮发电机是一种利用汽轮机转动发电机发电的装置。
汽轮发电机的低压缸胀差是指在使用过程中,低压缸前后缸衬之间的胀差变大,导致压力泄漏增加,功率减弱,工作效率下降的问题。
下面将对汽轮发电机低压缸胀差大的原因进行分析,并提供相应的解决方法。
1.低压缸衬材质问题:低压缸衬材质选择不合适,导致其抗热胀性能不足,容易在工作温度下产生较大胀差。
解决方法是更换高性能的衬套材料,如高温合金。
2.温度控制问题:在汽轮发电机运行中,由于管路、冷却系统等问题,导致低压缸温度控制不良,超过了设计要求,造成衬套过度膨胀,胀差增大。
解决方法是优化冷却系统,确保低压缸温度在可控范围内。
3.衬套密封不良:低压缸衬套与缸体之间的密封不良导致压力泄漏,增加了压力差,使得衬套产生较大胀差。
解决方法是检查并修复衬套密封问题,确保衬套与缸体之间的紧密连接。
4.衬材磨损问题:低压缸衬套长时间使用后,由于磨损、疲劳等原因,失去了原有的密封性能,导致胀差增大。
解决方法是定期检查衬套磨损情况,及时更换磨损严重的衬套,延长发电机使用寿命。
5.运行过程中的振动问题:汽轮发电机在运行过程中受到振动的影响,振动过大会导致低压缸衬套松动,增加了胀差。
解决方法是加强对汽轮发电机的振动监测和控制,有效减小振动对衬套的影响。
综上所述,汽轮发电机低压缸胀差大的原因可能是多方面的,包括材料、温度控制、密封、磨损和振动等问题。
针对这些原因,需要进行相应的处理方法,如更换衬套材料、优化温度控制系统、修复密封问题、定期更换磨损的衬套以及加强振动监测和控制。
通过这些措施,可以有效降低低压缸胀差,提高汽轮发电机的运行效率和使用寿命。
600 MW超临界汽轮机低压缸胀差偏大原因分析及控制

Ab s t r a c t :To s ol ve t he pr obl e m e xi s t i ng i n t he 2× 6 00 M W s upe r c r i t i c a l s t ea m t u r bi ne s o f G ua ng do ng
s t r at e g y f o r t h e l o w pr e s s ur e c y l i nde r di f f er e nt i a l e xpa ns i on. Pr a c t i c e ha ve p r ov e d t he m e t hod s t o be e f f e c t i ve i n c ont r ol l i n g t he d i f f e r e nt i a l e x pa ns i o n o f l ow pr e s s ur e c yl i nd e r,a nd t he r e f o r e s a f e t y o pe r a t i on o f t he u ni t i s g u ar a nt e ed. Ke y wor ds :s t e a m t ur b i n e;l ow p r e s s ur e c y l i nde r;di f f e r e nt i a l e xpa ns i on;c ont r ol
出低 压 缸 胀 差 的 运行 控 制策 略 。 经过 运 行 实践 证 明 : 采用这些运行控制手段有效地 控制汽轮机 低压缸胀 差 , 从而保证了机组安全运行。 关键词 : 汽 轮 机 ;低 压 缸 ; 胀 差 ;控 制 中图 分 类 号 : TK 2 6 3 . 1 文 献标 志码 : A 文章编号 : 1 6 7 1 — 0 8 6 X( 2 0 1 4 ) 0 6 — 0 4 3 2 — 0 3
某厂汽轮机组启动过程中低缸胀差增大的原因分析及调整

某厂汽轮机组启动过程中低缸胀差增大的原因分析及调整摘要:汽轮机在启动过程中,转子与汽缸的热交换条件不同。
因此,造成它们在轴向的膨胀也不一致,即出现相对膨胀。
汽轮机转子与汽缸的相对膨胀通常也称为胀差。
胀差的大小表明了汽轮机轴向动静间隙的变化情况。
关键词:机组启动;胀差;动静间隙正文:汽轮机合理的启动方式就是在汽轮机各部件金属温度差、转子与汽缸的相对膨胀差在允许范围内、不发生异常振动、不引起动静摩擦和过大热应力的条件下,以尽可能短的时间完成汽轮机启动的方式。
这里面,避免动静摩擦和过大热应力是两个终极目标。
其中热应力可以通过平稳地调整机组进汽温度、流量和充分暖机来控制,然而,避免动静摩擦事故的发生却是一个比较复杂的控制过程。
众所周知,胀差超限是导致动静摩擦的主要原因之一,调整好动静两部分的膨胀差值,就能很大程度地减少动静间隙消失产生摩擦、造成转子弯曲、引起机组振动、甚至出现重大事故的可能性。
同时,鉴于某厂服役汽轮机组在启动过程中低压缸正胀差升至报警值的现象,故本文就胀差产生的原因、影响因素和调整手段做了说明和介绍。
一、胀差产生的原因汽轮机在启动过程中,转子与汽缸的热交换条件不同。
因此,造成它们在轴向的膨胀也不一致,即出现相对膨胀。
汽轮机转子与汽缸的相对膨胀通常也称为胀差。
胀差的大小表明了汽轮机轴向动静间隙的变化情况。
习惯上规定转子膨胀大于汽缸膨胀时的胀差值为正胀差,反之为负胀差。
胀差数值是很重要的运行监视参数。
若胀差超限将会导致机组动静摩擦、振动加剧,出现保护拒动等异常情况时甚至导致机组的恶劣事故。
二、机组启动过程中易影响胀差变化的几个主要因素1.轴封供汽温度和供汽时间的影响在汽轮机冲转前向轴封供汽时,由于冷态启动时轴封供汽温度高于转子温度,转子局部受热而伸长,出现正胀差,可能出现轴封摩擦现象。
在热态启动时,为防止轴封供汽后出现负值,轴封供汽应选用高温汽源,并且一定要先向轴封供汽,后抽真空。
应尽量缩短冲车前轴封的供汽时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于汽机胀差的控制措施
机组在冷态启动时,多次由于低压缸胀差大严重影响了机组的正常启动,为保证机组正常启动,制定以下措施,望各值执行:
1)锅炉点火前,汽机启动一台真空泵抽真空,当主汽压力达0.5Mpa时,
送轴封,轴封温度维持在120℃,压力维持在25Kpa ,必要时启动另一
台真空泵。
2)主汽压力达1.0MPa,高低旁路系统投入,汽机挂闸,高缸投倒暖,为
了加强暖机,再热汽压维持在 1.5MPa.。
3)汽机冲转前,再热汽温维持在330-360℃之间。
4)机组在1000rpm 暖机1小时后方可升速。
5)低负荷暖机时总缸胀大于8 mm 方可加负荷。
6)汽机中缸控制阶段,可采取降低再热汽压,开大中调门的措施增加进汽
量,加强中、低压缸的暖机。
7)在机组升速及暖机带负荷过程中,根据差胀情况,严格控制主、再热器
温升率。
8)机组启动过程中可适当降低凝汽器真空,但最低不低于75KPa , 防止低
真空保护动作停机。
9)当低压缸差胀上升较快时可采取加强暖机,停止加负荷稳定运行等手
段,必要时可适当降低压轴封压力及温度。
10)机组启动过程中注意检查汽机膨胀情况,左、右缸胀是否均匀,就地听
音。
11)在机组启动过程中当汽机胀差达停机值时,应手动停机。
发电部
2005年3月31日。