最新命题与证明练习题1及答案
命题与证明练习题及答案

命题与证明综合一、精心一1.下列句是命的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A.作直AB的垂B.在段AB上取点CC.同旁内角互D.垂段最短?2.命“垂直于同一条直的两条直互相平行” 的是⋯⋯⋯⋯⋯⋯⋯()A.垂直B.两条直C.同一条直D.两条直垂直于同一条直3 .下列命中,属于假命的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A.若a-b =0,a=b=0 B.若a-b>0,a>bC.若a-b<0,a<b D .若a-b ≠0,a≠b4.直角三角形的两角均分所交成的角的度数是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A.45°B.135°C.45°或 135°D.以上答案均不5.适合条件∠A: ∠B: ∠C=1:2:3 的三角形必然是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A.角三角形 B .直角三角形C.角三角形D.任意三角形6.用反法明“ 3 是无理数” ,最恰当的法是先假⋯⋯⋯⋯⋯⋯⋯()A.3是分数B. 3 是整数C. 3 是有理数D. 3 是数7 .如,∠ 1+∠ 2+∠ 3等于⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A.180°B.360°C.270°D.300°8.于命“若是∠1+∠2=90°,那么∠ 1≠∠2”,能明它是假命的反例是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 / 4⋯⋯⋯⋯()条件① AB=DE,② AC=DF,③ CM=FN A.∠ 1=50°,∠ 2=40°中任取两个条件做条件,另一个条件B.∠ 1=50°,∠ 2=50°做,C.∠ 1=∠2=45°能构成一个真命,那么可以D.∠ 1=40°,∠ 2=40°是,是.(只填序号)二、心填一填三、耐心做一做9.一个命由和两部分成.17.如,已知点E、F分在AB、AD 10.依照命正确与否,命可分的延上,∠ 1=∠2,∠ 3=∠4.和.求:(1)∠A=11.把命“三角形内角和等于 180°”∠3改写成若是,那么.(2)AF∥BC12.如,∠ 1,∠ 2,∠ 3 的大小关系18.如,在△ABC中,∠A=70°,BO,是.CO分是∠ABC和∠ ACB的角平13.如,已知BC⊥AC,BD⊥AD,垂足(第 12 题)分,求∠ BOC的度数.(第 13 题)分是 C和 D,19.反例明以下命是假命.若要使△ ABC≌△ ABD,上一条( 1)一个角的角大于个角;件是.( 2)已知直a,b,c,若a⊥b,14.命“同位角相等”的是.b⊥c, a⊥c.15.明命“若x(1- x)=0,x=0”20.已知,如,AB与CD订交于点O,是假命的反例是AC∥BD,且 AO=OC..求: OB=OD.16.在△ABC和△DEF中,∠A=∠D,CM,21.如,AB=DC,AC=DB,FN分是 AB、DE上的中,再从以你能明中∠ 1=∠2 的理下三个由?2 / 422.已知,如图,AD⊥BC于D,EF⊥BC=CE,求证: AE=DE.于 F,EF交 AB于 G,交 CA延长线于 E,且∠1=∠2.25、如图,∠ ABC= 90°, AB= BC, D求证:AD均分∠ BAC,填写“解析”为 AC上一点,分别过 A.C 作 BD的垂线,和“证明”中的空白.垂足分别为 E.F,解析:要证明 AD均分∠ BAC,只要求证: EF=CF-AE.证明∠ =∠,而已知∠ 1=∠2,所以应联想这两个角分别和∠八年级数学(下)素质基础训练1、∠ 2 的关系,由已知BC的两条垂线(五)可推出一、精心选一选∥,这时再观察这两对角的CDACBCBC关系已不难获取结论.二、认真做一做证明:∵ AD⊥BC,EF⊥BC(已知)9. 题设(或条件)、结论∴∥()10.真命题假命题∴=(两直线平行,内错角11.有一个三角形的三个内角它们和等相等.)于 180°=(两直线平行,内错角12.∠2<∠1<∠3相等.)13.开放性题目,答案不唯一∵(已知)14.两个角是同位角这两个角相等∴,即 AD均分∠ BAC()15.x=1 也能使条件为零23、如右图,已知BE⊥AC于E,CF⊥AB16.①② ; ③于 F,BE、CF订交于点 D,若 BD=CD.三、耐心做一做求证: AD均分∠ BAC.17.(1)证明:∵∠ 1=∠2( 已知 ) 24、如图,已知AB=DC,AC=DB,BE∴AE∥DC(内错角相等,两直线平行)3 / 4∴∠ A=∠3(两直线平行,同位角相等)(2)证明:∵∠ 3=∠4( 已知)∵∠ A=∠3( 已证 )∴∠ A=∠4(等量交换)∴AF∥BC(同位角相等,两直线平行)18. ∠BOC=12519. 略20. 略21. 略22. 略4 / 4。
新初中数学命题与证明的全集汇编附答案解析(1)

新初中数学命题与证明的全集汇编附答案解析(1)一、选择题1.用反证法证明命题:“在三角形中,至多有一个内角是直角”,正确的假设是()A.在三角形中,至少有一个内角是直角B.在三角形中,至少有两个内角是直角C.在三角形中,没有一个内角是直角D.在三角形中,至多有两个内角是直角【答案】B【解析】【分析】反证法即假设结论的反面成立,“最多有一个”的反面为“至少有两个”.【详解】解:∵“最多有一个”的反面是“至少有两个”,反证即假设原命题的否命题正确,∴应假设:在三角形中,至少有两个内角是直角.故选:B.【点睛】此题主要考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,不需要一一否定,只需否定其一即可.2.下列命题中是真命题的是()A.多边形的内角和为180°B.矩形的对角线平分每一组对角C.全等三角形的对应边相等D.两条直线被第三条直线所截,同位角相等【答案】C【解析】【分析】根据多边形内角和公式可对A进行判定;根据矩形的性质可对B进行判定;根据全等三角形的性质可对C进行判定;根据平行线的性质可对D进行判定.【详解】A.多边形的内角和为(n-2)·180°(n≥3),故该选项是假命题,B.矩形的对角线不一定平分每一组对角,故该选项是假命题,C.全等三角形的对应边相等,故该选项是真命题,D.两条平行线被第三条直线所截,同位角相等,故该选项是假命题,故选:C.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.熟练掌握矩形的性质、平行线的性质、全等三角形的性质及多边形的内角和公式是解题关键.3.下列语句中真命题有( )①点到直线的垂线段叫做点到直线的距离;②内错角相等;③两点之间线段最短;④过一点有且只有一条直线与已知直线平行;⑤在同一平面内,若两条直线都与第三条直线垂直,则这两条直线互相平行.A.5个B.4个C.3个D.2个【答案】D【解析】【分析】利用点到直线的距离的定义、平行线的性质、线段公理等知识分别判断后即可确定正确的选项.【详解】解:①点到直线的垂线段的长度叫做点到直线的距离,故错误,是假命题;②两直线平行,内错角相等,故错误,是假命题;③两点之间线段最短,正确,是真命题;④过直线外一点有且只有一条直线与已知直线平行,错误,是假命题;⑤在同一平面内,若两条直线都与第三条直线垂直,那么这两条直线互相平行,正确,是真命题.真命题有2个,故选D.【点睛】本题主要考查了命题与定理的知识,解决本题的关键是要熟练掌握点到直线的距离的定义、平行线的性质、线段公理等知识.4.下列命题中,是真命题的是()A.将函数y=12x+1向右平移2个单位后所得函数的解析式为y=12xB.若一个数的平方根等于其本身,则这个数是0和1C.对函数y=2x,其函数值y随自变量x的增大而增大D.直线y=3x+1与直线y=﹣3x+2一定互相平行【答案】A【解析】【分析】利用一次函数的性质、平方根的定义、反比例函数的性质等知识分别判断后即可确定正确的选项.【详解】解:A、将函数y=12x+1向右平移2个单位后所得函数的解析式为y=12x,正确,符合题意;B、若一个数的平方根等于其本身,则这个数是0,故错误,是假命题,不符合题意;C、对函数y=2x,其函数值在每个象限内y随自变量x的增大而增大,故错误,是假命题,不符合题意;D 、直线y =3x +1与直线y =﹣3x +2因比例系数不相等,故一定不互相平行,故错误,是假命题,故选:A .【点睛】本题考查了判断命题真假的问题,掌握一次函数的性质、平方根的定义、反比例函数的性质等知识是解题的关键.5.下列选项中,可以用来说明命题“若22a b >,则a b >”是假命题的反例是( ) A .2,a =b=-1B .2,1a b =-=C .3,a =b=-2D .2,0a b ==【答案】B【解析】分析:根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题. 详解:∵当a =﹣2,b =1时,(﹣2)2>12,但是﹣2<1,∴a =﹣2,b =1是假命题的反例. 故选B .点睛:本题考查的是命题与定理,要说明数学命题的错误,只需举出一个反例即可.这是数学中常用的一种方法.6.用三个不等式a >b ,ab >0,1a >1b中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( ) A .0B .1C .2D .3 【答案】A【解析】【分析】由题意得出3个命题,由不等式的性质再判断真假即可.【详解】解:①若a >b ,ab >0,则1a >1b ;假命题: 理由:∵a >b ,ab >0,∴a >b >0, ∴1a <1b; ②若ab >0,1a >1b ,则a >b ,假命题; 理由:∵ab >0,∴a 、b 同号, ∵1a >1b, ∴a <b ;③若a>b,1a>1b,则ab>0,假命题;理由:∵a>b,1a>1b,∴a、b异号,∴ab<0.∴组成真命题的个数为0个;故选:A.【点睛】本题考查了命题与定理、不等式的性质、命题的组成、真命题和假命题的定义;熟练掌握命题的组成和不等式的性质是解题的关键.7.下列说法正确的是()A.若a>b,则a2>b2B.若三条线段的长a、b、c满足a+b>c,则以a、b、c为边一定能组成三角形C.两直线平行,同旁内角相等D.三角形的外角和为360°【答案】D【解析】【分析】利用特例对A进行分析,利用三角形三边关系、平行线的性质、三角形外角的性质分别对B、C、D进行分析判断.【详解】A、若a>b,则不一定有a2>b2,比如a=0,b=﹣1,故本选项错误;B、若三条线段的长a、b、c满足a+b>c,则以a、b、c为边不一定能组成三角形,故本选项错误;C、两直线平行,同旁内角互补,故本选项错误;D、三角形的外角和为360°,故本选项正确;故选:D【点睛】本题考查真假命题的判断,解题的关键是根据相关知识对命题进行分析判断.8.下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()A.1 B.2 C.3 D.4【答案】A【解析】【分析】根据点到直线的距离,线段的性质,弧、弦、圆心角之间的关系以及垂径定理判断即可.【详解】①直线外一点到这条直线的垂线段,叫做点到直线的距离;假命题;②两点之间线段最短;真命题;③相等的圆心角所对的弧相等;假命题;④平分弦的直径垂直于弦;假命题;真命题的个数是1个;故选:A.【点睛】考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.下列命题中①等腰三角形底边的中点到两腰的距离相等②如果两个三角形全等,则它们必是关于直线成轴对称的图形③如果两个三角形关于某直线成轴对称,那么它们是全等三角形④等腰三角形是关于底边中线成轴对称的图形⑤一条线段是关于经过该线段中点的直线成轴对称的图形正确命题的个数是()A.2个B.3个C.4个D.5个【答案】A【解析】【分析】根据等腰三角形的性质、轴对称图形的定义、全等三角形的判定逐个判断即可.【详解】根据等腰三角形的三线合一可知,底边中点在顶角角平分线上,再根据角平分线的性质可知,其到两腰的距离相等,则命题①正确全等的三角形不一定是成轴对称,则命题②错误成轴对称的两个三角形一定全等,则命题③正确等腰三角形是以底边中线所在直线为对称轴的轴对称图形,则命题④错误成轴对称的图形必须是两个,一个图形只能是轴对称图形,则命题⑤错误综上,正确命题的个数是2个故选:A.【点睛】本题考查了等腰三角形的性质、轴对称图形的定义、全等三角形的判定等知识点,掌握理解各定义与性质是解题关键.10.下列命题属于真命题的是()A.同旁内角相等,两直线平行B.相等的角是对顶角C.平行于同一条直线的两条直线平行D.同位角相等【答案】C【解析】【分析】要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.【详解】A、同旁内角互补,两直线平行,是假命题;B、相等的角不一定是对顶角,是假命题;C、平行于同一条直线的两条直线平行,是真命题;D、两直线平行,同位角相等,是假命题;故选C.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式. 2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.11.在下列各原命题中,其逆命题为假命题的是()A.直角三角形的两个锐角互余B.直角三角形两条直角边的平方和等于斜边的平方C.等腰三角形两个底角相等D.同角的余角相等【答案】D【解析】【分析】首先写出各个命题的逆命题,然后进行判断即可.【详解】A、逆命题是:两个锐角互余的三角形是直角三角形,是真命题,故此选项不符合题意;B、逆命题是:如果一个三角形有两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形,是真命题,故此选项不符合题意;C、逆命题是:有两个角相等的三角形是等腰三角形,是真命题,故此选项不符合题意;D、逆命题是:如果两个角相等,那么它们是同一个角的余角,是假命题,故此选项符合题意.故选:D.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.12.39.下列命题中,是假命题的是()A.同旁内角互补B.对顶角相等C.直角的补角仍然是直角D.两点之间,线段最短【答案】A【解析】同旁内角不一定互补,同旁内角互补的条件是两直线平行,故选A.13.下列命题中是假命题的是( )A.一个三角形中至少有两个锐角B.在同一平面内,垂直于同一直线的两条直线平行C.同角的补角相等aD.如果a为实数,那么0【答案】D【解析】A. 一个三角形中至少有两个锐角,是真命题;B. 在同一平面内,垂直于同一直线的两条直线平行,是真命题;C. 同角的补角相等,是真命题;D. 如果a为实数,那么|a|>0,是假命题;如:0是实数,|0|=0,故D是假命题;故选:D.14.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=3【答案】B【解析】试题解析:在A中,a2=9,b2=4,且3>2,满足“若a2>b2,则a>b”,故A选项中a、b 的值不能说明命题为假命题;在B中,a2=9,b2=4,且﹣3<2,此时虽然满足a2>b2,但a>b不成立,故B选项中a、b 的值可以说明命题为假命题;在C中,a2=9,b2=1,且3>﹣1,满足“若a2>b2,则a>b”,故C选项中a、b的值不能说明命题为假命题;在D中,a2=1,b2=9,且﹣1<3,此时满足a2<b2,得出a<b,即意味着命题“若a2>b2,则a>b”成立,故D选项中a、b的值不能说明命题为假命题;故选B.考点:命题与定理.15.下列命题的逆命题是真命题的是()A.直角都相等 B.钝角都小于180° C.如果x2+y2=0,那么x=y=0 D.对顶角相等【答案】C【分析】根据逆命题是否为真命题逐一进行判断即可.【详解】相等的角不都是直角,故A选项不符合题意,小于180°的角不都是钝角,故B选项不符合题意,如果x=y=0,那么x2+y2=0,正确,是真命题,符合题意,相等的角不一定都是对顶角,故D选项不符合题意,故选C【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.16.下列命题是真命题的是()A.同旁内角相等,两直线平行B.对角线互相平分的四边形是平行四边形C.相等的两个角是对顶角D.圆内接四边形对角相等【答案】B【解析】【分析】由平行线的判定方法得出A是假命题;由平行四边形的判定定理得出B是真命题;由对顶角的定义得出C是假命题;由圆内接四边形的性质得出D是假命题;综上,即可得出答案.【详解】A.同旁内角相等,两直线平行;假命题;B.对角线互相平分的四边形是平行四边形;真命题;C.相等的两个角是对顶角;假命题;D.圆内接四边形对角相等;假命题;故选:B.【点睛】本题考查了命题与定理、平行线的判定、平行四边形的判定、对顶角的定义、圆内接四边形的性质;熟练掌握相关性质和定理、定义是解题关键.17.下列命题的逆命题不正确...的是()A.相等的角是对顶角B.两直线平行,同旁内角互补C.矩形的对角线相等D.平行四边形的对角线互相平分【答案】C【解析】首先写出各个命题的逆命题,然后进行判断即可.【详解】A 、逆命题是:对顶角相等.正确;B 、逆命题是:同旁内角互补,两直线平行,正确;C 、逆命题是:对角线相等的四边形是矩形,错误;D 、逆命题是:对角线互相平分的四边形是平行四边形,正确.故选:C .【点睛】本题主要考查了写一个命题的逆命题的方法,首先要分清命题的条件与结论.18.下列命题的逆命题成立的有( )①勾股数是三个正整数 ②全等三角形的三条对应边分别相等③如果两个实数相等,那么它们的平方相等 ④平行四边形的两组对角分别相等 A .1个B .2个C .3个D .4个【答案】B【解析】【分析】先写出每个命题的逆命题,再分别根据勾股数的定义、三角形全等的判定、平方根的定义、平行四边形的判定逐个判断即可.【详解】①逆命题:如果三个数是正整数,那么它们是勾股数反例:正整数1,2,3,但222123+?,即它们不是勾股数,则此逆命题不成立 ②逆命题:三条对应边分别相等的两个三角形全等由SSS 定理可知,此逆命题成立③逆命题:如果两个实数的平方相等,那么这两个实数相等反例:222(2)4=-=,但22≠-,则此逆命题不成立④逆命题:两组对角分别相等的四边形是平行四边形由平行四边形的判定可知,此逆命题成立综上,逆命题成立的有2个故选:B .【点睛】本题考查了命题的相关概念、勾股数的定义、三角形全等的判定、平方根的定义、平行四边形的判定,正确写出各命题的逆命题是解题关键.19.下列命题是假命题的是( )A .三角形的外心到三角形的三个顶点的距离相等B .如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16C .将一次函数y =3x -1的图象向上平移3个单位,所得直线不经过第四象限D.若关于x的一元一次不等式组213x mx-≤⎧⎨+>⎩无解,则m的取值范围是1m£【答案】B【解析】【分析】利用三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组分别判断后即可确定正确的选项.【详解】A. 三角形的外心到三角形的三个顶点的距离相等,正确,是真命题;B. 如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16或17,错误,是假命题;C. 将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限,正确,是真命题;D. 若关于x的一元一次不等式组213x mx-≤⎧⎨+>⎩无解,则m的取值范围是1m£,正确,是真命题;故答案为:B【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组.20.下列四个命题:①两直线平行,内错角相等;②对顶角相等;③等腰三角形的两个底角相等;④菱形的对角线互相垂直,其中逆命题是真命题的是()A.①②③④B.①③④C.①③D.①【答案】C【解析】【分析】首先写出各个命题的逆命题,然后进行判断即可.【详解】①两直线平行,内错角相等;其逆命题:内错角相等,两直线平行,是真命题;②对顶角相等,其逆命题:相等的角是对顶角,是假命题;③等腰三角形的两个底角相等,其逆命题:有两个角相等的三角形是等腰三角形,是真命题;④菱形的对角线互相垂直,其逆命题:对角线互相垂直的四边形是菱形,是假命题;故选C.【点睛】本题考查了写一个命题的逆命题的方法,真假命题的判断,弄清命题的题设与结论,掌握相关的定理是解题的关键.。
初二数学命题的证明同步练习题及答案

初二数学命题的证明同步练习题及答案初二数学命题的证明同步练习题及答案证明同步练习题及答案如下24.2命题与证明第1题. 已知四个命题:(1)如果一个数的相反数等于它本身,则这个数是0;(2)一个数的倒数等于它本身,则这个数是1;(3)一个数的算术平方根等于它本身,则这个数是1或0;(4)如果一个数的绝对值等于它本身,则这个数是正数.其中真命题有( )A.1个B.2个C.3个D.4个答案:B第2题. 判断下列命题的真假.①大于锐角的角是钝角;②如果一个实数有算术平方根,那么它的算术平方根是整数;③如果,那么点是线段的中点.答案:①②③假命题.第3题. 下列命题称为公理的是( )A.垂线段最短B.同角的补角相等C.邻角的平分线互相垂直D.内错角相等两直线平行答案:A答案:B第9题. 举反例说明一个角的余角大于这个角是假命题,错误的是( )A.设这个角是,它的余角是,B.设这个角是,它的余角是,C.设这个角是,它的余角是,D.设这个角是,它的余角是,答案:C第10题. 下列语句中,不是命题的句子是( )A.过一点作已知直线的垂线B.两点确定一条直线C.钝角大于D.凡平角都相等答案:A第11题. 命题有两条边和一个角对应相等的两个三角形全等的题设是,结论是,它是命题.答案:如果两个三角形中有两条边和一个角对应相等;这两个三角形全等;假.第12题. 把命题不相等的角不是对顶角改为如果那么的形式为 .答案:如果两个角不相等,那么这两个角不是对顶角.第13题. 如图,, .求证: .答案:因为, .所以 .即 .又,所以 .第14题. 已知:如图,,,,,求证: .答案:因为,,所以,所以,因为,所以,所以,因为,所以 .第15题. 如图,,且,那么图中与相等的角(不包括 )的个数是( )A.2B.4C.5D.6答案:C第16题. 如图,在中,,在上取一点,使,是的中点,是的中点,延长交的延长线于,求证: .答案:连结,取中点,连结,,为中点,为中点,为中点,, . ,,上文即是证明同步练习题及答案。
《命题、定理、证明》练习题(含答案)

《命题、定理、证明》练习题(含答案)5.3.2 命题、定理、证明1.下列语句中,是命题的是( )①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB=CD;④如果a>b,b>c,那么a>c;⑤直角都相等.A.①④⑤B.①②④C.①②⑤D.②③④⑤2.命题的题设是__________事项,结论是由__________事项推出的事项.3.下列命题中,是真命题的是( )A.若|x|=2,则x=2B.平行于同一条直线的两条直线平行C.一个锐角与一个钝角的和等于一个平角D.任何一个角都比它的补角小4.下列命题中,是假命题的是( )A.相等的角是对顶角B.垂线段最短C.同一平面内,两条直线的位置关系只有相交和平行两种D.两点确定一条直线5.下列说法正确的是( )A.“作线段CD=AB”是一个命题B.过一点作已知直线的平行线有一条且只有一条C.命题“若x=1,则x2=1”是真命题D.“具有相同字母的项称为同类项”是“同类项”的定义6.下列三个命题:①同位角相等,两直线平行;②两直线和第三条直线相交,同位角相等;③过两点有且只有一条直线.其中真命题有( )A.0个B.1个C.2个D.3个7.对于下列假命题,各举一个反例写在横线上.(1)“如果ac=bc,那么a=b”是一个假命题.反例:______________________________;(2)“如果a2=b2,则a=b”是一个假命题.反例:______________________________.8.把下列命题写成“如果……那么……”的形式,并判断其真假.(1)等角的补角相等;(2)不相等的角不是对顶角;(3)相等的角是内错角.9.(1)如图,请在AB∥CD,∠A=30°,∠CDA=30°三项中选择两个作为条件,一个作为结论,写一个命题:如果__________且__________,那么__________.(2)请说明你写的命题是真命题.10.阅读下列问题后做出相应的解答.“同位角相等,两直线平行”和“两直线平行,同位角相等”这两个命题的题设和结论在命题中的位置恰好对调,我们把其中一个命题叫做另一个命题的逆命题.请你写出命题“角平分线上的点到角两边的距离相等”的逆命题,并指出逆命题的题设和结论.参考答案1.A2.已知已知3.B4.A5.C6.C7.(1)3×0=(-2)×0(2)32=(-3)28.(1)如果两个角是两个相等的角的补角,那么这两个角相等.是真命题.(2)如果两个角不相等,那么这两个角不是对顶角.是真命题.(3)如果两个角相等,那么这两个角是内错角.是假命题.9.(1)AB∥CD ∠A=30°∠CDA=30°(2)∵AB∥CD,∠A=30°,∴∠CDA=∠A=30°.10.逆命题:在角的内部到角两边距离相等的点在这个角的平分线上.题设:在角的内部到角两边距离相等的点;结论:在这个角的平分线上.。
初中数学命题与证明专题训练50题-含答案

初中数学命题与证明专题训练50题含参考答案一、单选题1.如图,已知AC 与BD 相交于点O ,OE 是AOD ∠的平分线,可以作为假命题“相等的角是对顶角”的反例的是( )A .AOB DOC ∠=∠ B .EOC DOC ∠<∠ C .EOB EOC ∠=∠D .EOC DOC ∠>∠2.下列四个命题①过一点有且只有一条直线与已知直线垂直;①两条直线被第三条直线所截,内错角相等;①一个正实数的算术平方根一定是正实数;①2-是4的平方根,其中真命题的个数为( ) A .1个B .2个C .3个D .4个3.下列命题的逆命题不正确的是( ) A .全等三角形的对应边相等 B .直角三角形两锐角互余 C .如果,a b =那么22a b = D .两直线平行,同旁内角互补4.下列命题中假命题是( ) A .对顶角相等B .直线5y x =-不经过第二象限C .两直线平行,内错角相等D .两个锐角的和是钝角5.下列命题中,是真命题的是( ) A .对角线互相垂直的平行四边形是正方形 B .相似三角形的周长之比等于相似比的平方C .若(1,1y )、(2,2y )是双曲线1y x=-上的两点,则1y <2yD .方程2230x x -+=有两个不相等的实数根 6.下列命题是真命题的是( ) A .如果a +b =0,那么 a ,b 互为相反数 B .同位角相等C .过一点有且只有一条直线与已知直线平行D .两条直线被第三条直线所截,内错角相等7.有下列命题:①方程240x -=的解是2x =;①64的平方根是±8;①两边和它们的夹角对应相等的两个三角形全等;①若22a b =,则a b =;①1x >.其中假命题有( )A .4个B .3个C .2个D .1个8.说明命题“如果01n <<,那么210n ->”是假命题的一个反例可以是( ) A .12n =B .12n =-C .2n =D .2n =-9.下列语句中,不属于命题的个数是( )①延长线段AB ;②自然数都是整数;③两个锐角的和一定是直角;④同角的余角相等. A .1B .2C .3D .410.下列命题是假命题的是( )A .如果两角相等,那么它们一定是对顶角B .等角(同角)的余角相等C .等腰三角形两底角相等D .全等三角形面积相等11.对于四边形的以下说法:①对角线互相平分的四边形是平行四边形; ①对角线相等且互相平分的四边形是矩形; ①对角线垂直且互相平分的四边形是菱形;①顺次连结对角线相等的四边形各边的中点所得到的四边形是矩形. 其中你认为正确的个数有( ) A .1个B .2个C .3个D .4个12.下列命题:①如果一个数的相反数等于它本身,则这个数是0;①在三角形中,连接一个顶点和对边中点直线叫做三角形的中线;①任何三角形都有三条中线、三条内角平分线、三条高线,它们都相交于一点;①直角三角形的高只有一条.①三角形的三条高所在的直线相交于一点,这一点不在三角形的内部,就在三角形的外部;①一个数的算术平方根等于它本身,则这个数是1或0;其中真命题有( ). A .1个B .2个C .3个D .4个13.下列命题是假命题的是( ) A .若x <y ,则x +2008<y +2008B .单项式2347x y -的系数是﹣4C .若|x ﹣1|+(y ﹣3)2=0则x =1,y =3D .平移不改变图形的形状和大小 14.下列命题中,假命题...是( )A .2-的绝对值是2-B .对顶角相等C .平行四边形是中心对称图形D .如果直线,a c b c ∥∥,那么直线ab15.下列命题是假命题的是( ) A .对顶角相等 B .直角三角形两锐角互余 C .同位角相等D .全等三角形对应角相等16.下列语句中,不是命题的是( ) A .相等的角都是对顶角 B .数轴上原点右边的点 C .钝角大于90度 D .两点确定一条直线 17.下列命题正确的是( ) A .矩形的对角线互相垂直平分B .一组对角相等,一组对边平行的四边形一定是平行四边形C .正八边形每个内角都是145D .三角形三边垂直平分线交点到三角形三边距离相等 18.下列说法正确的是( ) A .一组数据6,5,8,8,9的众数是8B .甲、乙两组学生身高的方差分别为2 2.3S =甲,21.8S =乙.则甲组学生的身高较整齐 C .命题“若||1a =,则1a =”是真命题 D .三角形的外角大于任何一个内角19.可以用来证明命题“若20.01a >,则0.1a >”是假命题的反例( ) A .可以是a =-0.2,不可以是 a =2 B .可以是a =2,不可以是 a =-0.2 C .可以是a =-0.2,也可以是 a =2 D .既不可以是a =-0.2,也不可以是 a=2二、填空题20.命题“不是对顶角的两个角不相等”的逆命题是__________.21.已知:在△ABC 中,AB ≠AC ,求证:①B ≠①C .若用反证法来证明这个结论,可以假设__________.22.把命题“三边分别相等的两个三角形全等”写成“如果⋯⋯那么⋯⋯”的形式_____________.23.要判定一个命题是真命题,往往需要从命题的条件出发,根据已知的定义、基本事实、定理(包括推论),一步一步地推得结论成立,这样的推理过程叫做___________.要说明一个命题是假命题,通常可以通过___________的方法,命题的反例是具备命题的条件,但不具备命题的___________的实例.24.判断题:(1)所有的三角形都相似_____________(2)所有的梯形都相似_____________(3)所有的等腰三角形都相似_____________(4)所有的直角三角形都相似_____________(5)所有的矩形都相似_____________(6)所有的平行四边形都相似_____________(7)大小的中国地图相似_____________(8)所有的正多边形都相似_____________25.将命题“乘积为1的两个数互为倒数”改写成“如果……那么……”的形式:________________________________________________.26.命题“等腰三角形底边上的高线与中线互相重合”的逆命题是______27.把命题“等角的补角相等”改写成“如果…,那么…”的形式为________________________.题设是:________________________.结论是:________________________.28.命题“有两个角互余的三角形是直角三角形”的逆命题是_____命题.(填“真”或“假”)29.命题“如果两个实数相等,那么它们的平方相等”的逆命题是_____________________________.逆命题是______(填“真“或“假”)命题.30.命题“一组数据的中位数只有一个”是_______命题(填“真”或“假”)31.“两个无理数的积还是无理数”这句话是错误的,请举出一个反例进行说明______.32.“同位角相等,两直线平行”的逆命题是______;这是______命题(真或假).33.命题“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题是_______命题(填“真”或“假”).34.命题“对角线相等的平行四边形是矩形”的逆命题为________________________35.命题“互为相反数的两数的和是0”的逆命题是______________,它是__命题.(填“真、假”)36.下列命题的逆命题成立的序号是____ ① 同旁内角互补,两直线平行 ① 等边三角形是锐角三角形① 如果两个实数相等,那么它们的平方相等 ① 全等三角形的三条对应边相等 37.下列说法正确的是_____(填序号).①在同一平面内,a ,b ,c 为直线,若a ①b ,b ①c ,则a ①c ; ①“若ac >bc ,则a >b ”的逆命题是真命题;①若点M (a ,2)与N (1,b )关于x 轴对称,则a +b =﹣1;a ,小数部分是b ,则ab =﹣3.38.根据下图和命题“等腰三角形底边上的中线是顶角的角平分线”写出:已知:_______________________________ 求证:_______________ .三、解答题39.指出下列命题的条件和结论. (1)若a >0,b >0,则ab >0. (2)同角的补角相等.40.利用反证法证明:一个三角形中不能有两个角是钝角.41.如图,有如下四个论断:①AC DE ∥;①DC EF ∥;①CD 平分BCA ∠;①EF 平分BED ∠,请你选择四个论断中的三个作为条件,余下的一个论断作为结论,构成一个正确的数学命题并证明它.42.判断命题“对角线互相垂直且相等的四边形是正方形”是否成立.如果认为不成立,请增加一个条件使它成立.43.下列命题中,哪些是真命题?哪些是假命题?若是假命题,请举一反例. (1)互为邻补角的两角之和等于180°; (2)如果ab >0,那么a+b >0;(3)如果一个有理数既不是正数,也不是负数,那么它一定是0.44.先判断下列各命题的真假,然后写出它们的逆命题,并判断逆命题的真假: (1)对角线互相垂直的四边形是菱形; (2)相似四边形对应边成比例.45.指出下列命题的条件和结论,并判断命题的真假. (1)垂直于同一条直线的两条直线平行. (2)同位角相等. (3)若a 2=b 2,则a =b .(4)两条直线相交只有一个交点.46.如图所示,D 、E 分别为①ABC 的边AB 、AC 上点,①BE 与CD 相交于点O .现有四个条件:①AB=AC ;①OB=OC ;①①ABE=①ACD ;①BE=CD .(1)请你选出两个条件作为题设,余下作结论,写一个正确的命题:命题的条件是_______和_______,命题的结论是_______和________(均填序号) (2)证明你写的命题.47.在四边形ABCD 中,对角线AC 与BD 相交于点O . ①如果//AB CD ,BO DO =,那么四边形ABCD 是平行四边形; ①如果//AB CD ,ABC ADC ∠=∠,那么四边形ABCD 是平行四边形; ①如果AB CD =,BO DO =,那么四边形ABCD 是平行四边形;①如果ABC ADC=,那么四边形ABCD是平行四边形.∠=∠,BO DO(1)判断上述四个命题的真假;(2)证明上述四个命题的真假.(提示:证明一个命题是假命题,只要举个反例.)参考答案:1.C【分析】根据角平分线定义得到①AOE=①DOE,利用角的加减可得①EOB=①EOC,由于反例要满足角相等且不是对顶角,所以①EOB=①EOC可作为反例.【详解】①OE是①AOD的平分线,①①AOE=①DOE,①①AOE+①AOB=①DOE+①COD,即①EOB=①EOC可作为说明命题“相等的角是对顶角”为假命题的反例.故选:C.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.2.B【分析】直接利用垂线的性质、平行线的性质以及平方根的定义等知识分别判断得出答案.【详解】①在同一平面内,过一点有且只有一条直线与已知直线垂直,故①是假命题;①两条平行线被第三条直线所截,内错角相等,故①是假命题;①一个正实数的算术平方根一定是正实数,是真命题;①-2是4的平方根,是真命题;故选:B.【点睛】此题主要考查了命题与定理,正确掌握相关定义是解题关键.3.C【分析】把一个命题的条件和结论互换就得到它的逆命题,然后进行判断即可.【详解】解:A.全等三角形的对应边相等的逆命题是对应边相等的三角形全等,逆命题是真命题;B.直角三角形两锐角互余的逆命题是两锐角互余的三角形是直角三角形,逆命题是真命题;C.如果a=b,那么a2=b2的逆命题是如果a2=b2,那么a=b,逆命题是假命题;D .两直线平行,同旁内角互补的逆命题是同旁内角互补,两直线平行,逆命题是真命题. 故选:C .【点睛】考查了命题与定理的知识,解题的关键是知道如何写出一个命题的逆命题,难度不大. 4.D【分析】根据对顶角的性质,一次函数的图象与平行线的性质,锐角,钝角的定义,逐一判断选项,即可得到答案. 【详解】①对顶角相等,正确, ①原命题是真命题,①直线5y x =-不经过第二象限,正确 ①原命题是真命题, ①两直线平行,内错角相等, ①原命题是真命题,①两个锐角的和不一定是钝角, ①原命题是假命题. 故选D .【点睛】本题主要考查判断命题的真假,掌握基本的数学定义,定理和推论,是解题的关键. 5.C【分析】根据特殊平行四边形的判定可判断A ,根据相似三角形的性质判断B ,根据反比例函数的增减性可判断C ,计算一元二次方程的判别式可判断D. 【详解】A. 对角线互相垂直的平行四边形是菱形,故A 是假命题; B. 相似三角形的周长之比等于相似比,故B 是假命题;C. 反比例函数1y x=-,k=-1<0,所以在二、四象限内y 随x 的增大而增大,而0<1<2,所以1y <2y ,故C 为真命题;D. 方程2230x x -+=,=412=80∆--<,所以方程无实数根,故D 为假命题. 故选C.【点睛】本题考查真假命题的判断,熟练掌握各种基本概念和知识点是判断命题真假的关键.6.A【分析】根据相反数的定义、同位角的性质、平行的判定及性质等知识逐项判定即可. 【详解】解:A 、如果a +b =0,那么a ,b 互为相反数,为真命题; B 、两直线平行,同位角相等,故原命题为假命题;C 、过直线外一点有且只有一条直线与已知直线平行,故原命题为假命题;D 、两条平行直线被第三条直线所截,内错角相等,故原命题为假命题. 故选:A .【点睛】本题考查了命题与定理的知识,解题的关键是了解相反数的定义、同位角的性质、平行的判定及性质等知识,难度不大,属于基础题. 7.B【分析】根据解一元二次方程、平方根的性质、全等三角形的判定以及二次根式有意义的条件分别进行判断即可. 【详解】易知①①是真命题,方程²40x -=的解是2x =±,故①是假命题; 取1a =,1b,则22a b =,但ab ,故①是假命题;1x ,故①是假命题. 故选B.【点睛】本题考查命题真假的判断,真命题要经过推理验证其正确性,假命题只需举出一个反例即可. 8.A【分析】根据举反例的定义:符合某个命题的条件,但不符合该命题结论的例子,即可进行解答.【详解】解:A 、当12n =时,221311024n ⎛⎫-=-=-< ⎪⎝⎭,与原命题矛盾,故原命题为假命题,符合题意;B 、12n =-不符合条件01n <<,故B 不符合题意;C 、当2n =不符合条件01n <<,故C 不符合题意;D 、2n =-不符合条件01n <<,故D 不符合题意. 故选:A .【点睛】本题主要考查了用举反例的定义,解题的关键是熟练掌握举反例的定义:符合某个命题的条件,但不符合该命题结论的例子.9.A【详解】命题是判断一件事情的语句,①自然数都是整数;①两个锐角的和一定是直角;①同角的余角相等,都对情况作出了判断,都是命题,①延长线段AB,对情况没有作出了判断,不是命题,故选A.10.A【分析】根据对顶角的、余角与补角、全等三角形、等腰三角形的性质逐个判断即可.【详解】解:A、对顶角相等,但相等的角不一定是对顶角,故如果两角相等,那么它们一定是对顶角错误,符合题意;B、等角(同角)的余角相等,是真命题,不符合题意;C、等腰三角形两底角相等, 是真命题,不符合题意;D、全等三角形面积相等,是真命题,不符合题意;故选:A.【点睛】本题考查了判断真假命题,对顶角的、余角与补角、全等三角形、等腰三角形的性质,能够根据已有知识点判断出命题的真假是解决本题的关键.11.C【详解】题中①①①根据平行四边形、矩形、菱形的判定,是正确的,①只能判定是平行四边形而不具备矩形的条件.故选C.12.B【分析】根据相反数的定义,算术平方根的定义,以及三角形的高线,中线和角平分线的定义及性质对各小题分析判断即可得解.【详解】解:①如果一个数的相反数等于它本身,则这个数是0,正确;①在三角形中,连接一个顶点和对边中点线段叫做三角形的中线,错误;①任何三角形都有三条中线、三条内角平分线、三条高线所在的直线,它们都相交于一点,错误;①直角三角形的高有三条,故①错误;①三角形的三条高所在的直线相交于一点,可以在三角形的内部,或在三角形的外部,还可以在三角形上,故①错误;①一个数的算术平方根等于它本身,则这个数是1或0,正确;综上所述,正确的命题有①①,共2个,故选B .【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.13.B【分析】非负数的性质:几个非负数的和是0,则这几个非负数都是0;平移的性质:平移前后的两个图形全等.然后结合等式性质与单项式系数的定义进行判断.【详解】解:A 、根据不等式的性质,故正确;B 、单项式2347x y -的系数是47-,故错误; C 、若|x ﹣1|+(y ﹣3)2=0,则x =1,y =3,故正确;D 、平移不改变图形的形状和大小,故正确.故选B .【点睛】此题涉及面较广,涉及到等式的性质、非负数的性质、平移的性质及单项式的系数,是一道好题.14.A【分析】根据绝对值的意义,对顶角的性质,平行四边形的性质,平行线的判定逐一判断即可.【详解】解:A . 2-的绝对值是2,故原命题是假命题,符合题意;B .对顶角相等,故原命题是真命题,不符合题意;C .平行四边形是中心对称图形,故原命题是真命题,不符合题意;D . 如果直线,a c b c ∥∥,那么直线a b ,故原命题是真命题,不符合题意;故选:A .【点睛】本题考查了命题真假的判断,属于基础题.根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项.15.C【分析】根据对顶角的性质、直角三角形的性质、平行线的性质、全等三角形的性质逐项判断即可得.【详解】解:A 、对顶角相等,则此项命题是真命题;B 、直角三角形两锐角互余,则此项命题是真命题;C 、两直线平行,同位角相等,则此项命题是假命题;D 、全等三角形对应角相等,则此项命题是真命题;故选:C .【点睛】本题考查了对顶角、直角三角形的性质、平行线的性质、全等三角形的性质、命题,熟练掌握各性质是解题关键.16.B【详解】试题分析:命题是判断一件事情的语句,所以A 、C 、D 都是命题,B 不是命题,故选B .考点:命题的概念.17.B【分析】根据矩形的性质、平行四边形的判定、多边形的内角和及三角形垂直平分线的性质,逐项判断即可.【详解】A.矩形的对角线相等且互相平分,故原命题错误;B.已知如图:A C ∠=∠,//AB CD ,求证:四边形ABCD 是平行四边形.证明:①//AB CD ,①180A D ∠+∠=︒,①A C ∠=∠,①180C D ∠+∠=︒,①//AD BC ,又①//AB CD ,①四边形ABCD 是平行四边形,①一组对角相等,一组对边平行的四边形一定是平行四边形,故原命题正确;C.正八边形每个内角都是:()180821358︒⨯-=︒,故原命题错误; D.三角形三边垂直平分线交点到三角形三个顶点的距离相等,故原命题错误.故选:B .【点睛】本题考查命题的判断,明确矩形性质、平行四边形的判定定理、多边形内角和公式及三角形垂直平分线的性质是解题关键.18.A【分析】分别根据众数、方差、真命题、三角形外角定理等知识逐项判断即可求解.【详解】解:A.“一组数据6,5,8,8,9的众数是8”,判断正确,符合题意;B. “甲、乙两组学生身高的方差分别为2 2.3S =甲,2 1.8S =乙,则甲组学生的身高较整齐”,因为22S S 甲乙> ,所以乙组学生的身高较整齐,原判断错误,不合题意;C. 命题“若||1a =,则1a =±”,所以原判断错误,不合题意;D.“三角形的外角大于任何一个不相邻的内角”,所以原判断错误,不合题意.故选:A .【点睛】本题考查了众数,方差,真假命题,三角形的外角等知识,熟知相关定理是解题关键.19.A【详解】当a= - 0.2时,a²=0.04>0.01;a <0.1.当a=2时,a²=4>0.01;a >0.1.于是可以证明命题“若a²>0.01,则a >0.1”是假命题的反例的可以是a= - 0.2,不可以是a=2.故选A.20.不相等的两个角不是对顶角【分析】根据逆命题的概念即可得出答案.【详解】命题“不是对顶角的两个叫不相等”的逆命题是:不相等的两个角不是对顶角, 故答案为:不相等的两个角不是对顶角.【点睛】本题主要考查逆命题,掌握逆命题的写法是解题的关键.21.①B =①C【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.【详解】解:①B ≠①C 的反面是①B =①C .故可以假设①B =①C .故答案为:①B =①C .【点睛】本题主要考查了反证法的基本步骤,正确确定①B ≠①C 的反面,是解决本题的关键.22.如果两个三角形三条边对应相等,那么这两个三角形全等【分析】命题一般都可以写成如果…那么…形式;如果后面是题设,那么后面是结论.【详解】把命题“三边分别相等的两个三角形全等”写成“如果⋯⋯那么⋯⋯”的形式为:如果两个三角形三条边对应相等,那么这两个三角形全等.故答案为:如果两个三角形三条边对应相等,那么这两个三角形全等23.证明举反例结论【分析】根据根据证明的概念和举反例的概念直接填空即可..【详解】解:要判定一个命题是真命题,往往需要从命题的条件出发,根据已知的定义、基本事实、定理(包括推论),一步一步地推得结论成立,这样的推理过程叫做证明.要说明一个命题是假命题,通常可以通过举反例的方法,命题的反例是具备命题的条件,但不具备命题的结论的实例.故答案为:证明;举反例;结论.【点睛】本题主要考查了证明和举反例的概念,熟知相关知识是解题的关键.24.错误错误错误错误错误错误正确错误【分析】相似图形是指形状相同的图形.对多边形进行判断时,主要是看对应角是否相等,对应边的比是否相等.【详解】(1)所有的三角形,不能判断它们的对应角相等,对应边的比相等,不是相似形.所以(1)错误.(2)所有的梯形,不能判断对应的角相等,对应边的比相等,不是相似形.所以(2)错误.(3)所有的等腰三角形,不能判断对应的角相等,对应边的比相等.所以(3)错误.(4)所有的直角三角形,不能判断对应的角相等,对应边的比相等.所以(4)错误.(5)所有的矩形,不能判断对应的角相等,对应边的比相等.所以(5)错误.(6)所有的平行四边形,不能判断对应的角相等,对应边的比相等.所以(6)错误.(7)大小的中国地图,只是大小不等,性质相同,是相似形.所以(7)正确.(8)所有的边数相等的正多边形才相似.所以(8)错误.故答案是:(1)错误,(2)错误,(3)错误,(4)错误,(5)错误,(6)错误,(7)正确,(8)错误.【点评】本题考查的是相似图形,根据相似图形的定义对多边形是否相似进行判断.25.如果两个数的乘积为1,那么这两个数互为倒数【详解】试题解析:乘积为1的两个数互为倒数”改写成“如果……那么……”的形式为:如果两个数的乘积为1,那么这两个数互为倒数.故答案为如果两个数的乘积为1,那么这两个数互为倒数.26.如果一个三角形一边上的高线与中线互相重合,那么这个三角形是等腰三角形【分析】根据逆命题的定义:对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,找出已知命题的题设和结论,即可写出其逆命题.【详解】解:“等腰三角形底边上的高线与中线互相重合”的题设为:如图一个三角形是等腰三角形,结论为:那么它底边上的高线和中线互相重合①该命题的逆命题为:如果一个三角形一边上的高线与中线互相重合,那么这个三角形是等腰三角形故答案为:如果一个三角形一边上的高线与中线互相重合,那么这个三角形是等腰三角形.【点睛】此题考查的是写一个命题的逆命题,掌握逆命题的定义是解决此题的关键.27.如果两个角相等,那么这两个角的补角相等两个角相等这两个角的补角相等【分析】根据任何一个命题都可以写成“如果…,那么…”的形式如果后面是题设,那么后面是结论,进而得出答案即可.【详解】命题“等角的补角相等”的题设是“两个角相等”,结论是“这两个角的补角相等”.故命题“等角的补角相等”写成“如果…,那么…”的形式是:如果两个角相等,那么这两个角的补角相等.故答案为如果两个角相等,那么这两个角的补角相等;两个角相等;这两个角的补角相等.【点睛】本题考查了命题的改写问题.找准原命题的题设与结论是正确解答本题的关键.命题的一般叙述形式为“如果…..,那么……”,其中,“如果”所引出的部分是题设(条件),“那么”所引出的部分是结论.28.真;【分析】命题“有两个角互余的三角形是直角三角形”的题设为三角形中有两个锐角互余,结论为这个三角形为直角三角形,然后交换题设与结论即可得到原命题的逆命题,然后再判断出命题的真假.【详解】“有两个角互余的三角形是直角三角形”的逆命题“直角三角形的两个锐角互余”,是真命题.故答案为真.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.29.如果两个实数的平方相等,那么这两个实数相等假【分析】逆命题即将原命题的结论变为已知,原命题的已知变为结论,若22a b=,则a和b可能相等,也可能互为相反数;【详解】逆命题为:如果两个实数它们的平方相等,那么这两个实数相等,若22=,则a ba和b可能相等,也可能互为相反数,所以是假命题;故答案是:如果两个实数它们的平方相等,那么这两个实数相等;假.【点睛】本题主要考查了命题与定理,准确分析判断是解题的关键.30.真【分析】根据中位数的计算方法判断即可.【详解】解:①中位数是将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;①中位数的位置是确定的,①一组数据的中位数只有一个,故答案为:真;【点睛】本题考查了真命题(正确的命题),中位数的定义;掌握中位数的计算方法是解题关键.3122==(答案不唯一)【分析】根据无理数的乘法运算法则,即可求解.【详解】解:“两个无理数的积还是无理数”这句话是错误的,举反例如下:2=.22(答案不唯一)【点睛】此题比较灵活地考查了无理数的有关运算,需考虑到无理数相乘的特殊情况.32.两直线平行,同位角相等真【分析】交换原命题的题设与结论即可得到其逆命题,然后根据平行线的性质判断逆命题的真假.。
最新初中数学命题与证明的技巧及练习题附答案

最新初中数学命题与证明的技巧及练习题附答案一、选择题1.以下命题是真命题的是()A.若 x> y,则 x2> y2 B.若 |a|=|b|,则a=b C.若a>|b|,则a2>b2D.若a<1,则a>1a【答案】 C【分析】【剖析】依据实数的乘方,绝对值的性质和倒数的意义等,对各选项举反例剖析判断后利用清除法求解.【详解】 A. x> y,如 x=0, y=-1,02 <(-1)2,此时 x2<y2,故 A 选项错误;B. |a|=|b|,如a=2,b=-2,此时a≠b,故B选项错误;C. 若 a> |b| ,则 a2> b2,正确;D. a< 1,如 a=-1,此时 a= 1,故 D 选项错误,a应选 C.【点睛】本题考察了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,本题主要利用了实数的性质.2.以下命题中正确的选项是().A.全部等腰三角形都相像B.两边成比率的两个等腰三角形相像C.有一个角相等的两个等腰三角形相像【答案】 DD.有一个角是100 °的两个等腰三角形相像【分析】【剖析】依据相像三角形进行判断即可.【详解】解: A、全部等腰三角形不必定都相像,原命题是假命题;B、两边成比率的两个等腰三角形不必定相像,原命题是假命题;C、有一个角相等的两个等腰三角形不必定相像,原命题是假命题;D、有一个角是100 °的两个等腰三角形相像,是真命题;应选: D.【点睛】本题考察了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.3.以下各命题的抗命题是真命题的是A.对顶角相等B.全等三角形的对应角相等C.相等的角是同位角D.等边三角形的三个内角都相等【答案】 D【分析】【剖析】分别写出四个命题的抗命题:相等的角为对顶角;对应角相等的两三角形全等;同位角相等;三个角都相等的三角形为等边三角形;而后再分别依据对顶角的定义对第一个进行判断;依据三角形全等的判断方法对第二个进行判断;依据同位角的性质对第三个进行判断;依据等边三角形的判断方法对第四个进行判断.【详解】A、“对顶角相等”的抗命题为“相等的角为对顶角”,此抗命题为假命题,因此 A 选项错误;B、“全等三角形的对应角相等”的抗命题为“对应角相等的两三角形全等”,此抗命题为假命题,因此 B 选项错误;C、“相等的角是同位角”的抗命题为“同位角相等”,此抗命题为假命题,因此C 选项错误;D、“等边三角形的三个内角都相等”的抗命题为“三个角都相等的三角形为等边三角形”,此抗命题为真命题,因此 D 选项正确.应选 D.【点睛】本题考察了命题与定理:判断事物的语句叫命题;题设与结论交换的两个命题互为抗命题;正确的命题叫真命题,错误的命题叫假命题;经过推论论证获得的真命题称为定理.4.以下命题中是假命题的是().A.同旁内角互补,两直线平行r rB.直线a b,则 a 与b订交所成的角为直角C.假如两个角互补,那么这两个角是一个锐角,一个钝角D.若a∥b,a c ,那么 b c【答案】 C【分析】依据平行线的判断,可知“同旁内角互补,两直线平行”,是真命题;依据垂直的定义,可知“直线 a b ,则a与 b 订交所成的角为直角”,是真命题;依据互补的性质,可知“两个角互补,这两个角能够是两个直角”,是假命题;依据垂直的性质和平行线的性质,可知“若 a Pb ,a c ,那么 b c ”,是真命题.应选 C.5.以下命题:① 两条直线被第三条直线所截,同位角相等;② 两点之间,线段最短;③ 相等的角是对顶角;④ 直角三角形的两个锐角互余;⑤ 同角或等角的补角相等. 此中真命题的个数是( ) A .2 个 B .3 个C .4 个D .5 个【答案】 B【分析】【剖析】【详解】解:命题 ① 两条平行线被第三条直线所截,同位角相等,错误,为假命题;命题 ② 两点之间,线段最短,正确,为真命题;命题 ③ 相等的角是对顶角,错误,为假命题;命题 ④ 直角三角形的两个锐角互余,正确,为真命题;命题 ⑤ 同角或等角的补角相等,正确,为真命题, 故答案选 B .考点:命题与定理.6.用反证法证明 “三角形的三个外角中至多有一个锐角”,应先假定 ( )A .三角形的三个外角都是锐角B .三角形的三个外角中起码有两个锐角C .三角形的三个外角中没有锐角D .三角形的三个外角中起码有一个锐角 【答案】 B【分析】【剖析】反证法的步骤中,第一步是假定结论不建立,反面建立.【详解】解:用反证法证明 “三角形的三个外角中至多有一个锐角”,应先假定三角形的三个外角中起码有两个锐角, 应选 B . 【点睛】考察了反证法,解本题重点要懂得反证法的意义及步骤 .在假定结论不建即刻要注意考虑结论的反面全部可能的状况,假如只有一种,那么否认一种就能够了,假如有多种状况,则一定一一否认.7.以下命题中,是真命题的是( )A .将函数 y =1 1 x+1 向右平移2 个单位后所得函数的分析式为 y = x22B .若一个数的平方根等于其自己,则这个数是0 和 1C .对函数 y =2,其函数值 y 随自变量 x 的增大而增大xD.直线 y=3x+1 与直线 y=﹣ 3x+2 必定相互平行【答案】 A【分析】【剖析】利用一次函数的性质、平方根的定义、反比率函数的性质等知识分别判断后即可确立正确的选项.【详解】解: A、将函数y=1x+1 向右平移 2 个单位后所得函数的分析式为y=1x,正确,切合题22意;B、若一个数的平方根等于其自己,则这个数是0,故错误,是假命题,不切合题意;C、对函数y=2 ,其函数值在每个象限内y 随自变量x 的增大而增大,故错误,是假命x题,不切合题意;D、直线 y=3x+1 与直线 y=﹣ 3x+2 因比率系数不相等,故必定不相互平行,故错误,是假命题,应选: A.【点睛】本题考察了判断命题真假的问题,掌握一次函数的性质、平方根的定义、反比率函数的性质等知识是解题的重点.8.以下命题是真命题的是()A.方程3x22x40 的二次项系数为3,一次项系数为-2B.四个角都是直角的两个四边形必定相像C.某种彩票中奖的概率是1%,买100 张该种彩票必定会中奖D.对角线相等的四边形是矩形【答案】 A【分析】【剖析】依据所学的公义以及定理,一元二次方程的定义,概率等知识,对各小题进行剖析判断,而后再计算真命题的个数.【详解】A、正确.B、错误,对应边不必定成比率.C、错误,不必定中奖.D、错误,对角线相等的四边形不必定是矩形.应选: A.【点睛】本题考察命题与定理,娴熟掌握基础知识是解题重点.9.以下命题是真命题的是()A.中位数就是一组数据中最中间的一个数B.一组数据的众数能够不独一C.一组数据的标准差就是这组数据的方差的平方根D.已知 a、b、 c 是 Rt△ABC的三条边,则a2 +b 2= c2【答案】 B【分析】【剖析】正确的命题是真命题,依据定义判断即可.【详解】解: A、中位数就是一组数据中最中间的一个数或着是中间两个数的均匀数,故错误;B、一组数据的众数能够不独一,故正确;C、一组数据的标准差是这组数据的方差的算术平方根,故此选项错误;D、已知 a、b、 c 是 Rt△ABC的三条边,当∠C= 90°时,则 a2+b2= c2,故此选项错误;应选: B.【点睛】本题考察真命题的定义,掌握定义,正确理解各事件的正确与否是解题的重点.10.以下各命题的抗命题建立的是()A.全等三角形的对应角相等B.假如两个数相等,那么它们的绝对值相等C.两直线平行,同位角相等D.假如两个角都是45°,那么这两个角相等【答案】 C【分析】试题剖析:第一写出各个命题的抗命题,再进一步判断真假.解: A、抗命题是三个角对应相等的两个三角形全等,错误;B、绝对值相等的两个数相等,错误;C、同位角相等,两条直线平行,正确;D、相等的两个角都是45°,错误.应选 C.11.以下命题错误的选项是()A.平行四边形的对角线相互均分B.两直线平行,内错角相等C.等腰三角形的两个底角相等D.若两实数的平方相等,则这两个实数相等【答案】 D【分析】【剖析】依据平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,分别进行判断,即可获得答案 .【详解】解: A、平行四边形的对角线相互均分,正确;B、两直线平行,内错角相等,正确;C、等腰三角形的两个底角相等,正确;D、若两实数的平方相等,则这两个实数相等或互为相反数,故 D 错误;应选: D.【点睛】本题考察了判断命题的真假,以及平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,解题的重点是娴熟掌握所学的性质进行解题.12.用三个不等式a> b,ab> 0,1>1中的两个不等式作为题设,余下的一个不等式作a b为结论构成一个命题,构成真命题的个数为()A.0B. 1C. 2D. 3【答案】 A【分析】【剖析】由题意得出 3 个命题,由不等式的性质再判断真假即可.【详解】解:①若 a> b, ab>0,则1>1;假命题:a b原因:∵ a> b,ab >0,∴a> b> 0,∴1<1;a b②若 ab> 0,1>1,则 a> b,假命题;a b原因:∵ ab> 0,∴a、 b 同号,∵1>1,a b∴a< b;③若 a> b,1>1,则 ab> 0,假命题;a b原因:∵ a> b,1>a∴a、 b 异号,∴a b <0.∴构成真命题的个数为应选: A.【点睛】1,b0个;本题考察了命题与定理、不等式的性质、命题的构成、真命题和假命题的定义;娴熟掌握命题的构成和不等式的性质是解题的重点.13.以下命题中正确的有()个① 均分弦的直径垂直于弦;② 经过半径的外端且与这条半径垂直的直线是圆的切线;③在同圆或等圆中,圆周角等于圆心角的一半;④ 平面内三点确立一个圆;⑤ 三角形的外心到三角形的各个极点的距离相等.A.1B.2C.3D.4【答案】 B【分析】【剖析】依据垂径定理的推论对① 进行判断;依据切线的判断定理对② 进行判断;依据圆周角定理对③ 进行判断;依据确立圆的条件对④ 进行判断;依据三角形外心的性质对⑤ 进行判断.【详解】① 均分弦(非直径)的直径垂直于弦,错误;② 经过半径的外端且与这条半径垂直的直线是圆的切线,正确;③ 在同圆或等圆中,同弧所对的圆周角等于圆心角的一半,错误;④ 平面内不共线的三点确立一个圆,错误;⑤ 三角形的外心到三角形的各个极点的距离相等,正确;故正确的命题有 2 个故答案为: B.【点睛】本题考察了判断命题真假的问题,掌握垂径定理的推论、切线的判断定理、圆周角定理、确立圆的条件、三角形外心的性质是解题的重点.14.以下命题的抗命题是真命题的是().若 a b ,则 a bAB2BC 22,则ABC 是 Rt. ABC 中,若AC AB C.若a0 ,则 ab0D.四边相等的四边形是菱形【答案】 D【分析】【剖析】先依据抗命题的定义分别写出各命题的抗命题,而后依据绝对值的意义和有理数的乘法、菱形的性质及勾股定理进行判断.【详解】解: A、该命题的抗命题为:若|a|=|b|,则a=b,此命题为假命题;B、该命题的抗命题为:若△ABC是Rt△,则AC2+BC2=AB2,此命题为假命题;C、该命题的抗命题为:若ab=0,则a=0,此命题为假命题;D、该命题的抗命题为:菱形的四边相等,此命题为真命题;应选: D.【点睛】本题考察了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考察了抗命题.15. 39.以下命题中,是假命题的是()A.同旁内角互补B.对顶角相等C.直角的补角仍旧是直角D.两点之间,线段最短【答案】 A【分析】同旁内角不必定互补,同旁内角互补的条件是两直线平行,应选 A.16.以下命题是假命题的是()A.有一个角是60°的等腰三角形是等边三角形B.等边三角形有 3 条对称轴C.有两边和一角对应相等的两个三角形全等D.线段垂直均分线上的点到线段两头的距离相等【答案】 C【分析】【剖析】依据等边三角形的判断方法、等边三角形的性质、全等三角形的判断、线段垂直均分线的性质一一判断即可.【详解】A.正确;有一个角是60°的等腰三角形是等边三角形;B.正确.等边三角形有 3 条对称轴;C.错误, SSA没法判断两个三角形全等;D.正确.线段垂直均分线上的点到线段两头的距离相等.应选: C.【点睛】本题考察了命题与定理,等边三角形的判断方法、等边三角形的性质、全等三角形的判定、线段垂直均分线的性质等知识,解题的重点是娴熟掌握基本观点,属于中考常考题型.17.以下命题的抗命题是真命题的是()A.直角都相等B.钝角都小于180 ° C.假如 x2+y2=0,那么 x=y=0D.对顶角相等【答案】 C【分析】【剖析】依据抗命题能否为真命题逐个进行判断即可.【详解】相等的角不都是直角,故 A 选项不切合题意,小于 180°的角不都是钝角,故 B 选项不切合题意,假如x=y=0,那么x2 2+y =0,正确,是真命题,切合题意,相等的角不必定都是对顶角,故 D 选项不切合题意,应选 C【点睛】本题考察了互抗命题的知识,两个命题中,假如第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互抗命题,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假重点是要熟习课本中的性质定理.18.以下五个命题:① 假如两个数的绝对值相等,那么这两个数的平方相等;② 内错角相等;③ 在同一平面内,垂直于同一条直线的两条直线相互平行;④ 两个无理数的和必定是无理数;⑤ 坐标平面内的点与有序数对是一一对应的.此中真命题的个数是()A.2 个B.3 个C.4 个D.5 个【答案】B【分析】【剖析】依据平面直角坐标系的观点,在两直线平行的条件下,内错角相等,两个无理数的和能够是无理数也能够是有理数,进行判断即可 .【详解】① 正确;② 在两直线平行的条件下,内错角相等,② 错误;③ 正确;④反例:两个无理数π和-π,和是0,④ 错误;⑤ 坐标平面内的点与有序数对是一一对应的,正确;应选: B.【点睛】本题考察实数,平面内直线的地点;切记观点和性质,能够灵巧理解观点性质是解题的重点.19.以下命题的抗命题建立的有( )①勾股数是三个正整数② 全等三角形的三条对应边分别相等③假如两个实数相等,那么它们的平方相等④ 平行四边形的两组对角分别相等A.1 个B.2 个C.3 个D.4 个【答案】 B【分析】【剖析】先写出每个命题的抗命题,再分别依据勾股数的定义、三角形全等的判断、平方根的定义、平行四边形的判断逐个判断即可.【详解】① 抗命题:假如三个数是正整数,那么它们是勾股数反例:正整数 1,2,3 ,但12+ 22?32,即它们不是勾股数,则此抗命题不建立② 抗命题:三条对应边分别相等的两个三角形全等由 SSS定理可知,此抗命题建立③ 抗命题:假如两个实数的平方相等,那么这两个实数相等反例: 22( 2) 2 4 ,但2 2 ,则此抗命题不建立④ 抗命题:两组对角分别相等的四边形是平行四边形由平行四边形的判断可知,此抗命题建立综上,抗命题建立的有 2 个应选: B.【点睛】本题考察了命题的有关观点、勾股数的定义、三角形全等的判断、平方根的定义、平行四边形的判断,正确写出各命题的抗命题是解题重点.20.已知命题:等边三角形是等腰三角形.则以下说法正确的选项是()A.该命题为假命题B.该命题为真命题C.该命题的抗命题为真命题D.该命题没有抗命题【答案】 B【分析】剖析:第一判断该命题的正误,而后判断其抗命题的正误后即可确立正确的选项.详解:等边三角形是等腰三角形,正确,为真命题;最新初中数学命题与证明的技巧及练习题附答案其抗命题为等腰三角形是等边三角形,错误,为假命题,应选: B.点睛:本题考察了命题与定理的知识,解题的重点是能够写出该命题的抗命题,难度不大.。
初中数学命题与证明专题训练50题含参考答案

初中数学命题与证明专题训练50题含参考答案一、单选题1.下列命题是假命题...的是( ). A .同一平面内,两直线不相交就平行B .对顶角相等C .互为邻补角的两角和为180°D .相等的两个角一定是对顶角2.下列命题正确的是( )A .所有的实数都可用数轴上的点表示B .直线外一点到这条直线的垂线段叫做点到直线的距离C D .如果一个数有立方根,那么这个数也一定有平方根3.定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD 是ABC 的外角,求证:ACD A B ∠=∠+∠.证法1:如图.∠180A B ACB ∠+∠+∠=︒(三角形内角和定理)又∠180ACD ACB ∠+∠=︒(平角定义)∠ACD ACB A B ACB ∠+∠=∠+∠+∠(等量代换)∠ACD A B ∠=∠+∠(等式性质)证法2:如图,∠76A ∠=︒,59B ∠=︒,且135ACD ∠=︒(量角器测量所得)又∠1357659︒=︒+︒(计算所得)∠ACD A B ∠=∠+∠(等量代换)下列说法正确的是( )A .证法1还需证明其他形状的三角形,该定理的证明才完整B .证法1用严谨的推理证明了该定理C 2D .证法2只要测量够一百个三角形进行验证,就能证明该定理4.下列命题中,假命题是( )A .如果两条直线都与第三条直线平行,那么这两条直线也互相平行B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .两条直线被第三条直线所截,同旁内角互补D .两点的所有连线中,线段最短5.下列命题为真命题的是( )A .内错角相等,两直线平行B C .1的平方根是1D .一般而言,一组数据的方差越大,这组数据就越稳定6.下列命题是真命题的是( )A .若a b >,则11a b ->-B .若22ac bc >,则a b >C .若225x kx ++是一个完全平方公式,则k 的值等于10D .将点()2,3A -向上平移3个单位长度后得到的点的坐标为()1,37.能说明命题“若x 2≥9,则x ≥3”为假命题的一个反例可以是( )A .x =4B .x =2C .x =﹣4D .x =﹣2 8.下列命题是真命题的是( )A .内错角互补,两直线平行B .三角形的外角大于任意一个不相邻的内角C .三角形的两边之和小于第三边D .三角形的三条高一定在三角形内部 9.下面四个命题:∠若=1x -,则31x =-;∠面积相等的两个三角形全等;∠相等的角是对顶角;∠若24x =,则2x =.是真命题的有( )A .4个B .3个C .2个D .1个 10.下列语句:∠过一点有且只有一条直线与已知直线平行;∠数轴上的点和实数是一一对应的;∠同位角相等;∠同一平面内,过一点有且只有一条直线与已知直线垂直;其中( )是真命题.A ∠∠B ∠∠C ∠∠D ∠∠11.下列命题正确的是( )A .平行四边形的对角线互相垂直平分B .矩形的对角线互相垂直平分C .菱形的对角线互相平分且相等D .平行四边形是中心对称图形12.下列命题,假命题是( )A .如果两个三角形全等,那么这两个三角形的面积相等B .等腰三角形两腰上的高相等C .三角形的一个外角大于与它不相邻的任何一个内角D .已知ABC ,求作A B C ''',使A B C ABC ''≌的依据是三角形全等的性质定理 13.下面命题中是真命题的有( )∠相等的角是对顶角∠直角三角形两锐角互余∠三角形内角和等于180°∠两直线平行内错角相等A .1个B .2个C .3个D .4个14.下列命题是真命题的是( )A .两直线平行,同位角相等B .相似三角形的面积比等于相似比C .菱形的对角线相等D .相等的两个角是对顶角15.下列命题正确的是( )A .相等的角是对顶角;B .a 、b 、c 是直线,若a //b ,b //c ,则a //c ;C .同位角相等;D .a 、b 、c 是直线,若a ∠b ,b ∠c ,则a ∠c .16.下列命题是假命题的是( )A .有一个外角是120°的等腰三角形是等边三角形B .等边三角形有3条对称轴C .有两边和一角对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等17.已知下列命题:∠对角线互相垂直的四边形是菱形;∠若x a =,则()20x a b x ab -++=;∠两个位似图形一定是相似图形;∠若22x x =,则2x =;其中原命题是真命题逆命题是假命题的有( )A .1个B .2个C .3个D .4个18.下列说法:∠同位角相等;∠对顶角相等;∠等角的补角相等;∠两直线平行,同旁内角相等,正确的个数有( )A .1 个B .2 个C .3 个D .4 个19.可以用来证明命题“若20.01a >,则0.1a >”是假命题的反例( )A .可以是a =-0.2,不可以是 a =2B .可以是a =2,不可以是 a =-0.2C .可以是a =-0.2,也可以是 a =2D .既不可以是a =-0.2,也不可以是 a=220.下列命题中,属于真命题的是( )A .三点确定一个圆B .圆内接四边形对角互余C .若22a b =,则a b =D a b =二、填空题21.命题“对顶角相等”的题设是________,结论是________,它是________命题.(填“真”或“假”)22.命题“互余的角不相等”的逆命题是_____.23.命题“若a b =,那么a b =”是一个____________命题(填真、假),写出它的逆命题:____________.24.举反例说明命题“对于任意实数x ,221x x +-的值总是正数”是假命题,你举的反例是x =__________(写出一个x 的值即可).25.把下列命题改写成“如果……,那么……”的形式:(1)内错角相等,两直线平行._________.(2)同角的补角相等._____.26.下列说法中,真命题有______.(填入序号即可)∠和为180°且有一条公共边的两个角是邻补角; ∠过一点有且只有一条直线与已知直线垂直;∠同位角相等;∠经过直线外一点,有且只有一条直线与这条直线平行; ∠两点之间,直线最短。
13.2命题与证明专题训练及答案

13.2 命题与证明专题一 三角形中的计算与证明题1.已知△ABC 的高为AD ,∠BAD =70º,∠CAD =20º,求∠BAC 的度数。
2.如图,已知AB ∥DE ,试求证:∠A +∠ACD +∠D =3600(你有几种证法?)3.在研究三角形内角和等于180°的证明方法时,小明和小虎分别给出了下列证法. 小明:在△ABC 中,延长BC 到D ,∴∠ACD =∠A +∠B (三角形一个外角等于和它不相邻的两个内角的和).又∵∠ACD +∠ACB =180°(平角定义),∴∠A +∠B +∠ACB =180°(等式的性质).小虎:在△ABC 中,作CD ⊥AB (如图9),∵CD ⊥AB (已知),∴∠ADC =∠BDC =90°(直角定义). ∴∠A +∠ACD =90°,∠B +∠BCD =90°(直角三角形两锐角互余).∴∠A +∠ACD +∠B +∠BCD =180°(等式的性质).∴∠A +∠B +∠ACB =180°.请你判断上述两名同学的证法是否正确,如果不正确,写出一种你认为较简单的证明三角形内角和定理的方法,与同伴交流.专题二 证明中的探究题4.(1)如图①∠1+∠2与∠B +∠C 有什么关系?为什么?(2)把图①△ABC 沿DE 折叠,得到图②,填空:∠1+∠2_______∠B +∠C (填“>”“<”“=”),当∠A =40°时,∠B +∠C +∠1+∠2=______.(3)如图③,是由图①的△ABC 沿DE 折叠得到的,如果∠A =30°,则x +y =360°-A B C D(∠B +∠C +∠1+∠2)=360°- = ,猜想∠BDA+∠CEA 与∠A 的关系为 .5.如图,已知AB CD ∥,探究123∠,∠,∠之间的关系,并写出证明过程.【知识要点】1.判断一件事情的语句叫命题,命题都由题设和结论两部分构成,分为真命题和假命题,都可以改写成“如果……那么……”的形式,任何一个命题都有逆命题.2.三角形内角和等于180°,可利用平行线的有关知识证明.三角形三个外角的和等于360°,每个外角等于和其不相邻的两个内角的和,因此三角形的外角大于和它不相邻的任一个内角.【温馨提示】1.命题有逆命题,但定理不一定有逆定理.2.要说明一个命题不成立,只要举出一个反例即可,反例满足命题的题设,但不满足结论.3.“三角形的一个外角大于与它不相邻的任何一个内角”不能说成“三角形的一个外角大于一个内角”.4.在证明一个命题的正确性时,每步都要有根据,根据可以是公理、定义、已知条件或已经证明的定理等.【方法技巧】1.要会判断一个语句是否为命题,需注意两点:(1)命题必须是一个完整的语句,通常是陈述句(包括肯定句和否定句);(2)必须对某件事情做出肯定或否定的判断.两者缺一不可.2.在证明或计算三角形的角度大小关系时,要注意“三角形三个内角的和等于180°”这一隐含条件,合理地构造方程或方程组,以便正确求解.3.要证明角的不等关系时,经常用三角形的外角性质来证明,在证明时,如果直接证明有难度,可连接两点,或延长某边,构造三角形,使求证的大角(或它的一部分)处于某个三角形y°x°A D C B E 12A D C B E 12A D C B E 图① 图② 图③的外角的位置上,小角处在内角的位置上,再结合不等式的性质证明.参考答案1.(1)当高AD 在△ABC 的内部时,因为∠BAD =70º,∠CAD =20º,所以∠BAC =∠BAD +∠CAD =70º+20º=90º;(2)当高AD 在△ABC 的外部时,因为∠BAD =70º,∠CAD =20º,所以∠BAC =∠BAD -∠CAD =70º-20º=50º.综合(1)、(2)可知∠BAC 的度数为90º或50º.2.证法一:如图1,过点C 作CF ∥AB 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
命题与证明
一、填空
1.把命题“三边对应相等的两个三角形全等”写成“如果……,那么……”的形式是________________________________________________________________________.
2.命题“如果2
2
a b = ,那么a b =”的逆命题是________________________________. 3.命题“三个角对应相等的两个三角形全等” 是一个______命题(填“真”或“假”). 4.如图,已知梯形ABCD 中, AD ∥BC, AD =3, AB =CD =4, BC =7,则∠B =_______.
5.用反证法证明“b 1∥b 2”时,应先假设_________.
6.如图,在ΔABC 中,边AB 的垂直平分线交AC 于E, ΔABC 与ΔBEC 的周长分别为24和14,则AB =________.
7.若平行四边形的两邻边的长分别为16和20, 两长边间的距离为8,则两短边的距离为__________.
8.如图,在ΔABC 中,∠ABC =∠ACB =72°, BD 、CE 分别是∠ABC 和∠ACB 的平分线,它们的交点为F,则图中等腰三角形有______个. 二、选择题
1.下列语句中,不是命题的是( )
A.直角都等于90°
B.面积相等的两个三角形全等
C.互补的两个角不相等
D.作线段AB 2.下列命题是真命题的是( )
A.两个等腰三角形全等
B.等腰三角形底边中点到两腰距离相等
C.同位角相等
D.两边和一角对应相等的两个三角形全等 3.下列条件中能得到平行线的是( )
①邻补角的角平分线;②平行线内错角的角平分线;③平行线同位角的平分线; ④平行线同旁内角的角平分线.
A. ①②
B. ②④
C. ②③
D. ④ 4.下列命题的逆命题是真命题的是( ) A.两直线平行同位角相等 B.对顶角相等
C.若a b =,则2
2a b =
D.若(1)1a x a +>+,则1x >
5.三角形中,到三边距离相等的点是( )
A.三条高的交点
B.三边的中垂线的交点
C.三条角平分线的交点
D.三条中线的交点 6.下列条件中,不能判定两个直角三角形全等的是( ) A.两条直角边对应相等 B.斜边和一锐角对应相等 C.斜边和一条直角边对应相等 D.面积相等
7.△ABC 的三边长,,a b c 满足关系式()()()0a b b c c a ---=,则这个三角形一定是( ) A.等腰三角形 B.等边三角形 C.等腰直角三角形 D.无法确定
8.如图,点E 在正方形ABCD 的边AB 上,若EB 的长为1, EC 的长为2,那么正方形ABCD 的面积是( ) 35三、解答题(每题8分,共32分)
1.判断下列命题是真命题还是假命题,若是假命题,请举一个反例说明. (1)有一个角是60°的等腰三角形是等边三角形. (2)有两个角是锐角的三角形是锐角三角形.
2.如图, BD ∥AC,且BD =1
2
AC, E 为AC 中点,求证:BC =DE.
A
C
E
D
B
3.如图.三角形纸片ABC 中,∠A =65°,∠B =75°,将纸片的一角折叠,使点C 落在ΔABC 内,若∠1=20°,求∠2的度数.
4.如图,梯形ABCD 中, AD ∥BC, ∠ABC =60°, BD 平分∠ABC, BC =2AB. 求证:AB=CD.
5、已知,如图所示,正方形ABCD 的边长为1, G 为CD 边上的一个动点(点G 与C 、D 不重合),以CG 为一边向正方形ABCD 外作正方形GCEF,连接DE 交BG 的延长线于点H. (1)求证:①ΔBCG ≌ΔDCE ②HB ⊥DE
(2)试问当G 点运动到什么位置时, BH 垂直平分DE?请说明理由.
6、已知:如图,AB∥CD,AB =CD ,BE∥DF;求证:BE =DF ;
7.已知:如图,C 为BE 上一点,点A ,D 分别在BE 两侧.AB ∥ED ,AB =CE ,BC =ED .求证:AC =CD .
8.如图,AE 是∠BAC 的平分线,AB=AC ,D 是AE 反向延长线的一点,则△ABD 与△ACD 全等吗?为什么?
F
O D
E
C
B
A
第2章:命题与证明 一、填空题
1、略。
2、如果a b =,那么22
a b =。
3、假。
4、60°5、b 1与b 2相交于O 点.
6、10.
7、10.
8、8 二、选择题:DBCA CDAC 三、解答题:1、①真②假 2、证明:∵E 为AC 中点,∴EC=2
1AC 又∵BD=
2
1
AC,∴BD=EC,又BD ∥AC,即BD ∥EC. ∴四边形BCED 为平行四边形 ∴BC=DE
3、60°
4、证明:过A 、D 两点分别作BC 的垂线,交BC 于E 、F 点,有AD=EF , 可证EF=AD=AB ,∴BE+FC=AB 由∠ABE=60°,可知BE=FC=2
1AB 易证△ABE ≌△DCF ,得AB=DC 四、证明题
1、证明⑴ ∵正方形ABCD 得BC=DC ,∠BCG=90°
正方形GCEF 得GC=CE, ∠DCE=90°
∴△BCG ≌△DCE
⑵由⑴可得∠DEC=∠BGC 而
∠BGC+∠GBC=90°∴∠HEB+∠HBE=90°∴HB ⊥DF 2、当GC=2-1时,GE=2(2-1)=2- 2,
而DG=1-(2-1)=2-2 ∴DG=GE 即BH 垂直平分DE
初中地理教学策略及应用(共10篇)
2014-06-23 11:17 来源:初中地理论文 有2612人参与
在线咨询
第一篇:初中地理生活化教学
一、建立实际生活与地理知识的联系
在学习人教版初中地理教材的“太阳高度的一天的变化时和运动方位的变化”时,可以让学生通过观察学校内旗杆的影子在不同时刻的影子的长短以及影子的方位变化来解决这一问题。
通过这样的学习,不仅仅
让学生学会了相关的知识,而且可以在以后的生活中学会运用,加强了他们对知识的理解,让他们感受地理
带给他们的学习乐趣。
在实际的教学中,教师还可以向学生推荐一些地理性强的电视节目,如“地理中国”“探索发现”“人与自然”,等等,这些节目可以更好地激发学生们对地理知识的学习能力,让他们产生学
习地理知识的兴趣,再看完这些节目后,也可以让学生之间进行讨论与交流来发表达自己的想法,这样不仅活跃了课堂的学习气氛,而且也让学生们学习到更多的地理知识,开阔了他们的视野,陶冶了他们的情操,增长了他们的地理见识。
二、加强生活实践,提高学生的动手实践能力
在“做”中学地理,是陶行知“知行合一”教育理念的重要体现,所以初中地理教师在教学过程中要有
意识的实现“教、学、做”之间的衔接与融合,充分发挥地理课程需要实践、易实践的教学特征,让学生亲身参与到地理课程的生活实践当中,进而可以更好地培养学生的动手实践能力和知识应用能力。
例如,新学
期结束后,教师可以布置学生一定的生活实践任务,收集自己在外出旅游时的导游图或照片,然后在开学后
拿到课堂上一起分享,并借此进行延伸,引出如何看地图、如何在野外辨别方向、如何画线路图、怎样选择交通方式、怎样对周边的生态环境进行保护等地理知识,从而真正地让学生感受到地理学习的实用性和趣味性。
三、生活化的知识构建,链接新旧知识。