命题与证明练习题1及答案

合集下载

初中数学命题与证明的基础测试题含答案

初中数学命题与证明的基础测试题含答案
C、三角形的内角和为180°,正确,是真命题;
D、两直线平行,同旁内角互补,故错误,是假命题,
故选D.
【点睛】
考查了命题与定理的知识,解题的关键是了解余角的定义、三角形的三边关系、三角形的内角和及平行线的性质,难度不大.
10.下列命题的逆命题是真命题的是()
A.若 ,则
B. 中,若 ,则 是
C.若 ,则
D.四边相等的四边形是菱形
【答案】D
【解析】
【分析】
先根据逆命题的定义分别写出各命题的逆命题,然后根据绝对值的意义和有理数的乘法、菱形的性质及勾股定理进行判断.
【详解】
解:A、该命题的逆命题为:若|a|=|b|,则a=b,此命题为假命题;
B、该命题的逆命题为:若△ABC是Rt△,则AC2+BC2=AB2,此命题为假命题;
B的逆命题是:同位角相等,两直线平行,正确;
C的逆命题是:两底角相等的三角形是等腰三角形,正确;
D的逆命题是:对角线相等的四边形是矩形,错误
故选:D
【点睛】
本题考查逆命题、全等三角形的判定、平行线的判定、等腰三角形的判定、矩形的判定,解题的关键是正确找出各选项的逆命题.
13.能说明命题“关于 的方程 一定有实数根”是假命题的反例为()
【详解】
A、在同一平面内不相交的两条直线叫做平行线,正确;
B、同一平面内,过一点有且只有一条直线与已知直线垂直,故正确;
C、如果两个三角形,两条对应边及其夹角相等,那么这两个三角形全等,正确;
D、角是轴对称图形,它的平分线所在直线是它的对称轴,故错误;
故选:D.
【点睛】
此题考查命题与定理的知识,解题的关键是了解平行线的定义、垂直的定义、三角形的全等和轴对称图形,难度不大.

初二数学命题的证明同步练习题及答案

初二数学命题的证明同步练习题及答案

初二数学命题的证明同步练习题及答案初二数学命题的证明同步练习题及答案证明同步练习题及答案如下24.2命题与证明第1题. 已知四个命题:(1)如果一个数的相反数等于它本身,则这个数是0;(2)一个数的倒数等于它本身,则这个数是1;(3)一个数的算术平方根等于它本身,则这个数是1或0;(4)如果一个数的绝对值等于它本身,则这个数是正数.其中真命题有( )A.1个B.2个C.3个D.4个答案:B第2题. 判断下列命题的真假.①大于锐角的角是钝角;②如果一个实数有算术平方根,那么它的算术平方根是整数;③如果,那么点是线段的中点.答案:①②③假命题.第3题. 下列命题称为公理的是( )A.垂线段最短B.同角的补角相等C.邻角的平分线互相垂直D.内错角相等两直线平行答案:A答案:B第9题. 举反例说明一个角的余角大于这个角是假命题,错误的是( )A.设这个角是,它的余角是,B.设这个角是,它的余角是,C.设这个角是,它的余角是,D.设这个角是,它的余角是,答案:C第10题. 下列语句中,不是命题的句子是( )A.过一点作已知直线的垂线B.两点确定一条直线C.钝角大于D.凡平角都相等答案:A第11题. 命题有两条边和一个角对应相等的两个三角形全等的题设是,结论是,它是命题.答案:如果两个三角形中有两条边和一个角对应相等;这两个三角形全等;假.第12题. 把命题不相等的角不是对顶角改为如果那么的形式为 .答案:如果两个角不相等,那么这两个角不是对顶角.第13题. 如图,, .求证: .答案:因为, .所以 .即 .又,所以 .第14题. 已知:如图,,,,,求证: .答案:因为,,所以,所以,因为,所以,所以,因为,所以 .第15题. 如图,,且,那么图中与相等的角(不包括 )的个数是( )A.2B.4C.5D.6答案:C第16题. 如图,在中,,在上取一点,使,是的中点,是的中点,延长交的延长线于,求证: .答案:连结,取中点,连结,,为中点,为中点,为中点,, . ,,上文即是证明同步练习题及答案。

初中数学命题与证明专题训练50题-含答案

初中数学命题与证明专题训练50题-含答案

初中数学命题与证明专题训练50题含参考答案一、单选题1.如图,已知AC 与BD 相交于点O ,OE 是AOD ∠的平分线,可以作为假命题“相等的角是对顶角”的反例的是( )A .AOB DOC ∠=∠ B .EOC DOC ∠<∠ C .EOB EOC ∠=∠D .EOC DOC ∠>∠2.下列四个命题①过一点有且只有一条直线与已知直线垂直;①两条直线被第三条直线所截,内错角相等;①一个正实数的算术平方根一定是正实数;①2-是4的平方根,其中真命题的个数为( ) A .1个B .2个C .3个D .4个3.下列命题的逆命题不正确的是( ) A .全等三角形的对应边相等 B .直角三角形两锐角互余 C .如果,a b =那么22a b = D .两直线平行,同旁内角互补4.下列命题中假命题是( ) A .对顶角相等B .直线5y x =-不经过第二象限C .两直线平行,内错角相等D .两个锐角的和是钝角5.下列命题中,是真命题的是( ) A .对角线互相垂直的平行四边形是正方形 B .相似三角形的周长之比等于相似比的平方C .若(1,1y )、(2,2y )是双曲线1y x=-上的两点,则1y <2yD .方程2230x x -+=有两个不相等的实数根 6.下列命题是真命题的是( ) A .如果a +b =0,那么 a ,b 互为相反数 B .同位角相等C .过一点有且只有一条直线与已知直线平行D .两条直线被第三条直线所截,内错角相等7.有下列命题:①方程240x -=的解是2x =;①64的平方根是±8;①两边和它们的夹角对应相等的两个三角形全等;①若22a b =,则a b =;①1x >.其中假命题有( )A .4个B .3个C .2个D .1个8.说明命题“如果01n <<,那么210n ->”是假命题的一个反例可以是( ) A .12n =B .12n =-C .2n =D .2n =-9.下列语句中,不属于命题的个数是( )①延长线段AB ;②自然数都是整数;③两个锐角的和一定是直角;④同角的余角相等. A .1B .2C .3D .410.下列命题是假命题的是( )A .如果两角相等,那么它们一定是对顶角B .等角(同角)的余角相等C .等腰三角形两底角相等D .全等三角形面积相等11.对于四边形的以下说法:①对角线互相平分的四边形是平行四边形; ①对角线相等且互相平分的四边形是矩形; ①对角线垂直且互相平分的四边形是菱形;①顺次连结对角线相等的四边形各边的中点所得到的四边形是矩形. 其中你认为正确的个数有( ) A .1个B .2个C .3个D .4个12.下列命题:①如果一个数的相反数等于它本身,则这个数是0;①在三角形中,连接一个顶点和对边中点直线叫做三角形的中线;①任何三角形都有三条中线、三条内角平分线、三条高线,它们都相交于一点;①直角三角形的高只有一条.①三角形的三条高所在的直线相交于一点,这一点不在三角形的内部,就在三角形的外部;①一个数的算术平方根等于它本身,则这个数是1或0;其中真命题有( ). A .1个B .2个C .3个D .4个13.下列命题是假命题的是( ) A .若x <y ,则x +2008<y +2008B .单项式2347x y -的系数是﹣4C .若|x ﹣1|+(y ﹣3)2=0则x =1,y =3D .平移不改变图形的形状和大小 14.下列命题中,假命题...是( )A .2-的绝对值是2-B .对顶角相等C .平行四边形是中心对称图形D .如果直线,a c b c ∥∥,那么直线ab15.下列命题是假命题的是( ) A .对顶角相等 B .直角三角形两锐角互余 C .同位角相等D .全等三角形对应角相等16.下列语句中,不是命题的是( ) A .相等的角都是对顶角 B .数轴上原点右边的点 C .钝角大于90度 D .两点确定一条直线 17.下列命题正确的是( ) A .矩形的对角线互相垂直平分B .一组对角相等,一组对边平行的四边形一定是平行四边形C .正八边形每个内角都是145D .三角形三边垂直平分线交点到三角形三边距离相等 18.下列说法正确的是( ) A .一组数据6,5,8,8,9的众数是8B .甲、乙两组学生身高的方差分别为2 2.3S =甲,21.8S =乙.则甲组学生的身高较整齐 C .命题“若||1a =,则1a =”是真命题 D .三角形的外角大于任何一个内角19.可以用来证明命题“若20.01a >,则0.1a >”是假命题的反例( ) A .可以是a =-0.2,不可以是 a =2 B .可以是a =2,不可以是 a =-0.2 C .可以是a =-0.2,也可以是 a =2 D .既不可以是a =-0.2,也不可以是 a=2二、填空题20.命题“不是对顶角的两个角不相等”的逆命题是__________.21.已知:在△ABC 中,AB ≠AC ,求证:①B ≠①C .若用反证法来证明这个结论,可以假设__________.22.把命题“三边分别相等的两个三角形全等”写成“如果⋯⋯那么⋯⋯”的形式_____________.23.要判定一个命题是真命题,往往需要从命题的条件出发,根据已知的定义、基本事实、定理(包括推论),一步一步地推得结论成立,这样的推理过程叫做___________.要说明一个命题是假命题,通常可以通过___________的方法,命题的反例是具备命题的条件,但不具备命题的___________的实例.24.判断题:(1)所有的三角形都相似_____________(2)所有的梯形都相似_____________(3)所有的等腰三角形都相似_____________(4)所有的直角三角形都相似_____________(5)所有的矩形都相似_____________(6)所有的平行四边形都相似_____________(7)大小的中国地图相似_____________(8)所有的正多边形都相似_____________25.将命题“乘积为1的两个数互为倒数”改写成“如果……那么……”的形式:________________________________________________.26.命题“等腰三角形底边上的高线与中线互相重合”的逆命题是______27.把命题“等角的补角相等”改写成“如果…,那么…”的形式为________________________.题设是:________________________.结论是:________________________.28.命题“有两个角互余的三角形是直角三角形”的逆命题是_____命题.(填“真”或“假”)29.命题“如果两个实数相等,那么它们的平方相等”的逆命题是_____________________________.逆命题是______(填“真“或“假”)命题.30.命题“一组数据的中位数只有一个”是_______命题(填“真”或“假”)31.“两个无理数的积还是无理数”这句话是错误的,请举出一个反例进行说明______.32.“同位角相等,两直线平行”的逆命题是______;这是______命题(真或假).33.命题“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题是_______命题(填“真”或“假”).34.命题“对角线相等的平行四边形是矩形”的逆命题为________________________35.命题“互为相反数的两数的和是0”的逆命题是______________,它是__命题.(填“真、假”)36.下列命题的逆命题成立的序号是____ ① 同旁内角互补,两直线平行 ① 等边三角形是锐角三角形① 如果两个实数相等,那么它们的平方相等 ① 全等三角形的三条对应边相等 37.下列说法正确的是_____(填序号).①在同一平面内,a ,b ,c 为直线,若a ①b ,b ①c ,则a ①c ; ①“若ac >bc ,则a >b ”的逆命题是真命题;①若点M (a ,2)与N (1,b )关于x 轴对称,则a +b =﹣1;a ,小数部分是b ,则ab =﹣3.38.根据下图和命题“等腰三角形底边上的中线是顶角的角平分线”写出:已知:_______________________________ 求证:_______________ .三、解答题39.指出下列命题的条件和结论. (1)若a >0,b >0,则ab >0. (2)同角的补角相等.40.利用反证法证明:一个三角形中不能有两个角是钝角.41.如图,有如下四个论断:①AC DE ∥;①DC EF ∥;①CD 平分BCA ∠;①EF 平分BED ∠,请你选择四个论断中的三个作为条件,余下的一个论断作为结论,构成一个正确的数学命题并证明它.42.判断命题“对角线互相垂直且相等的四边形是正方形”是否成立.如果认为不成立,请增加一个条件使它成立.43.下列命题中,哪些是真命题?哪些是假命题?若是假命题,请举一反例. (1)互为邻补角的两角之和等于180°; (2)如果ab >0,那么a+b >0;(3)如果一个有理数既不是正数,也不是负数,那么它一定是0.44.先判断下列各命题的真假,然后写出它们的逆命题,并判断逆命题的真假: (1)对角线互相垂直的四边形是菱形; (2)相似四边形对应边成比例.45.指出下列命题的条件和结论,并判断命题的真假. (1)垂直于同一条直线的两条直线平行. (2)同位角相等. (3)若a 2=b 2,则a =b .(4)两条直线相交只有一个交点.46.如图所示,D 、E 分别为①ABC 的边AB 、AC 上点,①BE 与CD 相交于点O .现有四个条件:①AB=AC ;①OB=OC ;①①ABE=①ACD ;①BE=CD .(1)请你选出两个条件作为题设,余下作结论,写一个正确的命题:命题的条件是_______和_______,命题的结论是_______和________(均填序号) (2)证明你写的命题.47.在四边形ABCD 中,对角线AC 与BD 相交于点O . ①如果//AB CD ,BO DO =,那么四边形ABCD 是平行四边形; ①如果//AB CD ,ABC ADC ∠=∠,那么四边形ABCD 是平行四边形; ①如果AB CD =,BO DO =,那么四边形ABCD 是平行四边形;①如果ABC ADC=,那么四边形ABCD是平行四边形.∠=∠,BO DO(1)判断上述四个命题的真假;(2)证明上述四个命题的真假.(提示:证明一个命题是假命题,只要举个反例.)参考答案:1.C【分析】根据角平分线定义得到①AOE=①DOE,利用角的加减可得①EOB=①EOC,由于反例要满足角相等且不是对顶角,所以①EOB=①EOC可作为反例.【详解】①OE是①AOD的平分线,①①AOE=①DOE,①①AOE+①AOB=①DOE+①COD,即①EOB=①EOC可作为说明命题“相等的角是对顶角”为假命题的反例.故选:C.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.2.B【分析】直接利用垂线的性质、平行线的性质以及平方根的定义等知识分别判断得出答案.【详解】①在同一平面内,过一点有且只有一条直线与已知直线垂直,故①是假命题;①两条平行线被第三条直线所截,内错角相等,故①是假命题;①一个正实数的算术平方根一定是正实数,是真命题;①-2是4的平方根,是真命题;故选:B.【点睛】此题主要考查了命题与定理,正确掌握相关定义是解题关键.3.C【分析】把一个命题的条件和结论互换就得到它的逆命题,然后进行判断即可.【详解】解:A.全等三角形的对应边相等的逆命题是对应边相等的三角形全等,逆命题是真命题;B.直角三角形两锐角互余的逆命题是两锐角互余的三角形是直角三角形,逆命题是真命题;C.如果a=b,那么a2=b2的逆命题是如果a2=b2,那么a=b,逆命题是假命题;D .两直线平行,同旁内角互补的逆命题是同旁内角互补,两直线平行,逆命题是真命题. 故选:C .【点睛】考查了命题与定理的知识,解题的关键是知道如何写出一个命题的逆命题,难度不大. 4.D【分析】根据对顶角的性质,一次函数的图象与平行线的性质,锐角,钝角的定义,逐一判断选项,即可得到答案. 【详解】①对顶角相等,正确, ①原命题是真命题,①直线5y x =-不经过第二象限,正确 ①原命题是真命题, ①两直线平行,内错角相等, ①原命题是真命题,①两个锐角的和不一定是钝角, ①原命题是假命题. 故选D .【点睛】本题主要考查判断命题的真假,掌握基本的数学定义,定理和推论,是解题的关键. 5.C【分析】根据特殊平行四边形的判定可判断A ,根据相似三角形的性质判断B ,根据反比例函数的增减性可判断C ,计算一元二次方程的判别式可判断D. 【详解】A. 对角线互相垂直的平行四边形是菱形,故A 是假命题; B. 相似三角形的周长之比等于相似比,故B 是假命题;C. 反比例函数1y x=-,k=-1<0,所以在二、四象限内y 随x 的增大而增大,而0<1<2,所以1y <2y ,故C 为真命题;D. 方程2230x x -+=,=412=80∆--<,所以方程无实数根,故D 为假命题. 故选C.【点睛】本题考查真假命题的判断,熟练掌握各种基本概念和知识点是判断命题真假的关键.6.A【分析】根据相反数的定义、同位角的性质、平行的判定及性质等知识逐项判定即可. 【详解】解:A 、如果a +b =0,那么a ,b 互为相反数,为真命题; B 、两直线平行,同位角相等,故原命题为假命题;C 、过直线外一点有且只有一条直线与已知直线平行,故原命题为假命题;D 、两条平行直线被第三条直线所截,内错角相等,故原命题为假命题. 故选:A .【点睛】本题考查了命题与定理的知识,解题的关键是了解相反数的定义、同位角的性质、平行的判定及性质等知识,难度不大,属于基础题. 7.B【分析】根据解一元二次方程、平方根的性质、全等三角形的判定以及二次根式有意义的条件分别进行判断即可. 【详解】易知①①是真命题,方程²40x -=的解是2x =±,故①是假命题; 取1a =,1b,则22a b =,但ab ,故①是假命题;1x ,故①是假命题. 故选B.【点睛】本题考查命题真假的判断,真命题要经过推理验证其正确性,假命题只需举出一个反例即可. 8.A【分析】根据举反例的定义:符合某个命题的条件,但不符合该命题结论的例子,即可进行解答.【详解】解:A 、当12n =时,221311024n ⎛⎫-=-=-< ⎪⎝⎭,与原命题矛盾,故原命题为假命题,符合题意;B 、12n =-不符合条件01n <<,故B 不符合题意;C 、当2n =不符合条件01n <<,故C 不符合题意;D 、2n =-不符合条件01n <<,故D 不符合题意. 故选:A .【点睛】本题主要考查了用举反例的定义,解题的关键是熟练掌握举反例的定义:符合某个命题的条件,但不符合该命题结论的例子.9.A【详解】命题是判断一件事情的语句,①自然数都是整数;①两个锐角的和一定是直角;①同角的余角相等,都对情况作出了判断,都是命题,①延长线段AB,对情况没有作出了判断,不是命题,故选A.10.A【分析】根据对顶角的、余角与补角、全等三角形、等腰三角形的性质逐个判断即可.【详解】解:A、对顶角相等,但相等的角不一定是对顶角,故如果两角相等,那么它们一定是对顶角错误,符合题意;B、等角(同角)的余角相等,是真命题,不符合题意;C、等腰三角形两底角相等, 是真命题,不符合题意;D、全等三角形面积相等,是真命题,不符合题意;故选:A.【点睛】本题考查了判断真假命题,对顶角的、余角与补角、全等三角形、等腰三角形的性质,能够根据已有知识点判断出命题的真假是解决本题的关键.11.C【详解】题中①①①根据平行四边形、矩形、菱形的判定,是正确的,①只能判定是平行四边形而不具备矩形的条件.故选C.12.B【分析】根据相反数的定义,算术平方根的定义,以及三角形的高线,中线和角平分线的定义及性质对各小题分析判断即可得解.【详解】解:①如果一个数的相反数等于它本身,则这个数是0,正确;①在三角形中,连接一个顶点和对边中点线段叫做三角形的中线,错误;①任何三角形都有三条中线、三条内角平分线、三条高线所在的直线,它们都相交于一点,错误;①直角三角形的高有三条,故①错误;①三角形的三条高所在的直线相交于一点,可以在三角形的内部,或在三角形的外部,还可以在三角形上,故①错误;①一个数的算术平方根等于它本身,则这个数是1或0,正确;综上所述,正确的命题有①①,共2个,故选B .【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.13.B【分析】非负数的性质:几个非负数的和是0,则这几个非负数都是0;平移的性质:平移前后的两个图形全等.然后结合等式性质与单项式系数的定义进行判断.【详解】解:A 、根据不等式的性质,故正确;B 、单项式2347x y -的系数是47-,故错误; C 、若|x ﹣1|+(y ﹣3)2=0,则x =1,y =3,故正确;D 、平移不改变图形的形状和大小,故正确.故选B .【点睛】此题涉及面较广,涉及到等式的性质、非负数的性质、平移的性质及单项式的系数,是一道好题.14.A【分析】根据绝对值的意义,对顶角的性质,平行四边形的性质,平行线的判定逐一判断即可.【详解】解:A . 2-的绝对值是2,故原命题是假命题,符合题意;B .对顶角相等,故原命题是真命题,不符合题意;C .平行四边形是中心对称图形,故原命题是真命题,不符合题意;D . 如果直线,a c b c ∥∥,那么直线a b ,故原命题是真命题,不符合题意;故选:A .【点睛】本题考查了命题真假的判断,属于基础题.根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项.15.C【分析】根据对顶角的性质、直角三角形的性质、平行线的性质、全等三角形的性质逐项判断即可得.【详解】解:A 、对顶角相等,则此项命题是真命题;B 、直角三角形两锐角互余,则此项命题是真命题;C 、两直线平行,同位角相等,则此项命题是假命题;D 、全等三角形对应角相等,则此项命题是真命题;故选:C .【点睛】本题考查了对顶角、直角三角形的性质、平行线的性质、全等三角形的性质、命题,熟练掌握各性质是解题关键.16.B【详解】试题分析:命题是判断一件事情的语句,所以A 、C 、D 都是命题,B 不是命题,故选B .考点:命题的概念.17.B【分析】根据矩形的性质、平行四边形的判定、多边形的内角和及三角形垂直平分线的性质,逐项判断即可.【详解】A.矩形的对角线相等且互相平分,故原命题错误;B.已知如图:A C ∠=∠,//AB CD ,求证:四边形ABCD 是平行四边形.证明:①//AB CD ,①180A D ∠+∠=︒,①A C ∠=∠,①180C D ∠+∠=︒,①//AD BC ,又①//AB CD ,①四边形ABCD 是平行四边形,①一组对角相等,一组对边平行的四边形一定是平行四边形,故原命题正确;C.正八边形每个内角都是:()180821358︒⨯-=︒,故原命题错误; D.三角形三边垂直平分线交点到三角形三个顶点的距离相等,故原命题错误.故选:B .【点睛】本题考查命题的判断,明确矩形性质、平行四边形的判定定理、多边形内角和公式及三角形垂直平分线的性质是解题关键.18.A【分析】分别根据众数、方差、真命题、三角形外角定理等知识逐项判断即可求解.【详解】解:A.“一组数据6,5,8,8,9的众数是8”,判断正确,符合题意;B. “甲、乙两组学生身高的方差分别为2 2.3S =甲,2 1.8S =乙,则甲组学生的身高较整齐”,因为22S S 甲乙> ,所以乙组学生的身高较整齐,原判断错误,不合题意;C. 命题“若||1a =,则1a =±”,所以原判断错误,不合题意;D.“三角形的外角大于任何一个不相邻的内角”,所以原判断错误,不合题意.故选:A .【点睛】本题考查了众数,方差,真假命题,三角形的外角等知识,熟知相关定理是解题关键.19.A【详解】当a= - 0.2时,a²=0.04>0.01;a <0.1.当a=2时,a²=4>0.01;a >0.1.于是可以证明命题“若a²>0.01,则a >0.1”是假命题的反例的可以是a= - 0.2,不可以是a=2.故选A.20.不相等的两个角不是对顶角【分析】根据逆命题的概念即可得出答案.【详解】命题“不是对顶角的两个叫不相等”的逆命题是:不相等的两个角不是对顶角, 故答案为:不相等的两个角不是对顶角.【点睛】本题主要考查逆命题,掌握逆命题的写法是解题的关键.21.①B =①C【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.【详解】解:①B ≠①C 的反面是①B =①C .故可以假设①B =①C .故答案为:①B =①C .【点睛】本题主要考查了反证法的基本步骤,正确确定①B ≠①C 的反面,是解决本题的关键.22.如果两个三角形三条边对应相等,那么这两个三角形全等【分析】命题一般都可以写成如果…那么…形式;如果后面是题设,那么后面是结论.【详解】把命题“三边分别相等的两个三角形全等”写成“如果⋯⋯那么⋯⋯”的形式为:如果两个三角形三条边对应相等,那么这两个三角形全等.故答案为:如果两个三角形三条边对应相等,那么这两个三角形全等23.证明举反例结论【分析】根据根据证明的概念和举反例的概念直接填空即可..【详解】解:要判定一个命题是真命题,往往需要从命题的条件出发,根据已知的定义、基本事实、定理(包括推论),一步一步地推得结论成立,这样的推理过程叫做证明.要说明一个命题是假命题,通常可以通过举反例的方法,命题的反例是具备命题的条件,但不具备命题的结论的实例.故答案为:证明;举反例;结论.【点睛】本题主要考查了证明和举反例的概念,熟知相关知识是解题的关键.24.错误错误错误错误错误错误正确错误【分析】相似图形是指形状相同的图形.对多边形进行判断时,主要是看对应角是否相等,对应边的比是否相等.【详解】(1)所有的三角形,不能判断它们的对应角相等,对应边的比相等,不是相似形.所以(1)错误.(2)所有的梯形,不能判断对应的角相等,对应边的比相等,不是相似形.所以(2)错误.(3)所有的等腰三角形,不能判断对应的角相等,对应边的比相等.所以(3)错误.(4)所有的直角三角形,不能判断对应的角相等,对应边的比相等.所以(4)错误.(5)所有的矩形,不能判断对应的角相等,对应边的比相等.所以(5)错误.(6)所有的平行四边形,不能判断对应的角相等,对应边的比相等.所以(6)错误.(7)大小的中国地图,只是大小不等,性质相同,是相似形.所以(7)正确.(8)所有的边数相等的正多边形才相似.所以(8)错误.故答案是:(1)错误,(2)错误,(3)错误,(4)错误,(5)错误,(6)错误,(7)正确,(8)错误.【点评】本题考查的是相似图形,根据相似图形的定义对多边形是否相似进行判断.25.如果两个数的乘积为1,那么这两个数互为倒数【详解】试题解析:乘积为1的两个数互为倒数”改写成“如果……那么……”的形式为:如果两个数的乘积为1,那么这两个数互为倒数.故答案为如果两个数的乘积为1,那么这两个数互为倒数.26.如果一个三角形一边上的高线与中线互相重合,那么这个三角形是等腰三角形【分析】根据逆命题的定义:对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,找出已知命题的题设和结论,即可写出其逆命题.【详解】解:“等腰三角形底边上的高线与中线互相重合”的题设为:如图一个三角形是等腰三角形,结论为:那么它底边上的高线和中线互相重合①该命题的逆命题为:如果一个三角形一边上的高线与中线互相重合,那么这个三角形是等腰三角形故答案为:如果一个三角形一边上的高线与中线互相重合,那么这个三角形是等腰三角形.【点睛】此题考查的是写一个命题的逆命题,掌握逆命题的定义是解决此题的关键.27.如果两个角相等,那么这两个角的补角相等两个角相等这两个角的补角相等【分析】根据任何一个命题都可以写成“如果…,那么…”的形式如果后面是题设,那么后面是结论,进而得出答案即可.【详解】命题“等角的补角相等”的题设是“两个角相等”,结论是“这两个角的补角相等”.故命题“等角的补角相等”写成“如果…,那么…”的形式是:如果两个角相等,那么这两个角的补角相等.故答案为如果两个角相等,那么这两个角的补角相等;两个角相等;这两个角的补角相等.【点睛】本题考查了命题的改写问题.找准原命题的题设与结论是正确解答本题的关键.命题的一般叙述形式为“如果…..,那么……”,其中,“如果”所引出的部分是题设(条件),“那么”所引出的部分是结论.28.真;【分析】命题“有两个角互余的三角形是直角三角形”的题设为三角形中有两个锐角互余,结论为这个三角形为直角三角形,然后交换题设与结论即可得到原命题的逆命题,然后再判断出命题的真假.【详解】“有两个角互余的三角形是直角三角形”的逆命题“直角三角形的两个锐角互余”,是真命题.故答案为真.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.29.如果两个实数的平方相等,那么这两个实数相等假【分析】逆命题即将原命题的结论变为已知,原命题的已知变为结论,若22a b=,则a和b可能相等,也可能互为相反数;【详解】逆命题为:如果两个实数它们的平方相等,那么这两个实数相等,若22=,则a ba和b可能相等,也可能互为相反数,所以是假命题;故答案是:如果两个实数它们的平方相等,那么这两个实数相等;假.【点睛】本题主要考查了命题与定理,准确分析判断是解题的关键.30.真【分析】根据中位数的计算方法判断即可.【详解】解:①中位数是将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;①中位数的位置是确定的,①一组数据的中位数只有一个,故答案为:真;【点睛】本题考查了真命题(正确的命题),中位数的定义;掌握中位数的计算方法是解题关键.3122==(答案不唯一)【分析】根据无理数的乘法运算法则,即可求解.【详解】解:“两个无理数的积还是无理数”这句话是错误的,举反例如下:2=.22(答案不唯一)【点睛】此题比较灵活地考查了无理数的有关运算,需考虑到无理数相乘的特殊情况.32.两直线平行,同位角相等真【分析】交换原命题的题设与结论即可得到其逆命题,然后根据平行线的性质判断逆命题的真假.。

命题和证明(最新)

命题和证明(最新)
1)长度相等的两条线段是相等的线段吗?(× ) 2)两条直线相交,有且只有一个交点( 3)不相等的两个角不是对顶角( √ ) 4)一个平角的度数是180度( √ ) 5)相等的两个角是对顶角( √ ) 6)取线段AB的中点C;( × ) 7)画两条相等的线段( × )
√)
注:
• 判断就是命题.
• 命题可能正确,也可能错误.
正确的过程。证明过程中,推理的依据可以是公 理,也可以是定理,定义,已知条件 ,推论。
练习:
A
1
B D
2
1. 已知,如图,AB⊥BF, CD⊥BF,∠1=∠2 求证: ∠3=∠4 证明:∵ AB⊥BF, CD⊥BF (已知 )
C
4
3
E
F
∴∠ B=∠CDF=90° ( 垂直的性质 ) ∴AB// CD ( 垂直于同一条直线的两直线平行) 又∵ ∠1=∠2 (已知) (内错角相等,两直线平行)
通过一些特殊的事例得到的结论可能正 确,也可能不正确.因此,通过这种方式得到
的结论,还需进一步加以证实,即需要通过证
明来判定. 根据题设、定义以及公理、定理等,经
过逻辑推理,来判断一个命题是否正确,这
样的推理过程叫做证明(proof).
历史上的猜想与证明:
1. 费尔马大定理 1637年,法国业余大数学家费尔马(Pierre de Fermat) 写下猜想:
∴AB//EF
∴CD // EF
(平行于同一直线的两直线平行 )
( 两直线平行,同位角相等)
∴∠3=∠4
2.如图,DC//AB, DF平分∠CDB,
E
D
1
C
F
BE平分∠ABD,
求证:∠1=∠2

初中数学命题与证明专题训练50题含参考答案

初中数学命题与证明专题训练50题含参考答案

初中数学命题与证明专题训练50题含参考答案一、单选题1.下列命题是假命题...的是( ). A .同一平面内,两直线不相交就平行B .对顶角相等C .互为邻补角的两角和为180°D .相等的两个角一定是对顶角2.下列命题正确的是( )A .所有的实数都可用数轴上的点表示B .直线外一点到这条直线的垂线段叫做点到直线的距离C D .如果一个数有立方根,那么这个数也一定有平方根3.定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD 是ABC 的外角,求证:ACD A B ∠=∠+∠.证法1:如图.∠180A B ACB ∠+∠+∠=︒(三角形内角和定理)又∠180ACD ACB ∠+∠=︒(平角定义)∠ACD ACB A B ACB ∠+∠=∠+∠+∠(等量代换)∠ACD A B ∠=∠+∠(等式性质)证法2:如图,∠76A ∠=︒,59B ∠=︒,且135ACD ∠=︒(量角器测量所得)又∠1357659︒=︒+︒(计算所得)∠ACD A B ∠=∠+∠(等量代换)下列说法正确的是( )A .证法1还需证明其他形状的三角形,该定理的证明才完整B .证法1用严谨的推理证明了该定理C 2D .证法2只要测量够一百个三角形进行验证,就能证明该定理4.下列命题中,假命题是( )A .如果两条直线都与第三条直线平行,那么这两条直线也互相平行B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .两条直线被第三条直线所截,同旁内角互补D .两点的所有连线中,线段最短5.下列命题为真命题的是( )A .内错角相等,两直线平行B C .1的平方根是1D .一般而言,一组数据的方差越大,这组数据就越稳定6.下列命题是真命题的是( )A .若a b >,则11a b ->-B .若22ac bc >,则a b >C .若225x kx ++是一个完全平方公式,则k 的值等于10D .将点()2,3A -向上平移3个单位长度后得到的点的坐标为()1,37.能说明命题“若x 2≥9,则x ≥3”为假命题的一个反例可以是( )A .x =4B .x =2C .x =﹣4D .x =﹣2 8.下列命题是真命题的是( )A .内错角互补,两直线平行B .三角形的外角大于任意一个不相邻的内角C .三角形的两边之和小于第三边D .三角形的三条高一定在三角形内部 9.下面四个命题:∠若=1x -,则31x =-;∠面积相等的两个三角形全等;∠相等的角是对顶角;∠若24x =,则2x =.是真命题的有( )A .4个B .3个C .2个D .1个 10.下列语句:∠过一点有且只有一条直线与已知直线平行;∠数轴上的点和实数是一一对应的;∠同位角相等;∠同一平面内,过一点有且只有一条直线与已知直线垂直;其中( )是真命题.A ∠∠B ∠∠C ∠∠D ∠∠11.下列命题正确的是( )A .平行四边形的对角线互相垂直平分B .矩形的对角线互相垂直平分C .菱形的对角线互相平分且相等D .平行四边形是中心对称图形12.下列命题,假命题是( )A .如果两个三角形全等,那么这两个三角形的面积相等B .等腰三角形两腰上的高相等C .三角形的一个外角大于与它不相邻的任何一个内角D .已知ABC ,求作A B C ''',使A B C ABC ''≌的依据是三角形全等的性质定理 13.下面命题中是真命题的有( )∠相等的角是对顶角∠直角三角形两锐角互余∠三角形内角和等于180°∠两直线平行内错角相等A .1个B .2个C .3个D .4个14.下列命题是真命题的是( )A .两直线平行,同位角相等B .相似三角形的面积比等于相似比C .菱形的对角线相等D .相等的两个角是对顶角15.下列命题正确的是( )A .相等的角是对顶角;B .a 、b 、c 是直线,若a //b ,b //c ,则a //c ;C .同位角相等;D .a 、b 、c 是直线,若a ∠b ,b ∠c ,则a ∠c .16.下列命题是假命题的是( )A .有一个外角是120°的等腰三角形是等边三角形B .等边三角形有3条对称轴C .有两边和一角对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等17.已知下列命题:∠对角线互相垂直的四边形是菱形;∠若x a =,则()20x a b x ab -++=;∠两个位似图形一定是相似图形;∠若22x x =,则2x =;其中原命题是真命题逆命题是假命题的有( )A .1个B .2个C .3个D .4个18.下列说法:∠同位角相等;∠对顶角相等;∠等角的补角相等;∠两直线平行,同旁内角相等,正确的个数有( )A .1 个B .2 个C .3 个D .4 个19.可以用来证明命题“若20.01a >,则0.1a >”是假命题的反例( )A .可以是a =-0.2,不可以是 a =2B .可以是a =2,不可以是 a =-0.2C .可以是a =-0.2,也可以是 a =2D .既不可以是a =-0.2,也不可以是 a=220.下列命题中,属于真命题的是( )A .三点确定一个圆B .圆内接四边形对角互余C .若22a b =,则a b =D a b =二、填空题21.命题“对顶角相等”的题设是________,结论是________,它是________命题.(填“真”或“假”)22.命题“互余的角不相等”的逆命题是_____.23.命题“若a b =,那么a b =”是一个____________命题(填真、假),写出它的逆命题:____________.24.举反例说明命题“对于任意实数x ,221x x +-的值总是正数”是假命题,你举的反例是x =__________(写出一个x 的值即可).25.把下列命题改写成“如果……,那么……”的形式:(1)内错角相等,两直线平行._________.(2)同角的补角相等._____.26.下列说法中,真命题有______.(填入序号即可)∠和为180°且有一条公共边的两个角是邻补角; ∠过一点有且只有一条直线与已知直线垂直;∠同位角相等;∠经过直线外一点,有且只有一条直线与这条直线平行; ∠两点之间,直线最短。

初中数学命题与证明的基础测试题附答案

初中数学命题与证明的基础测试题附答案

初中数学命题与证明的基础测试题附答案一、选择题1.用反证法证明命题:“在三角形中,至多有一个内角是直角”,正确的假设是()A.在三角形中,至少有一个内角是直角B.在三角形中,至少有两个内角是直角C.在三角形中,没有一个内角是直角D.在三角形中,至多有两个内角是直角【答案】B【解析】【分析】反证法即假设结论的反面成立,“最多有一个”的反面为“至少有两个”.【详解】解:∵“最多有一个”的反面是“至少有两个”,反证即假设原命题的否命题正确,∴应假设:在三角形中,至少有两个内角是直角.故选:B.【点睛】此题主要考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,不需要一一否定,只需否定其一即可.2.下列语句正确的个数是()①两个五次单项式的和是五次多项式②两点之间,线段最短③两点之间的距离是连接两点的线段④延长射线AB,交直线CD于点P⑤若小明家在小丽家的南偏东35︒方向,则小丽家在小明家的北偏西35︒方向A.1 B.2 C.3 D.4【答案】C【解析】【分析】根据单项式和多项式的性质、线段的定义以及性质、射线的定义、方位角的性质对各项进行分析即可.【详解】①两个五次单项式的和可能为零、五次单项式或五次多项式,错误;②两点之间,线段最短,正确;③两点之间的距离是连接两点的线段的长度,错误;④延长射线AB,交直线CD于点P,正确;⑤若小明家在小丽家的南偏东35︒方向,则小丽家在小明家的北偏西35︒方向,正确;故语句正确的个数有3个故答案为:C.【点睛】本题考查语句是否正确的问题,掌握单项式和多项式的性质、线段的定义以及性质、射线的定义、方位角的性质是解题的关键.3.下列命题中是假命题的是( ).A .同旁内角互补,两直线平行B .直线a b ⊥r r,则a 与b 相交所成的角为直角C .如果两个角互补,那么这两个角是一个锐角,一个钝角D .若a b ∥,a c ⊥,那么b c ⊥【答案】C【解析】根据平行线的判定,可知“同旁内角互补,两直线平行”,是真命题;根据垂直的定义,可知“直线a b ⊥,则a 与b 相交所成的角为直角”,是真命题; 根据互补的性质,可知“两个角互补,这两个角可以是两个直角”,是假命题;根据垂直的性质和平行线的性质,可知“若a b P ,a c ⊥,那么b c ⊥”,是真命题. 故选C.4.下列命题中是假命题的是( )A .一个锐角的补角大于这个角B .凡能被2整除的数,末位数字必是偶数C .两条直线被第三条直线所截,同旁内角互补D .相反数等于它本身的数是0【答案】C【解析】试题分析:利用锐角的性质、偶数的定义、平行线的性质及相反数的定义分别判断后即可确定正确的选项.A 、一个锐角的补角大于这个角,正确,是真命题,不符合题意;B 、凡能被2整除的数,末尾数字必是偶数,正确,是真命题,不符合题意;C 、两条平行直线被第三条直线所截,同旁内角才互补,故错误,是假命题,符合题意;D 、相反数等于他本身的数是0,正确,是真命题,不符合题意考点:命题与定理.5.下列说法中,正确..的是( ) A .图形的平移是指把图形沿水平方向移动.B .平移前后图形的形状和大小都没有发生改变.C .“相等的角是对顶角”是一个真命题D .“直角都相等”是一个假命题【答案】B【解析】图形的平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移,平移前后图形的形状和大小都没有发生改变.而相等的角不一定是对顶角,C 是一个假命题,直角都相等是真命题.故选B6.下列命题中,是假命题的是( )A .若a>b ,则-a<-bB .若a>b ,则a+3>b+3C .若a>b ,则44a b > D .若a>b ,则a 2>b 2【答案】D【解析】【分析】 利用不等式的性质分别判断后即可确定正确的选项.【详解】A 、若a >b ,则-a <-b ,正确,是真命题;B 、若a >b ,则a+3>b+3,正确,是真命题;C 、若a >b ,则44a b >,正确,是真命题; D 、若a >b ,则a 2>b 2,错误,是假命题;故选:D .【点睛】 此题考查命题与定理的知识,解题的关键是了解不等式的性质,难度不大.7.下列命题:①两条直线被第三条直线所截,同位角相等;②两点之间,线段最短;③相等的角是对顶角;④直角三角形的两个锐角互余;⑤同角或等角的补角相等.其中真命题的个数是( )A .2个B .3个C .4个D .5个【答案】B【解析】【分析】【详解】解:命题①两条平行线被第三条直线所截,同位角相等,错误,为假命题;命题②两点之间,线段最短,正确,为真命题;命题③相等的角是对顶角,错误,为假命题;命题④直角三角形的两个锐角互余,正确,为真命题;命题⑤同角或等角的补角相等,正确,为真命题,故答案选B.考点:命题与定理.8.下列命题中,是真命题的是()A.将函数y=12x+1向右平移2个单位后所得函数的解析式为y=12xB.若一个数的平方根等于其本身,则这个数是0和1C.对函数y=2x,其函数值y随自变量x的增大而增大D.直线y=3x+1与直线y=﹣3x+2一定互相平行【答案】A【解析】【分析】利用一次函数的性质、平方根的定义、反比例函数的性质等知识分别判断后即可确定正确的选项.【详解】解:A、将函数y=12x+1向右平移2个单位后所得函数的解析式为y=12x,正确,符合题意;B、若一个数的平方根等于其本身,则这个数是0,故错误,是假命题,不符合题意;C、对函数y=2x,其函数值在每个象限内y随自变量x的增大而增大,故错误,是假命题,不符合题意;D、直线y=3x+1与直线y=﹣3x+2因比例系数不相等,故一定不互相平行,故错误,是假命题,故选:A.【点睛】本题考查了判断命题真假的问题,掌握一次函数的性质、平方根的定义、反比例函数的性质等知识是解题的关键.9.下列命题中①等腰三角形底边的中点到两腰的距离相等②如果两个三角形全等,则它们必是关于直线成轴对称的图形③如果两个三角形关于某直线成轴对称,那么它们是全等三角形④等腰三角形是关于底边中线成轴对称的图形⑤一条线段是关于经过该线段中点的直线成轴对称的图形正确命题的个数是()A.2个B.3个C.4个D.5个【答案】A【解析】【分析】根据等腰三角形的性质、轴对称图形的定义、全等三角形的判定逐个判断即可.【详解】根据等腰三角形的三线合一可知,底边中点在顶角角平分线上,再根据角平分线的性质可知,其到两腰的距离相等,则命题①正确全等的三角形不一定是成轴对称,则命题②错误成轴对称的两个三角形一定全等,则命题③正确等腰三角形是以底边中线所在直线为对称轴的轴对称图形,则命题④错误成轴对称的图形必须是两个,一个图形只能是轴对称图形,则命题⑤错误综上,正确命题的个数是2个故选:A.【点睛】本题考查了等腰三角形的性质、轴对称图形的定义、全等三角形的判定等知识点,掌握理解各定义与性质是解题关键.10.用三个不等式a>b,ab>0,1a>1b中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0 B.1 C.2 D.3【答案】A【解析】【分析】由题意得出3个命题,由不等式的性质再判断真假即可.【详解】解:①若a>b,ab>0,则1a>1b;假命题:理由:∵a>b,ab>0,∴a>b>0,∴1a<1b;②若ab>0,1a>1b,则a>b,假命题;理由:∵ab>0,∴a、b同号,∵1a>1b,∴a<b;③若a>b,1a>1b,则ab>0,假命题;理由:∵a>b,1a>1b,∴a、b异号,∴ab<0.∴组成真命题的个数为0个;故选:A.【点睛】本题考查了命题与定理、不等式的性质、命题的组成、真命题和假命题的定义;熟练掌握命题的组成和不等式的性质是解题的关键.11.下列命题是真命题的是()A.同位角相等B.对顶角互补C.如果两个角的两边互相平行,那么这两个角相等D.如果点P的横坐标和纵坐标互为相反数,那么点P在直线y x=-的图像上.【答案】D【解析】【分析】根据平行线的性质定理对A、C进行判断;利用对顶角的性质对B进行判断;根据直角坐标系下点坐标特点对D进行判断.【详解】A.两直线平行,同位角相等,故A是假命题;B.对顶角相等,故B是假命题;C.如果两个角的两边互相平行,那么这两个角相等或互补,故C是假命题;D.如果点的横坐标和纵坐标互为相反数,那么点P在直线y x=-的图像上,故D是真命题故选:D【点睛】本题考查了真命题与假命题,正确的命题称为真命题,错误的命题称为假命题.利用了平行线性质、对顶角性质、直角坐标系中点坐标特点等知识点.12.39.下列命题中,是假命题的是()A.同旁内角互补B.对顶角相等C.直角的补角仍然是直角D.两点之间,线段最短【答案】A【解析】同旁内角不一定互补,同旁内角互补的条件是两直线平行,故选A.13.下列命题中,是真命题的是()A.同位角相等B.若两直线被第三条直线所截,同旁内角互补C.同旁内角相等,两直线平行D.平行于同一直线的两直线互相平行【答案】D【解析】【分析】根据平行线的判定、平行线的性质判断即可.【详解】A、两直线平行,同位角相等,是假命题;B、若两条平行线被第三条直线所截,同旁内角互补,是假命题;C、同旁内角互补,两直线平行,是假命题;D、平行于同一直线的两条直线互相平行,是真命题;故选:D.【点睛】此题考查命题与定理,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.14.下列命题中是假命题的是( )A.一个三角形中至少有两个锐角B.在同一平面内,垂直于同一直线的两条直线平行C.同角的补角相等aD.如果a为实数,那么0【答案】D【解析】A. 一个三角形中至少有两个锐角,是真命题;B. 在同一平面内,垂直于同一直线的两条直线平行,是真命题;C. 同角的补角相等,是真命题;D. 如果a为实数,那么|a|>0,是假命题;如:0是实数,|0|=0,故D是假命题;故选:D.15.下列命题是假命题的是()A.有一个角是60°的等腰三角形是等边三角形B.等边三角形有3条对称轴C.有两边和一角对应相等的两个三角形全等D.线段垂直平分线上的点到线段两端的距离相等【答案】C【解析】根据等边三角形的判定方法、等边三角形的性质、全等三角形的判定、线段垂直平分线的性质一一判断即可.【详解】A.正确;有一个角是60°的等腰三角形是等边三角形;B.正确.等边三角形有3条对称轴;C.错误,SSA无法判断两个三角形全等;D.正确.线段垂直平分线上的点到线段两端的距离相等.故选:C.【点睛】本题考查了命题与定理,等边三角形的判定方法、等边三角形的性质、全等三角形的判定、线段垂直平分线的性质等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.16.下列命题的逆命题不正确...的是()A.相等的角是对顶角B.两直线平行,同旁内角互补C.矩形的对角线相等D.平行四边形的对角线互相平分【答案】C【解析】【分析】首先写出各个命题的逆命题,然后进行判断即可.【详解】A、逆命题是:对顶角相等.正确;B、逆命题是:同旁内角互补,两直线平行,正确;C、逆命题是:对角线相等的四边形是矩形,错误;D、逆命题是:对角线互相平分的四边形是平行四边形,正确.故选:C.【点睛】本题主要考查了写一个命题的逆命题的方法,首先要分清命题的条件与结论.17.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是()A.2个B.3个C.4个D.5个【答案】B【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数,进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B.【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.18.下列四个命题中,其正确命题的个数是()①若ac>bc,则a>b;②平分弦的直径垂直于弦;③一组对角相等一组对边平行的四边形是平行四边形;④反比例函数y=kx.当k<0时,y随x的增大而增大A.1 B.2 C.3 D.4【答案】A【解析】【分析】根据不等式性质、垂径定理、平行四边形的判定、反比例函数的性质,分别进行判断,即可得到答案.【详解】解:①若ac>bc,如果c>0,则a>b,故原题说法错误;②平分弦(不是直径)的直径垂直于弦,故原题说法错误;③一组对角相等一组对边平行的四边形是平行四边,故原题说法正确;④反比例函数y=kx.当k<0时,在每个象限内y随x的增大而增大,故原题说法错误;正确命题有1个,故选:A.【点睛】本题考查了判断命题的真假,解题的关键是掌握不等式性质、垂径定理、平行四边形的判定、反比例函数的性质进行判断.19.下列命题是假命题的是()A.三角形的外心到三角形的三个顶点的距离相等B.如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16 C.将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限D.若关于x的一元一次不等式组213x mx-≤⎧⎨+>⎩无解,则m的取值范围是1m£【答案】B【解析】【分析】利用三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组分别判断后即可确定正确的选项.【详解】A. 三角形的外心到三角形的三个顶点的距离相等,正确,是真命题;B. 如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16或17,错误,是假命题;C. 将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限,正确,是真命题;D. 若关于x的一元一次不等式组213x mx-≤⎧⎨+>⎩无解,则m的取值范围是1m£,正确,是真命题;故答案为:B【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组.20.下列命题是真命题的是()A.方程23240x x--=的二次项系数为3,一次项系数为-2B.四个角都是直角的两个四边形一定相似C.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖D.对角线相等的四边形是矩形【答案】A【解析】【分析】根据所学的公理以及定理,一元二次方程的定义,概率等知识,对各小题进行分析判断,然后再计算真命题的个数.【详解】A、正确.B、错误,对应边不一定成比例.C、错误,不一定中奖.D、错误,对角线相等的四边形不一定是矩形.故选:A.【点睛】此题考查命题与定理,熟练掌握基础知识是解题关键.。

命题与证明练习

命题与证明练习

命题与证明(一)1.下列是命题的是( )A.画两条相等的线段B.等于同一个角的两个角相等吗?C.延长线段AO到C,使OC=OAD.两直线平行,内错角相等.2. 下列语句中,不是命题的是()A.若两角之和为90°,则这两个角互补B.同角的余角相等C.作线段的垂直平分线D.相等的角是对顶角3. 下列语句中属于定义的是()A.直角都相等B.作已知角的平分线C.连接两点的线段的长度,叫做这两点间的距离D.两点之间,线段最短4.下列命题是假命题的是().A. 对顶角相等B. -4是有理数C. 内错角相等D. 两个等腰直角三角形相似5、下列命题是真命题的是()A、同旁内角互补B、直角三角形的两锐角互余C、三角形的一个外角等于它的两个内角之和D、三角形的一个外角大于内角6、下列语句为命题的是()A 、你吃过午饭了吗?B、过点A作直线MNC、同角的余角相等D、红扑扑的脸蛋7、命题“垂直与同一条直线的两条直线互相平行”的题设是()A、垂直B、两条直线C、同一条直线D、两条直线垂直于同一条直线8、命题“任意两个直角都相等”的条件是_____,结论是_____,它是____(真或假)命题.9、判断下列命题是真命题还是假命题.(1)若|a|=|b|,则a=b;(2)若a=b,则a3=b3;(3)若x=a,则x2-(a+b)x+ab=0;(4)如果a2=ab,则a=b;(5)若x>3,则x>2.10、把下列命题写成“如果……,那么……”的形式,并指出条件和结论.(1)全等三角形的对应角相等;(2)等角的补角相等;(3)自然数必为有理数;;(4)两直线平行,同位角相等;(5)两条直线相交只有一个交点.(6)邻补角的角平分线互相垂直.11.写出下列命题的条件和结论:(1)两条直线被第三条直线所截,同旁内角互补;(2)如果两个三角形全等,那么它们对应边上的高也相等.(3)一个三角形如果有两个角互余,那么这个三角形是直角三角形;12.举出反例说明“如果AB=BC,那么点C是AB的中点”是个假命题.13.如图所示,△ADF和△BCE中,∠A=∠B,点D,E,F,C在同一条直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF;(1)请你用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的命题;(用序号写出命题的书写形式,如:如果⊗⊗,那么⊗)(2)选择(1)中你写的一个命题,说明它的正确性.14.如图,在四边形ABCD中,点E在边CD上,连接AE、BE,给出下列五个关系式:①AD∥BC;②DE=CE;③∠1=∠2;④∠3=∠4;⑤AD+BC=AB.将其中的三个关系式作为题设,另外两个作为结论,便构成一个命题.(1)用序号写出一个真命题(书写形式:如果×××,那么×××),并给出证明.(2)用序号再写出三个真命题(不要求证明).第14题图。

最新初中数学命题与证明的基础测试题附答案(1)

最新初中数学命题与证明的基础测试题附答案(1)

最新初中数学命题与证明的基础测试题附答案(1)一、选择题1.已知命题:等边三角形是等腰三角形.则下列说法正确的是()A.该命题为假命题 B.该命题为真命题C.该命题的逆命题为真命题 D.该命题没有逆命题【答案】B【解析】分析:首先判断该命题的正误,然后判断其逆命题的正误后即可确定正确的选项.详解:等边三角形是等腰三角形,正确,为真命题;其逆命题为等腰三角形是等边三角形,错误,为假命题,故选:B.点睛:本题考查了命题与定理的知识,解题的关键是能够写出该命题的逆命题,难度不大.2.下列命题中,是假命题的是()A.对顶角相等B.同位角相等C.同角的余角相等D.全等三角形的面积相等【答案】B【解析】【分析】根据对顶角得性质、平行线得性质、余角得等于及全等三角形得性质逐一判断即可得答案.【详解】A.对顶角相等是真命题,故该选项不合题意,B.两直线平行,同位角相等,故该选项是假命题,符合题意,C.同角的余角相等是真命题,故该选项不合题意,D.全等三角形的面积相等是真命题,故该选项不合题意.故选:B.【点睛】本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.下列各命题的逆命题是真命题的是A.对顶角相等B.全等三角形的对应角相等C.相等的角是同位角D.等边三角形的三个内角都相等【答案】D【解析】【分析】分别写出四个命题的逆命题:相等的角为对顶角;对应角相等的两三角形全等;同位角相等;三个角都相等的三角形为等边三角形;然后再分别根据对顶角的定义对第一个进行判断;根据三角形全等的判定方法对第二个进行判断;根据同位角的性质对第三个进行判断;根据等边三角形的判定方法对第四个进行判断.【详解】A、“对顶角相等”的逆命题为“相等的角为对顶角”,此逆命题为假命题,所以A选项错误;B、“全等三角形的对应角相等”的逆命题为“对应角相等的两三角形全等”,此逆命题为假命题,所以B选项错误;C、“相等的角是同位角”的逆命题为“同位角相等”,此逆命题为假命题,所以C选项错误;D、“等边三角形的三个内角都相等”的逆命题为“三个角都相等的三角形为等边三角形”,此逆命题为真命题,所以D选项正确.故选D.【点睛】本题考查了命题与定理:判断事物的语句叫命题;题设与结论互换的两个命题互为逆命题;正确的命题叫真命题,错误的命题叫假命题;经过推论论证得到的真命题称为定理.4.下列命题中是真命题的是()A.多边形的内角和为180°B.矩形的对角线平分每一组对角C.全等三角形的对应边相等D.两条直线被第三条直线所截,同位角相等【答案】C【解析】【分析】根据多边形内角和公式可对A进行判定;根据矩形的性质可对B进行判定;根据全等三角形的性质可对C进行判定;根据平行线的性质可对D进行判定.【详解】A.多边形的内角和为(n-2)·180°(n≥3),故该选项是假命题,B.矩形的对角线不一定平分每一组对角,故该选项是假命题,C.全等三角形的对应边相等,故该选项是真命题,D.两条平行线被第三条直线所截,同位角相等,故该选项是假命题,故选:C.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.熟练掌握矩形的性质、平行线的性质、全等三角形的性质及多边形的内角和公式是解题关键.5.下列命题是真命题的个数是().①64的平方根是8 ;②22a b =,则a b =;③三角形三条内角平分线交于一点,此点到三角形三边的距离相等;④三角形三边的垂直平分线交于一点.A .1个B .2个C .3个D .4个【答案】C【解析】【分析】分别根据平方根、等式性质、三角形角平分线、线段垂直平分线性质进行分析即可.【详解】①64的平方根是8±,正确,是真命题;②22a b =,则不一定a b =,可能=-a b ;故错误;③根据角平分线性质,三角形三条内角平分线交于一点,此点到三角形三边的距离相等;是真命题;④根据三角形外心定义,三角形三边的垂直平分线交于一点,是真命题;故选:C【点睛】考核知识点:命题的真假.理解平方根、等式性质、三角形角平分线、线段垂直平分线性质是关键.6.下列命题是假命题的是( )A .对顶角相等B .两直线平行,同旁内角相等C .平行于同一条直线的两直线平行D .同位角相等,两直线平行【答案】B【解析】解:A .对顶角相等是真命题,故本选项正确,不符合题意;B .两直线平行,同旁内角互补,故本选项错误,符合题意;C .平行于同一条直线的两条直线平行是真命题,故本选项正确,不符合题意;D .同位角相等,两直线平行是真命题,故本选项正确,不符合题意.故选B .7.下列命题中,是真命题的是( )A .若a b =,则a b =B .若0a b +>,则a ,b 都是正数C .两条直线被第三条直线所截,同位角相等D .垂直于同一条直线的两条直线平行【答案】D【解析】【分析】正确的命题是真命题,根据定义依次判断即可得到答案.【详解】A. 若a b =,则a b =±,故A 错误;B. 若0a b +>,则a ,b 中至少有一个数是正数,且正数绝对值大于负数的绝对值,故B 错误;C. 两条平行线被第三条直线所截,同位角相等,故C 错误;D. 垂直于同一条直线的两条直线平行正确,故选:D.【点睛】此题考查判断真假命题,正确掌握命题的分类并理解事件的正确与否是解题的关键.8.下列命题中是假命题的是( ).A .同旁内角互补,两直线平行B .直线a b ⊥r r,则a 与b 相交所成的角为直角C .如果两个角互补,那么这两个角是一个锐角,一个钝角D .若a b ∥,a c ⊥,那么b c ⊥【答案】C【解析】根据平行线的判定,可知“同旁内角互补,两直线平行”,是真命题;根据垂直的定义,可知“直线a b ⊥,则a 与b 相交所成的角为直角”,是真命题; 根据互补的性质,可知“两个角互补,这两个角可以是两个直角”,是假命题;根据垂直的性质和平行线的性质,可知“若a b P ,a c ⊥,那么b c ⊥”,是真命题. 故选C.9.下列语句正确的个数是( )①两个五次单项式的和是五次多项式②两点之间,线段最短③两点之间的距离是连接两点的线段④延长射线AB ,交直线CD 于点P⑤若小明家在小丽家的南偏东35︒方向,则小丽家在小明家的北偏西35︒方向 A .1B .2C .3D .4【答案】C【解析】【分析】根据单项式和多项式的性质、线段的定义以及性质、射线的定义、方位角的性质对各项进行分析即可.【详解】①两个五次单项式的和可能为零、五次单项式或五次多项式,错误;②两点之间,线段最短,正确;③两点之间的距离是连接两点的线段的长度,错误;④延长射线AB,交直线CD于点P,正确;⑤若小明家在小丽家的南偏东35︒方向,则小丽家在小明家的北偏西35︒方向,正确;故语句正确的个数有3个故答案为:C.【点睛】本题考查语句是否正确的问题,掌握单项式和多项式的性质、线段的定义以及性质、射线的定义、方位角的性质是解题的关键.10.下列命题的逆命题成立的是()A.对顶角相等B.全等三角形的对应角相等C.如果两个数相等,那么它们的绝对值相等D.两直线平行,同位角相等【答案】D【解析】【分析】写出各个命题的逆命题,然后判断是否成立即可.【详解】解:A、逆命题为相等的角为对顶角,不成立;B、逆命题为对应角相等的三角形全等,不成立;C、逆命题为绝对值相等的两个数相等,不成立;D、逆命题为同位角相等,两直线平行,成立,故选:D.【点睛】本题考查了命题与定理的知识,解题的关键是能够正确的写出各个命题的逆命题,难度不大.11.下列命题是假命题的是()A.三角形的外心到三角形的三个顶点的距离相等B.如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16C.将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限D.若关于x的一元一次不等式组213x mx-≤⎧⎨+>⎩无解,则m的取值范围是1m£【答案】B【解析】【分析】利用三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组分别判断后即可确定正确的选项.【详解】A. 三角形的外心到三角形的三个顶点的距离相等,正确,是真命题;B. 如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16或17,错误,是假命题;C. 将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限,正确,是真命题;D. 若关于x的一元一次不等式组213x mx-≤⎧⎨+>⎩无解,则m的取值范围是1m£,正确,是真命题;故答案为:B【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组.12.下列命题是真命题的是()A.若x>y,则x2>y2B.若|a|=|b|,则a=b C.若a>|b|,则a2>b2D.若a<1,则a>1a【答案】C【解析】【分析】根据实数的乘方,绝对值的性质和倒数的意义等,对各选项举反例分析判断后利用排除法求解.【详解】A. x>y,如x=0,y=-1,02<(-1)2,此时x2<y2,故A选项错误;B. |a|=|b|,如a=2,b=-2,此时a≠b,故B选项错误;C. 若a>|b|,则a2>b2,正确;D. a<1,如a=-1,此时a=1a,故D选项错误,故选C.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,本题主要利用了实数的性质.13.下列命题中,其中真命题的个数是()①平面直角坐标系内的点与实数对一一对应;②内错角相等;③平行于同一条直线的两条直线互相平行;④对顶角相等A.1个B.2个C.3个D.4个【答案】B【解析】【分析】正确的命题是真命题,根据真命题的定义依次进行判断.【详解】①平面直角坐标系内的点与有序实数对一一对应,是假命题;②两直线平行,内错角相等,是假命题;③平行于同一条直线的两条直线不一定相互平行,是真命题;④对顶角相等,是真命题;故选:B .【点睛】此题考查真命题的定义,正确掌握坐标与图形,平行线的性质,平行公理,对顶角性质是解题的关键.14.下列选项中,能说明命题“若22a b >,则a b >”是假命题的反例是( )A .1a =-,2b =B .2a =,1b =-C .1a =,2b =-D .2a =-,1b =【答案】D【解析】【分析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题,作答本题直接利用选项中数据代入求出答案.【详解】A. 当1a =-,2b =时,2a <2b ,a <b ,则此选项不是假命题的反例;B. 当2a =,1b =-时,2a >2b ,a >b ,则此选项不是假命题的反例;C. 当1a =,2b =-时,2a <2b ,a >b ,则此选项不是假命题的反例;D. 当2a =-,1b =时,2a >2b ,a <b ,则此选项是假命题的反例,故选:D .【点睛】本题考查真命题与假命题.要说明数学命题的错误,只需举出一个反例即可,反例就是符合已知条件但不满足结论的例子.15.对于命题“若a 2>b 2,则a >b ”,下面四组关于a ,b 的值中,能说明这个命题是假命题的是( )A .a =3,b =2B .a =﹣3,b =2C .a =3,b =﹣1D .a =﹣1,b =3【答案】B【解析】试题解析:在A 中,a 2=9,b 2=4,且3>2,满足“若a 2>b 2,则a >b”,故A 选项中a 、b 的值不能说明命题为假命题;在B中,a2=9,b2=4,且﹣3<2,此时虽然满足a2>b2,但a>b不成立,故B选项中a、b 的值可以说明命题为假命题;在C中,a2=9,b2=1,且3>﹣1,满足“若a2>b2,则a>b”,故C选项中a、b的值不能说明命题为假命题;在D中,a2=1,b2=9,且﹣1<3,此时满足a2<b2,得出a<b,即意味着命题“若a2>b2,则a>b”成立,故D选项中a、b的值不能说明命题为假命题;故选B.考点:命题与定理.16.下列正确说法的个数是()①同位角相等;②等角的补角相等;③两直线平行,同旁内角相等;④在同一平面内,过一点有且只有一条直线与已知直线垂直A.1 B.2 C.3 D.4【答案】B【解析】【分析】根据平行线的性质以及等角或同角的补角相等的知识,即可求得答案.【详解】解:∵两直线平行,同位角相等,故①错误;∵等角的补角相等,故②正确;∵两直线平行,同旁内角互补,故③错误;∵在同一平面内,过一点有且只有一条直线与已知直线垂直,故④正确.∴正确说法的有②④.故选B.【点睛】此题考查了平行线的性质与对顶角的性质,以及等角或同角的补角相等的知识.解题的关键是注意需熟记定理.17.下列命题的逆命题成立的有( )①勾股数是三个正整数②全等三角形的三条对应边分别相等③如果两个实数相等,那么它们的平方相等④平行四边形的两组对角分别相等A.1个B.2个C.3个D.4个【答案】B【解析】【分析】先写出每个命题的逆命题,再分别根据勾股数的定义、三角形全等的判定、平方根的定义、平行四边形的判定逐个判断即可.【详解】①逆命题:如果三个数是正整数,那么它们是勾股数反例:正整数1,2,3,但222123+?,即它们不是勾股数,则此逆命题不成立 ②逆命题:三条对应边分别相等的两个三角形全等由SSS 定理可知,此逆命题成立③逆命题:如果两个实数的平方相等,那么这两个实数相等反例:222(2)4=-=,但22≠-,则此逆命题不成立④逆命题:两组对角分别相等的四边形是平行四边形由平行四边形的判定可知,此逆命题成立综上,逆命题成立的有2个故选:B .【点睛】本题考查了命题的相关概念、勾股数的定义、三角形全等的判定、平方根的定义、平行四边形的判定,正确写出各命题的逆命题是解题关键.18.已知:在ABC V 中,AB AC ≠,求证:.B C ∠≠∠若用反证法来证明这个结论,可以假设( )A .AB ∠=∠B .AB BC = C .B C ∠=∠D .A C ∠=∠【答案】C【解析】【分析】反证法的步骤:1、假设命题反面成立;2、从假设出发,经过推理得出和反面命题矛盾,或者与定义、公理、定理矛盾;3、得出假设命题不成立是错误的,即所求证命题成立.【详解】已知:在ABC V 中,AB AC ≠,求证:.B C ∠≠∠若用反证法来证明这个结论,可以假设B C ∠=∠,由“等角对等边”可得AB=AC,这与已知矛盾,所以.B C ∠≠∠故选C【点睛】本题考核知识点:反证法. 解题关键点:理解反证法的一般步骤.19.下列命题错误的是( )A .平行四边形的对角线互相平分B .两直线平行,内错角相等C .等腰三角形的两个底角相等D .若两实数的平方相等,则这两个实数相等【答案】D【解析】【分析】根据平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,分别进行判断,即可得到答案.【详解】解:A、平行四边形的对角线互相平分,正确;B、两直线平行,内错角相等,正确;C、等腰三角形的两个底角相等,正确;D、若两实数的平方相等,则这两个实数相等或互为相反数,故D错误;故选:D.【点睛】本题考查了判断命题的真假,以及平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,解题的关键是熟练掌握所学的性质进行解题.20.下列命题中,正确的命题是()A.度数相等的弧是等弧B.正多边形既是轴对称图形,又是中心对称图形C.垂直于弦的直径平分弦D.三角形的外心到三边的距离相等【答案】C【解析】【分析】根据等弧或垂径定理,正多边形的性质一一判断即可;【详解】A、完全重合的两条弧是等弧,错误;B、正五边形不是中心对称图形,错误;C、垂直于弦的直径平分弦,正确;D、三角形的外心到三个顶点的距离相等,错误;故选:C.【点睛】此题考查命题与定义,正多边形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

命题与证明
一、填空
1.把命题“三边对应相等的两个三角形全等”写成“如果……,那么……”的形式是________________________________________________________________________.
2.命题“如果22
a b = ,那么a b =”的逆命题是________________________________. 3.命题“三个角对应相等的两个三角形全等” 是一个______命题(填“真”或“假”). 4.如图,已知梯形ABCD 中, AD ∥BC, AD =3, AB =CD =4, BC =7,则∠B =_______.
5.用反证法证明“b 1∥b 2”时,应先假设_________.
6.如图,在ΔABC 中,边AB 的垂直平分线交AC 于E, ΔABC 与ΔBEC 的周长分别为24和14,则AB =________.
7.若平行四边形的两邻边的长分别为16和20, 两长边间的距离为8,则两短边的距离为__________.
8.如图,在ΔABC 中,∠ABC =∠ACB =72°, BD 、CE 分别是∠ABC 和∠ACB 的平分线,它们的交点为F,则图中等腰三角形有______个. 二、选择题
1.下列语句中,不是命题的是( )
A.直角都等于90°
B.面积相等的两个三角形全等
C.互补的两个角不相等
D.作线段AB 2.下列命题是真命题的是( )
A.两个等腰三角形全等
B.等腰三角形底边中点到两腰距离相等
C.同位角相等
D.两边和一角对应相等的两个三角形全等 3.下列条件中能得到平行线的是( )
①邻补角的角平分线;②平行线内错角的角平分线;③平行线同位角的平分线; ④平行线同旁内角的角平分线.
A. ①②
B. ②④
C. ②③
D. ④ 4.下列命题的逆命题是真命题的是( ) A.两直线平行同位角相等 B.对顶角相等
C.若a b =,则2
2a b =
D.若(1)1a x a +>+,则1x >
5.三角形中,到三边距离相等的点是( )
A.三条高的交点
B.三边的中垂线的交点
C.三条角平分线的交点
D.三条中线的交点 6.下列条件中,不能判定两个直角三角形全等的是( ) A.两条直角边对应相等 B.斜边和一锐角对应相等
C.斜边和一条直角边对应相等
D.面积相等
7.△ABC 的三边长,,a b c 满足关系式()()()0a b b c c a ---=,则这个三角形一定是( ) A.等腰三角形 B.等边三角形 C.等腰直角三角形 D.无法确定
8.如图,点E 在正方形ABCD 的边AB 上,若EB 的长为1, EC 的长为2,那么正方形ABCD 的面积是( ) 35三、解答题(每题8分,共32分)
1.判断下列命题是真命题还是假命题,若是假命题,请举一个反例说明. (1)有一个角是60°的等腰三角形是等边三角形. (2)有两个角是锐角的三角形是锐角三角形.
2.如图, BD ∥AC,且BD =1
2
AC, E 为AC 中点,求证:BC =DE.
A
C
E
D
B
3.如图.三角形纸片ABC 中,∠A =65°,∠B =75°,将纸片的一角折叠,使点C 落在ΔABC 内,若∠1=20°,求∠2的度数.
4.如图,梯形ABCD 中, AD ∥BC, ∠ABC =60°, BD 平分∠ABC, BC =2AB. 求证:AB=CD.
5、已知,如图所示,正方形ABCD 的边长为1, G 为CD 边上的一个动点(点G 与C 、D 不重合),以CG 为一边向正方形ABCD 外作正方形GCEF,连接DE 交BG 的延长线于点H. (1)求证:①ΔBCG ≌ΔDCE ②HB ⊥DE
(2)试问当G 点运动到什么位置时, BH 垂直平分DE?请说明理由.
6、已知:如图,AB∥CD,AB =CD ,BE∥DF;求证:BE =DF ;
7.已知:如图,C 为BE 上一点,点A ,D 分别在BE 两侧.AB ∥ED ,AB =CE ,BC =ED .求证:AC =CD .
8.如图,AE 是∠BAC 的平分线,AB=AC ,D 是AE 反向延长线的一点,则△ABD 与△ACD 全等吗?为什么?
F
O D
E
C
B
A
第2章:命题与证明 一、填空题
1、略。

2、如果a b =,那么2
2
a b =。

3、假。

4、60°5、b 1与b 2相交于O 点. 6、10.7、10.8、8 二、选择题:DBCA CDAC 三、解答题:1、①真②假 2、证明:∵E 为AC 中点,∴EC=2
1AC 又∵BD=
2
1
AC,∴BD=EC,又BD ∥AC,即BD ∥EC. ∴四边形BCED 为平行四边形 ∴BC=DE
3、60°
4、证明:过A 、D 两点分别作BC 的垂线,交BC 于E 、F 点,有AD=EF , 可证EF=AD=AB ,∴BE+FC=AB 由∠ABE=60°,可知BE=FC=2
1AB 易证△ABE ≌△DCF ,得AB=DC 四、证明题
1、证明⑴ ∵正方形ABCD 得BC=DC ,∠BCG=90°
正方形GCEF 得GC=CE, ∠DCE=90° ∴△BCG ≌△DCE
⑵由⑴可得∠DEC=∠BGC 而
∠BGC+∠GBC=90°∴∠HEB+∠HBE=90°∴HB ⊥DF 2、当GC=2-1时,GE=2(2-1)=2- 2,
而DG=1-(2-1)=2-2 ∴DG=GE 即BH 垂直平分DE。

相关文档
最新文档