2014高教社杯全国大学生数学建模竞赛题目
2014高教社杯全国大学生数学建模竞赛A题论文答辩

70.9 48.8 29.9 91.3 2.588 1.056 2.498
75.7 37.4 33.3 90.8 1.838 1.168 1.702
总计
1.347 2.437 2.984 3.784 2.763
求解参数N与P的关系为
N (P 3) 3
P值太大,反而会影响计算效率,因此,取
P 30 为宜。
rpGM 1.6139 103 m / s ra a
沿运动轨迹切线方向
第2页,共15页。
1.问题一:着陆准备轨道近月点和远月点的位置
加速度为:
d 2Z dt 2
e i
d 2r dt 2
r d
dt
2
i
r
d 2
dt 2
2 dr dt
d
dt
对嫦娥三号进行受力分析,由牛顿第二定律得:
mMG ei
2014年高教社杯全国大学生数学建模竞赛
A题: 嫦娥三号软着陆轨道设计
与控制策略
第1页,共15页。
1. 问题一:嫦娥三号速度的大小和方向
vp
(1 e )
(1 e )a
(1 e )
va (1 e )a
联立上式可得近月点(近拱点),远月点(远拱点)的速度:
vp
va
raGM 1.6922 103 m / s rp a
当 rp 1752.013 103 m 时,解得 cos ,则-1 ; 180
当 ra 1837.013 103 m 时,解得 cos,则1 。 0
则在近月点的位置是 (180,1752.013 103 )
远月点的位置是 (0,1837.013 103 )
第4页,共15页。
2014高教社杯全国大学生数学建模竞赛A题

2014高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的报名参赛队号为(8位数字组成的编号):07033001 所属学校(请填写完整的全名):吉林师范大学博达学院参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期: 2014 年 9 月 15 日赛区评阅编号(由赛区组委会评阅前进行编号):2014高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):嫦娥三号软着陆轨道设计与控制策略摘要本文针对嫦娥三号软着陆轨道设计与控制策略问题,通过提取题目中的信息,利用拱点的概念、B 样条函数逼近的统计定位方法、非线性规划问题及哈密尔顿函数为理论基础进行了完整的建模工作。
高教社杯全国大学生数学建模竞赛题目(四套ABCD)

高教社杯全国高校生数学建模竞赛题目(四套ABCD)当我第一遍读一本好书的时候,我仿佛觉得找到了一个伴侣;当我再一次读这本书的时候,仿佛又和老伴侣重逢。
我们要把读书当作一种乐趣,并自觉把读书和学习结合起来,做到博览、精思、熟读,更好地指导自己的学习,让自己不断成长。
让我们一起到学习啦一起学习吧!2021年高教社杯全国高校生数学建模竞赛题目A题 CT系统参数标定及成像CT(Computed Tomography)可以在不破坏样品的状况下,利用样品对射线能量的吸取特性对生物组织和工程材料的样品进行断层成像,由此猎取样品内部的结构信息。
一种典型的二维CT系统如图1所示,平行入射的X射线垂直于探测器平面,每个探测器单元看成一个接收点,且等距排列。
X射线的放射器和探测器相对位置固定不变,整个放射-接收系统绕某固定的旋转中心逆时针旋转180次。
对每一个X射线方向,在具有512个等距单元的探测器上测量经位置固定不动的二维待检测介质吸取衰减后的射线能量,并经过增益等处理后得到180组接收信息。
CT系统安装时往往存在误差,从而影响成像质量,因此需要对安装好的CT系统进行参数标定,即借助于已知结构的样品(称为模板)标定CT系统的参数,并据此对未知结构的样品进行成像。
请建立相应的数学模型和算法,解决以下问题:(1) 在正方形托盘上放置两个均匀固体介质组成的标定模板,模板的几何信息如图2所示,相应的数据文件见附件1,其中每一点的数值反映了该点的吸取强度,这里称为“吸取率”。
对应于该模板的接收信息见附件2。
请依据这一模板及其接收信息,确定CT系统旋转中心在正方形托盘中的位置、探测器单元之间的距离以及该CT系统使用的X射线的180个方向。
(2) 附件3是利用上述CT系统得到的某未知介质的接收信息。
利用(1)中得到的标定参数,确定该未知介质在正方形托盘中的位置、几何样子和吸取率等信息。
另外,请具体给出图3所给的10个位置处的吸取率,相应的数据文件见附件4。
2014高教社杯全国大学生数学建模竞赛(A)题目

2014高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题嫦娥三号软着陆轨道设计与控制策略嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。
嫦娥三号在着陆准备轨道上的运行质量为 2.4t,其安装在下部的主减速发动机能够产生1500N到7500N的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。
在四周安装有姿态调整发动机,在给定主减速发动机的推力方向后,能够自动通过多个发动机的脉冲组合实现各种姿态的调整控制。
嫦娥三号的预定着陆点为19.51W,44.12N,海拔为-2641m(见附件1)。
嫦娥三号在高速飞行的情况下,要保证准确地在月球预定区域内实现软着陆,关键问题是着陆轨道与控制策略的设计。
其着陆轨道设计的基本要求:着陆准备轨道为近月点15km,远月点100km的椭圆形轨道;着陆轨道为从近月点至着陆点,其软着陆过程共分为6个阶段(见附件2),要求满足每个阶段在关键点所处的状态;尽量减少软着陆过程的燃料消耗。
根据上述的基本要求,请你们建立数学模型解决下面的问题:(1)确定着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与方向。
(2)确定嫦娥三号的着陆轨道和在6个阶段的最优控制策略。
(3)对于你们设计的着陆轨道和控制策略做相应的误差分析和敏感性分析。
附件1:问题的背景与参考资料;附件2:嫦娥三号着陆过程的六个阶段及其状态要求;附件3:距月面2400m处的数字高程图;附件4:距月面100m处的数字高程图。
附件1:问题A的背景与参考资料1.中新网12月12日电(记者姚培硕)根据计划,嫦娥三号将在北京时间12月14号在月球表面实施软着陆。
嫦娥三号如何实现软着陆以及能否成功成为外界关注焦点。
目前,全球仅有美国、前苏联成功实施了13次无人月球表面软着陆。
北京时间12月10日晚,嫦娥三号已经成功降轨进入预定的月面着陆准备轨道,这是嫦娥三号“落月”前最后一次轨道调整。
2014年高教社杯全国大学生数建模竞赛上海区获奖名单 年

奖级 题号
3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 B B B B B A A A A A A A B B B B B B A A A A A A A A A A A B B B B B B B
队员 1
刘小满 袁超宇 徐嘉灿 李凯莅 周苏田介 陈力 陈品翰 何雨宸 邹晨 黄明媚 李涓涓 余若凡 王佳俊 吕赫 江河 施浅 贾冬雨 李纬尘 贺甜甜 郑博艺 叶迪卓然 刘一鸣 王凡 刘曦阳 许哲宇 高天 何俊贤 彭瑾龙 谭昊 赵紫荆 邓志鹏 陈宗晨 宋振宇 朱旭 傅嘉豪 杨佳涛
队员 2
杨诗颖 吴艺娴 吴皓琪 陈思佳 吴金鑫 王耀辉 马扬清 许夏杰 周士强 舒静 王德泉 蒲秋实 项思远 李有方 罗盛杰 谢异 杨蕊 唐梓峻 房悦竹 邓舒文 王依宁 郭振乾 阎谨 高策 梁玉鼎 罗嘉婧 韩璐岭 胡麒 刘梦云 游杰 万强 刘文青 杨泽 沈少波 陈若冰 李健达
奖级 题号
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 A A A A A A A A A A A A A B B B B B B B B B B B B B B B B B B B B B B B
队员 1
队员 3
董子玥 马豪君 吴海潮 梁志栋 朱仁杰 刘杰 刘宇鹏 汤一嘉 姚佳蓉 周昭豪 姜秀财 邱爽 赵亦峰 祁玥 邓泽恒 梁思寒 王昊 王梦真 李一鸣 储鑫 高述琪 张锐
崔文韬 李佳骏 卢思佳 焦点 张霆钧 吴育蔚 朱升发 冯禹 章程 徐清悦 王川 易正翔 赵鹏 张天宇 金猛 董利宽 王天益 贾启新 权晨嘉 史沛瑶 马东发 韩俊强 石莜迪 林宜葳 陈鸣 王佳杰 田思源 陈鎏霁 张琦 张雨彤 陈步琛 朱应昶 蒋宇乔 李响 胡金政 古玮
2014全国大学生数学建模竞赛A题题目及参考答案_

2014全国大学生数学建模竞赛A题题目及参考答案_ 2011高教社杯全国大学生数学建模竞赛题目,请先阅读“全国大学生数学建模竞赛论文格式规范”,A题城市表层土壤重金属污染分析随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。
对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。
按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类活动影响的程度不同。
现对某城市城区土壤地质环境进行调查。
为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10 厘米深度)进行取样、编号,并用GPS记录采样点的位置。
应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。
另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。
附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。
现要求你们通过数学建模来完成以下任务:(1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。
(2) 通过数据分析,说明重金属污染的主要原因。
(3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。
(4) 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息,有了这些信息,如何建立模型解决问题,DJHFSJKDHFKDSJKFHSJKDFHJKDSHFDJKSFHJKDSHFJKDSHFJK题目 A题城市表层土壤重金属污染分析摘要,本文研究的是某城区警车配置及巡逻方案的制定问题,建立了求解警车巡逻方案的模型,并在满足D1的条件下给出了巡逻效果最好的方案。
高教社杯全国大学生数学建模竞赛题目

高教社杯全国大学生数学建模竞赛题目高教社杯全国大学生数学建模竞赛已经成为了我国大学生数学建模领域一项极具影响力的赛事之一。
作为一项旨在提高大学生数学建模能力和创新能力的比赛,其题目的设计非常关键。
从2009年开始,高教社杯全国大学生数学建模竞赛就引入了“数学、建模和计算机”三个方面相结合来设置竞赛题目,旨在充分体现创新性、实际性和时代性。
每年的竞赛题目独具特色,既注重基础,又注重应用,给参赛选手提供了一个广泛展示科技创新成果的舞台,极大地推动了我国大学生数学建模水平的提升。
以下是近几年高教社杯全国大学生数学建模竞赛的题目:2019年:多元时空数据的融合与应用该题目要求选手用数据分析和模型建模技术进行多元时空数据融合,制作出能应用于数据分析、可视化和预测等领域的模型。
该题目考验选手的计算机应用能力和数据处理能力。
2018年:海洋环境与生态建设该题目需要选手从海洋生态、环境污染、资源利用、气候变化等方面出发,结合数学模型和计算机技术,探究关键问题。
选手要能积极运用大数据技术,分析丰富的海洋数据,并针对不同海洋问题给出行之有效的数学和计算模型。
2017年:共享单车智能管理与优化该题目以共享单车为研究对象,要求选手分析共享单车智能管理的效能,探究如何在现有的单车停放、调度、维修等方面研究出更优的管理模式,实现精准的数量分配和智能的管理系统。
以上三个题目从不同的角度出发,分别涉及了数据分析、海洋环境、共享单车等多个领域。
它们都融合了计算机技术和数学建模思想,是一道技术与创新相结合的精彩之作。
总体而言,高教社杯全国大学生数学建模竞赛的题目设计体现了需求实际、具有挑战性和创新性等特点,能够有效地提高大学生的数学建模和创新能力。
同时,它也为推进我国大学生数学建模水平的提升做出了重大贡献。
相信未来会有更多具有前瞻性和实践性的竞赛题目出现,让更多大学生通过数学建模实现梦想。
高教社杯全国大学生数学建模竞赛题目 穿越沙漠

高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)B 题 穿越沙漠考虑如下的小游戏:玩家凭借一张地图,利用初始资金购买一定数量的水和食物(包括食品和其他日常用品),从起点出发,在沙漠中行走。
途中会遇到不同的天气,也可在矿山、村庄补充资金或资源,目标是在规定时间内到达终点,并保留尽可能多的资金。
游戏的基本规则如下:(1)以天为基本时间单位,游戏的开始时间为第0天,玩家位于起点。
玩家必须在截止日期或之前到达终点,到达终点后该玩家的游戏结束。
(2)穿越沙漠需水和食物两种资源,它们的最小计量单位均为箱。
每天玩家拥有的水和食物质量之和不能超过负重上限。
若未到达终点而水或食物已耗尽,视为游戏失败。
(3)每天的天气为“晴朗”、“高温”、“沙暴”三种状况之一,沙漠中所有区域的天气相同。
(4)每天玩家可从地图中的某个区域到达与之相邻的另一个区域,也可在原地停留。
沙暴日必须在原地停留。
(5)玩家在原地停留一天消耗的资源数量称为基础消耗量,行走一天消耗的资源数量为基础消耗量的2倍。
(6)玩家第0天可在起点处用初始资金以基准价格购买水和食物。
玩家可在起点停留或回到起点,但不能多次在起点购买资源。
玩家到达终点后可退回剩余的水和食物,每箱退回价格为基准价格的一半。
(7)玩家在矿山停留时,可通过挖矿获得资金,挖矿一天获得的资金量称为基础收益。
如果挖矿,消耗的资源数量为基础消耗量的3倍;如果不挖矿,消耗的资源数量为基础消耗量。
到达矿山当天不能挖矿。
沙暴日也可挖矿。
(8)玩家经过或在村庄停留时可用剩余的初始资金或挖矿获得的资金随时购买水和食物,每箱价格为基准价格的2倍。
请根据游戏的不同设定,建立数学模型,解决以下问题。
1. 假设只有一名玩家,在整个游戏时段内每天天气状况事先全部已知,试给出一般情况下玩家的最优策略。
求解附件中的“第一关”和“第二关”,并将相应结果分别填入Result.xlsx 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题嫦娥三号软着陆轨道设计与控制策略嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。
嫦娥三号在着陆准备轨道上的运行质量为2.4t,其安装在下部的主减速发动机能够产生1500N到7500N的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。
在四周安装有姿态调整发动机,在给定主减速发动机的推力方向后,能够自动通过多个发动机的脉冲组合实现各种姿态的调整控制。
嫦娥三号的预定着陆点为19.51W,44.12N,海拔为-2641m。
嫦娥三号在高速飞行的情况下,要保证准确地在月球预定区域内实现软着陆,关键问题是着陆轨道与控制策略的设计。
其着陆轨道设计的基本要求:着陆准备轨道为近月点15km,远月点100km的椭圆形轨道;着陆轨道为从近月点至着陆点,其软着陆过程共分为6个阶段,要求满足每个阶段在关键点所处的状态;尽量减少软着陆过程的燃料消耗。
根据上述的基本要求,请你们建立数学模型解决下面的问题:(1)确定着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与方向。
(2)确定嫦娥三号的着陆轨道和在6个阶段的最优控制策略。
(3)对于你们设计的着陆轨道和控制策略做相应的误差分析和敏感性分析。
根据计划,嫦娥三号将在北京时间12月14号在月球表面实施软着陆。
嫦娥三号如何实现软着陆以及能否成功成为外界关注焦点。
目前,全球仅有美国、前苏联成功实施了13次无人月球表面软着陆。
北京时间12月10日晚,嫦娥三号已经成功降轨进入预定的月面着陆准备轨道,这是嫦娥三号“落月”前最后一次轨道调整。
在实施软着陆之前,嫦娥三号还将在这条近月点高度约15公里、远月点高度约100公里的椭圆轨道上继续飞行。
期间,将稳定飞行姿态,对着陆敏感器、着陆数据等再次确认,并对软着陆的起始高度、速度、时间点做最后准备。
“发射、近月制动、变轨和月面降落比较起来,后者更为关键。
这对我们来说是一个全新的,也是一个最重要的考验。
”中国探月工程总设计师吴伟仁表示。
嫦娥三号着陆地点选在较为平坦的虹湾区。
但由于月球地形的不确定性,最终“落月”地点的选择仍存在一定难度。
据悉,嫦娥三号将在近月点15公里处以抛物线下降,相对速度从每秒1.7公里逐渐降为零。
整个过程大概需要十几分钟的时间。
探测器系统副总指挥谭梅将其称为“黑色750秒”。
由于月球上没有大气,嫦娥三号无法依靠降落伞着陆,只能靠变推力发动机,才能完成中途修正、近月制动、动力下降、悬停段等软着陆任务。
据了解,嫦娥三号主发动机是目前中国航天器上最大推力的发动机,能够产生从1500牛到7500牛的可调节推力,进而对嫦娥三号实现精准控制。
在整个“落月”过程中,“动力下降”被业内形容为最惊心动魄的环节。
在这个阶段,嫦娥三号要完全依靠自主导航控制,完成降低高度、确定着陆点、实施软着陆等一系列关键动作,人工干预的可能性几乎为零。
“在这个时间段内测控都跟不上了,判断然后上去执行根本来不及,只能事先把程序都设定好。
”谭梅表示。
在距月面100米处时,嫦娥三号要进行短暂的悬停,扫描月面地形,避开障碍物,寻找着陆点。
“如果下面有个大坑,需要挪个地方,它就会自己平移,等照相机告诉它地面平了,才会降落”。
中国绕月探测工程首任首席科学家、中国科学院院士欧阳自远介绍。
之后,嫦娥三号在反推火箭的作用下继续慢慢下降,直到离月面4米高时再度悬停。
此时,关掉反冲发动机,探测器自由下落。
由于探测器具备着陆缓冲机构,几个腿都有弹性,落地时不至于摔坏。
安全降落以后,嫦娥三号将打开太阳能电池板接收能量,携带的仪器经过测试、调试后开始工作。
随后,“玉兔号”月球车将驶离着陆器,在月面进行3个月的科学勘测,着陆器则在着陆地点进行原地探测。
这将是中国航天器首次在地外天体的软着陆和巡视勘探,同时也是1976年后人类探测器首次的落月探测。
关于比冲比冲或比冲量是对一个推进系统的燃烧效率的描述。
比冲的定义为:火箭发动机单位质量推进剂产生的冲量,或单位流量的推进剂产生的推力。
比冲的单位为米/秒(m/s ),并满足下列关系式:thrust e F v m ,其中thrust F 是发动机的推力,单位是牛顿; e v 是以米/秒为单位的比冲;m是单位时间燃料消耗的公斤数。
关于月球参数月球平均半径、赤道平均半径和极区半径分别为1737.013km 、1737.646km 和1735.843km ,月球的形状扁率为1/963.7256,月球质量是7.3477×1022kg 。
月球与地球距离最远(远地点):406610km ,最近(近地点):356330km ,平均距离为384400km 。
NASA 月球勘测轨道飞行器使用的月面海拔零点,是月球的平均半径所在的高度。
所以,嫦娥三号着陆点的海拔为-2640m ,即该点到月球中心的距离要比月球的平均半径少2640m 。
嫦娥三号软着陆过程分为6个阶段的要求(1)着陆准备轨道:着陆准备轨道的近月点是15KM ,远月点是100KM 。
近月点在月心坐标系的位置和软着陆轨道形态共同决定了着陆点的位置。
(2)主减速段:主减速段的区间是距离月面15km 到3km 。
该阶段的主要是减速,实现到距离月面3公里处嫦娥三号的速度降到57m/s 。
(3)快速调整段:快速调整段的主要是调整探测器姿态,需要从距离月面3km 到 2.4km 处将水平速度减为0m/s ,即使主减速发动机的推力竖直向下,之后进入粗避障阶段。
(4)粗避障段:粗避障段的范围是距离月面2.4km 到100m 区间,其主要是要求避开大的陨石坑,实现在设计着陆点上方100m 处悬停,并初步确定落月地点。
嫦娥三号在距离月面2.4km 处对正下方月面错误!未找到引用源。
×2300m 的范围进行拍照,获得数字高程如附图5所示(相关数据文件见附件3),并嫦娥三号在月面的垂直投影位于预定着陆区域的中心位置。
(5)精避障段:精细避障段的区间是距离月面100m 到30m 。
要求嫦娥三号悬停在距离月面100m 处,对着陆点附近区域100m 范围内拍摄图像,并获得三维数字高程图。
分析三维数字高程图,避开较大的陨石坑,确定最佳着陆地点,实现在着陆点上方30m 处水平方向速度为0m/s 。
附图6是在距离月面100m 处悬停拍摄到的数字高程图(相关数据文件见附件4)。
(6)缓速下降阶段:缓速下降阶段的区间是距离月面30m 到4m 。
该阶段的主要任务控制着陆器在距离月面4m 处的速度为0m/s ,即实现在距离月面4m 处相对月面静止,之后关闭发动机,使嫦娥三号自由落体到精确有落月点。
嫦娥三号软着陆过程示意图嫦娥三号近月轨道示意图嫦娥三号着陆区域和着陆点示意图嫦娥三号安装有大推力主减速发动机一台,位于正下方。
小型姿态调整发动机16台,分布在相对前、后、左、右四个侧面,如附图3是一个侧面的分布情况。
嫦娥三号主发减速动机与姿态调整发动机的分布图全国大学生数学建模竞赛论文格式规范A、B题中任选一题,专科组参赛队从C、D题中任选一题。
(全国评奖时,每个组别一、二等奖的总名额按每道题参赛队数的比例分配;但全国一等奖名额的一半将平均分配给本组别的每道题,另一半按每题论文数的比例分配。
)A4纸打印(单面、双面打印均可);上下左右各留出至少2.5厘米的页边距;从左侧装订。
式见本规范第三页。
目、摘要和关键词写在论文第三页上(无需译成英文),并从此页开始编写页码;页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。
注意:摘要应该是一份简明扼要的详细摘要,请认真书写(但篇幅不能超过一页)。
和所在学校等的信息。
20页以内,附录页数不限)。
(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。
正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。
参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号] 作者,书名,出版地:出版社,出版年。
参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。
参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间(年月日)。
源程序(若有的话)。
同时,所有源程序文件必须放入论文电子版中备查。
论文及源程序电子版压缩在一个文件中,一般不要超过20MB,且应与纸质版同时提交。
(如果发现程序不能运行,或者运行结果与论文中报告的不一致,该论文可能会被认定为弄虚作假而被取消评奖资格。
)由赛区自行决定。
页前增加其他页和其他信息,或在论文的最后增加空白页等)。
模竞赛组委会。
[注] 赛区评阅前将论文第一页取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(各赛区自行决定是否在评阅时使用该表格)。
评阅后,赛区对送全国评阅的论文在第二页建立“全国统一编号”(编号方式由全国组委会规定,与去年格式相同),然后送全国评阅。
论文第二页(编号页)由全国组委会评阅前取下保存,同时在第二页建立“全国评阅编号”。
全国大学生数学建模竞赛组委会2014年8月26日修订关于论文的提交1. 在竞赛结束(周一上午8:00)前,各参赛队必须将电子版论文严格按要求(具体要求见下)以电子邮件附件的方式发送到全国组委会指定的论文收集邮箱(以本队论文编号作为邮件主题):cumcm.solutions@同时,按所在赛区的要求提交给赛区组委会作为备份,以备核查。
2. 在竞赛结束(周一上午8:00)前,各参赛队打印纸质版论文(内容应与电子版完全一致);注意连同附件中的程序(赛题中的原始数据除外)一并打印。
随后将纸质版论文尽快提交给所在学校,并由学校统一汇总核对后送交赛区组委会(赛区组委会接收纸质版论文的方式及截止时间由赛区组委会决定)。
赛区组委会另有要求的(如部分赛区组委会可能不要求提交纸质版论文,而由赛区组委会代为打印),按赛区组委会要求执行。
具体要求:1. 电子版论文正文可以用PDF或WORD格式提交(最好用PDF格式)。
2. 将与竞赛相关的所有文件(包括论文正文、程序、数据(赛题中的原始数据除外)和结果等)放在以论文编号作为名称的同一文件夹中,并压缩打包成一个文件,以论文编号作为压缩文件的文件名。
例如:参赛队01010021压缩文件为”A01010021_张三_李四_王五.RAR”,如图3所示。
注意压缩工具务必使用通用的WinRAR,不要使用其他不通用的压缩工具。
3. 将压缩文件作为电子邮件附件发送到全国组委会指定邮箱时,请特别注意以下几点:(1)邮件附件不得使用部分邮件服务商提供的“云附件”或“超大附件”等临时存储的功能,在发送邮件时注意正确选择操作,否则全国组委会可能无法收到你们的论文。