第四章 存储器系统2
计算机组成原理第四章单元测试(二)(含答案)

计算机组成原理第四章单元测试(二)(含答案)第四章存储系统(二)测试1、32位处理器的最大虚拟地址空间为A、2GB、4GC、8GD、16G2、在虚存、内存之间进行地址变换时,功能部件()将地址从虚拟(逻辑)地址空间映射到物理地址空间A、TLBB、MMUC、CacheD、DMA3、在程序执行过程中,Cache与主存的地址映象是由A、用户编写程序完成B、操作系统完成C、编译系统完成D、硬件自动完成4、某计算机的存储系统由cache和主存组成。
某程序执行过程共访存2000次,其中访问cache缺失(未命中)100次,则该程序执行过程中Cache的命中率为A、80%B、85%C、90%D、95%5、在Cache的地址映射中,若主存中的任意一块均可映射到Cache内任意一行的位置上,则这种映射方法称为A、全相联映射B、直接映射C、2-路组相联映射D、混合映射6、采用虚拟存储器的主要目的是A、提高主存储器的存取速度B、扩大主存储器的存储空间,且能进行自动管理和调度C、提高外存储器的存取速度D、扩大外存储器的存储空间7、虚拟存储器中,程序执行过程中实现虚拟地址到物理地址映射部件(系统)是A、应用程序完成B、操作系统和MMU配合完成C、编译器完成D、MMU完成8、相联存储器是按( )进行寻址访问的存储器A、地址B、内容C、堆栈D、队列9、以下哪种情况能更好地发挥Cache的作用A、程序中存在较多的函数调用B、程序的大小不超过内存容量C、程序具有较好的时间和空间局部性D、递归子程序10、以下关于虚拟存储管理地址转换的叙述中错误的是()A、地址转换是指把逻辑地址转换为物理地址B、一般来说,逻辑地址比物理地址的位数少C、地址转换过程中可能会发生“缺页”D、MMU在地址转换过程中要访问页表项11、假定主存按字节编址,cache共有64行,采用4路组相联映射方式,主存块大小为32字节,所有编号都从0开始。
问主存第3000号单元所在主存块对应的cache组号是A、1B、5C、13D、2912、下列关于MMU的叙述中,错误的是()A、MMU是存储管理部件B、MMU负责主存地址到Cache地址的映射C、MMU参与虚拟地址到物理地址的转换D、MMU配合使用TLB 地址转换速度更快13、下列关于主存与cache地址映射方式的叙述中正确的是()A、全相联映射方式比较适用于大容量CacheB、直接映射是一对一的映射关系,组相联映射是多对一的映射关系C、在Cache容量相等条件下,直接映射方式的命中率比组相联方式有更高的命中率D、在Cache容量相等条件下,组相联方式的命中率比直接映射方式有更高的命中率14、下列关于CaChe的说法中,错误的是()A、CaChe对程序员透明B、CaChe行大小与主存块大小一致C、分离CaChe(也称哈佛结构)是指存放指令的CaChe与存放数据CaChe分开设置D、读操作也要考虑CaChe与主存的一致性问题15、下列关于CaChe的论述中,正确的是A、采用直接映射时,CaChe无需使用替换算法B、采用最优替换算法,CaChe的命中率可达到100%C、加快CaChe本身速度,比提高CaChe命中率更能提升存储系统的等效访问速度D、CaChe的容量与主存的容量差距越大越能提升存储系统的等效访问速度16、某计算机系统中,CaChe容量为512 KB,主存容量为256 MB,则CaChe 一主存层次的等效容量为A、512 KBB、256 MBC、256 MB+512 KBD、256 MB - 512 KB17、下列关于Cache的描述中正确的是( )A、Cache存储器是内存中的一个特定区域B、Cache存储器的存取速度介于内存和磁盘之间C、Cache存储器中存放的内容是内存的副本D、Cache中存放正在处理的部分指令和数据18、关于TLB和Cache,下面哪些说法中正确的是( )A、TLB和Cache中存的数据不同B、TLB 访问缺失(miss)后,可能在Cache中直接找到页表内容C、TLB miss会造成程序执行出错,但是Cache miss不会D、TLB和Cache都采用虚拟地址访问19、在下列因素中,与Cache的命中率有关的是( )A、Cache块大小B、Cache的总容量C、主存的存取时间D、替换算法20、下面有关Cache的说法中正确的是( )A、设置Cache的目的,是解决CPU和主存之间的速度匹配问题B、设置Cache的理论基础,是程序访问的局部性原理C、Cache与主存统一编址,Cache地址空间是主存的一部分D、Cache功能均由硬件实现,对程序员透明21、下列关于存储系统的描述中正确的是( )A、每个程序的虚地址空间可以远大于实地址空间,也可以远小于实地址空间B、多级存储体系由cache、主存和虚拟存储器构成C、Cache和虚拟存储器这两种存储器管理策略都利用了程序的局部性原理D、当Cache未命中时,CPU以直接访问主存,而外存与CPU之间则没有直接通路22、下列关于TLB、cache和虚存页(Page)命中组合情况中,一次访存过程中可能发生的是( )A、TLB命中、cache命中、Page命中B、TLB未命中、cache命中、Page命中C、TLB未命中、cache未命中、Page命中D、TLB未命中、cache命中、Page未命中23、下列RAID组中需要的最小硬盘数为3个的是()A、RAID 1B、RAID 3C、RAID 5D、RAID 1024、下列RAID技术中采用奇偶校验方式来提供数据保护的是()A、RAID 1B、RAID 3C、RAID 5D、RAID 1025、在请求分页存储管理方案中,若某用户空间为16个页面,页长1 K B,虚页号0、1、2、3、4对应的物理页号分别为1、5、3、7、2。
计算机系统结构多媒体教程课件_第四章 存储系统

结论:CPU在执行程序时, 所用到的指令和数据的MEM 单元地址分布不会是随机的, 而是相对集中成自然的块或 页面(MEM中较小的连续单元 区)。
2013-8-31
《计算机系统结构》多媒体课件
5
Embedded , desktop, server computers
2013-8-31 《计算机系统结构》多媒体课件 6
1、MEM容量、速度、价 格的矛盾 2、存贮体系层次 3、程序的局部性 4、存贮体系的性能参数
2013-8-31 《计算机系统结构》多媒体课件 7
2013-8-31
《计算机系统结构》多媒体课件
2
introduction
In 1980 microprocessors were often design without caches,while many come with two levels of caches on the chip. Why? !!!!
A A
Tm
2013-8-31
Tm
9
《计算机系统结构》多媒体课件
(3)频宽Bm: * MEM连续访问时,每单位时间内存取的信 息量以bit/s OR Byte/s为单位。 * 单体MEM :Bm =W/TM * 多体并行MEM :Bm =W·m/TM 理想状态下MEM满负荷工作的最大频宽。 * 实际上由于MEM不可能一直处于RD/WR , 所以实际频宽 < 最大频宽。
1、MEM 容量 * Sm=W*L*m * W:MEM 存储体字长(以 bit OR Byte 为单位) L:单个存贮体字数 m:并行工作的MEM 体个 数 * Sm 单位为***bit OR ***B
计算机操作系统第四章-存储器管理

第四章存储器管理第0节存储管理概述一、存储器的层次结构1、在现代计算机系统中,存储器是信息处理的来源与归宿,占据重要位置。
但是,在现有技术条件下,任何一种存储装置,都无法从速度、容量、是否需要电源维持等多方面,同时满足用户的需求。
实际上它们组成了一个速度由快到慢,容量由小到大的存储装置层次。
2、各种存储器•寄存器、高速缓存Cache:少量的、非常快速、昂贵、需要电源维持、CPU可直接访问;•内存RAM:若干(千)兆字节、中等速度、中等价格、需要电源维持、CPU可直接访问;•磁盘高速缓存:存在于主存中;•磁盘:数千兆或数万兆字节、低速、价廉、不需要电源维持、CPU 不可直接访问;由操作系统协调这些存储器的使用。
二、存储管理的目的1、尽可能地方便用户;提高主存储器的使用效率,使主存储器在成本、速度和规模之间获得较好的权衡。
(注意cpu和主存储器,这两类资源管理的区别)2、存储管理的主要功能:•地址重定位•主存空间的分配与回收•主存空间的保护和共享•主存空间的扩充三、逻辑地址与物理地址1、逻辑地址(相对地址,虚地址):用户源程序经过编译/汇编、链接后,程序内每条指令、每个数据等信息,都会生成自己的地址。
●一个用户程序的所有逻辑地址组成这个程序的逻辑地址空间(也称地址空间)。
这个空间是以0为基址、线性或多维编址的。
2、物理地址(绝对地址,实地址):是一个实际内存单元(字节)的地址。
●计算机内所有内存单元的物理地址组成系统的物理地址空间,它是从0开始的、是一维的;●将用户程序被装进内存,一个程序所占有的所有内存单元的物理地址组成该程序的物理地址空间(也称存储空间)。
四、地址映射(变换、重定位)当程序被装进内存时,通常每个信息的逻辑地址和它的物理地址是不一致的,需要把逻辑地址转换为对应的物理地址----地址映射;地址映射分静态和动态两种方式。
1、静态地址重定位是程序装入时集中一次进行的地址变换计算。
物理地址= 重定位的首地址+ 逻辑地址•优点:简单,不需要硬件支持;•缺点:一个作业必须占据连续的存储空间;装入内存的作业一般不再移动;不能实现虚拟存储。
计算机组成原理第四章单元测试(二)(含答案)

第四章存储系统(二)测试1、32位处理器的最大虚拟地址空间为A、2GB、4GC、8GD、16G2、在虚存、内存之间进行地址变换时,功能部件()将地址从虚拟(逻辑)地址空间映射到物理地址空间A、TLBB、MMUC、CacheD、DMA3、在程序执行过程中,Cache与主存的地址映象是由A、用户编写程序完成B、操作系统完成C、编译系统完成D、硬件自动完成4、某计算机的存储系统由cache和主存组成。
某程序执行过程共访存2000次,其中访问cache缺失(未命中)100次,则该程序执行过程中Cache的命中率为A、80%B、85%C、90%D、95%5、在Cache的地址映射中,若主存中的任意一块均可映射到Cache内任意一行的位置上,则这种映射方法称为A、全相联映射B、直接映射C、2-路组相联映射D、混合映射6、采用虚拟存储器的主要目的是A、提高主存储器的存取速度B、扩大主存储器的存储空间,且能进行自动管理和调度C、提高外存储器的存取速度D、扩大外存储器的存储空间7、虚拟存储器中,程序执行过程中实现虚拟地址到物理地址映射部件(系统)是A、应用程序完成B、操作系统和MMU配合完成C、编译器完成D、MMU完成8、相联存储器是按( )进行寻址访问的存储器A、地址B、内容C、堆栈D、队列9、以下哪种情况能更好地发挥Cache的作用A、程序中存在较多的函数调用B、程序的大小不超过内存容量C、程序具有较好的时间和空间局部性D、递归子程序10、以下关于虚拟存储管理地址转换的叙述中错误的是()A、地址转换是指把逻辑地址转换为物理地址B、一般来说,逻辑地址比物理地址的位数少C、地址转换过程中可能会发生“缺页”D、MMU在地址转换过程中要访问页表项11、假定主存按字节编址,cache共有64行,采用4路组相联映射方式,主存块大小为32字节,所有编号都从0开始。
问主存第3000号单元所在主存块对应的cache组号是A、1B、5C、13D、2912、下列关于MMU的叙述中,错误的是()A、MMU是存储管理部件B、MMU负责主存地址到Cache地址的映射C、MMU参与虚拟地址到物理地址的转换D、MMU配合使用TLB 地址转换速度更快13、下列关于主存与cache地址映射方式的叙述中正确的是()A、全相联映射方式比较适用于大容量CacheB、直接映射是一对一的映射关系,组相联映射是多对一的映射关系C、在Cache容量相等条件下,直接映射方式的命中率比组相联方式有更高的命中率D、在Cache容量相等条件下,组相联方式的命中率比直接映射方式有更高的命中率14、下列关于CaChe的说法中,错误的是()A、CaChe对程序员透明B、CaChe行大小与主存块大小一致C、分离CaChe(也称哈佛结构)是指存放指令的CaChe与存放数据CaChe分开设置D、读操作也要考虑CaChe与主存的一致性问题15、下列关于CaChe的论述中,正确的是A、采用直接映射时,CaChe无需使用替换算法B、采用最优替换算法,CaChe的命中率可达到100%C、加快CaChe本身速度,比提高CaChe命中率更能提升存储系统的等效访问速度D、CaChe的容量与主存的容量差距越大越能提升存储系统的等效访问速度16、某计算机系统中,CaChe容量为512 KB,主存容量为256 MB,则CaChe 一主存层次的等效容量为A、512 KBB、256 MBC、256 MB+512 KBD、256 MB - 512 KB17、下列关于Cache的描述中正确的是( )A、Cache存储器是内存中的一个特定区域B、Cache存储器的存取速度介于内存和磁盘之间C、Cache存储器中存放的内容是内存的副本D、Cache中存放正在处理的部分指令和数据18、关于TLB和Cache,下面哪些说法中正确的是( )A、TLB和Cache中存的数据不同B、TLB 访问缺失(miss)后,可能在Cache中直接找到页表内容C、TLB miss会造成程序执行出错,但是Cache miss不会D、TLB和Cache都采用虚拟地址访问19、在下列因素中,与Cache的命中率有关的是( )A、Cache块大小B、Cache的总容量C、主存的存取时间D、替换算法20、下面有关Cache的说法中正确的是( )A、设置Cache的目的,是解决CPU和主存之间的速度匹配问题B、设置Cache的理论基础,是程序访问的局部性原理C、Cache与主存统一编址,Cache地址空间是主存的一部分D、Cache功能均由硬件实现,对程序员透明。
计算机组成原理第4章主存储器(00001)资料讲解

CS
WE
DOUT
片选读时间 taCS
CPU必须在这段时 间内取走数据
片禁止到输出的传 输延迟tPLH CS→DOUT
15
1. 静态存储器(SRAM)(6)
(2) 开关特性
写周期时序 地址对写允许WE的保持时间 th Adr
地址对写允许WE的建立时间 tsu
Adr
Adr
CS
WE
最小写允许宽度tWWE
保持1,0 的双稳态 电路
存储单元
9
1. 静态存储器(SRAM)
MOS管是金属(Metal)—氧化物(Oxid)—半导体(Semiconductor) 场效应晶体管,或者称S管有三个极:源极S(Source)、漏极D(Drian)和栅极G(Gate).
器
控制电路
0 … 31
读/写电路 Y地址译码
CS WE DIN H ×× LLL LLH L H×
DOUT H H H DOUT
操作方式
未选 写“0” 写“1”
读
WE CS
A5 … A9
14
1. 静态存储器(SRAM)(5)
(2) 开关特性
读周期时序
Adr
地址对片选的建立时间 tsu Adr→CS
27
4.6 非易失性半导体存储器(4)
3.可擦可编程序的只读存储器(EPROM) 为了能修改ROM中的内容,出现了EPROM。其原理:
VPP(+12V)
控制栅 浮置栅
5~7V
源n+
漏n+
P型基片
28
4.6 非易失性半导体存储器(5)
3.可擦可编程序的只读存储器(EPROM) 存储1,0的原理:
计算机组成原理4第四章存储器PPT课件精选全文

4.2
11
4.2
请问: 主机存储容量为4GB,按字节寻址,其地址线 位数应为多少位?数据线位数多少位? 按字寻址(16位为一个字),则地址线和数据线 各是多少根呢?
12
数据在主存中的存放
设存储字长为64位(8个字节),即一个存 取周期最多能够从主存读或写64位数据。
读写的数据有4种不同长度:
字节 半字 单字 双字
34
3. 动态 RAM 和静态 RAM 的比较
主存
DRAM
SRAM
存储原理
电容
触发器
集成度
高
低
芯片引脚
少
多
功耗
小
大
价格
低
高
速度
慢
快
刷新
有
无
4.2
缓存
35
内容回顾: 半导体存储芯片的基本结构 4.2
…… ……
地
译
存
读
数
址
码
储
写
据
线
驱
矩
电
线
动
阵
路
片选线
读/写控制线
地址线(单向) 数据线(双向) 芯片容量
D0
…… D 7
22
(2) 重合法(1K*1位重合法存储器芯片)
0 A4
0,00
…
0,31
0 A3
X 地
X0
32×32
… …
0址
矩阵
A2
译
0码
31,0
…
31,31
A1
器 X 31
0 A0
Y0 Y 地址译码器 Y31 A 9 0A 8 0A 7 0A 6 0A 5 0
计算机组成原理第4章 存储系统

第四章存储系统4.1概述4.1.1技术指标4.1.2层次结构4.1.3存储器分类存储器是计算机系统中的记忆设备,用来存放程序和数据。
构成存储器的存储介质,目前主要采用半导体器件和磁性材料。
一个双稳态半导体电路或一个CMOS晶体管或磁性材料的存储元,均可以存储一位二进制代码。
这个二进制代码位是存储器中最小的存储单位,称为一个存储位或存储元。
由若干个存储元组成一个存储单元,然后再由许多存储单元组成一个存储器。
根据存储材料的性能及使用方法不同,存储器有各种不同的分类方法。
(1)按存储介质分作为存储介质的基本要求,必须有两个明显区别的物理状态,分别用来表示二进制的代码0和1。
另一方面,存储器的存取速度又取决于这种物理状态的改变速度。
目前使用的存储介质主要是半导体器件和磁性材料。
用半导体器件组成的存储器称为半导体存储器。
用磁性材料做成的存储器称为磁表面存储器,如磁盘存储器和磁带存储器。
(2)按存取方式分如果存储器中任何存储单元的内容都能被随机存取,且存取时间和存储单元的物理位置无关,这种存储器称为随机存储器。
半导体存储器是随机存储器。
如果存储器只能按某种顺序来存取,也就是说存取时间和存储单元的物理位置有关,这种存储器称为顺序存储器。
如磁带存储器就是顺序存储器,它的存取周期较长。
磁盘存储器是半顺序存储器。
(3)按存储器的读写功能分有些半导体存储器存储的内容是固定不变的,即只能读出而不能写入,因此这种半导体存储器称为只读存储器(ROM)。
既能读出又能写人的半导体存储器,称为随机读写存储器(RAM)。
(4)按信息的可保存性分断电后信息即消失的存储器,称为非永久记忆的存储器。
断电后仍能保存信息的存储器,称为永久性记忆的存储器。
磁性材料做成的存储器是永久性存储器,半导体读写4.2 半导体随机读写存储器主存储器由半导体存储芯片构成,容量较小时可采用SRAM芯片,容量较大时一般采用DRAM芯片。
主存中的固化区采用ROM芯片,包括PROM、EPROM、EEPROM、等。
计算机组成原理 第 4 章 存储器系统(修改版)

磁芯存储器
2013-11-14
10
3.5英寸软盘
2013-11-14
11
硬盘
2013-11-14
12
(2)半导体存储器
• 半导体存储器是用半导体器件组成的存储器。 • 根据制造工艺不同,可分为双极型和MOS型。
2013-11-14
13
U盘
2013-11-14
14
(3) 光存储器
• 利用光学原理制成的存储器,它是通过 能量高度集中的激光束照在基体表面引 起物理的或化学的变化,记忆二进制信 息。如光盘存储器。
2013-11-14
3
4.1.1
存储器分类
• 1.按与CPU的连接和功能分类
• (1) 主存储器 CPU能够直接访问的存储器。用于存 放当前运行的程序和数据。主存储器设在 主机内部,所以又称内存储器。简称内存 或主存。
2013-11-14
4
(2) 辅助存储器
• 为解决主存容量不足而设置的存储器, 用于存放当前不参加运行的程序和数据。 当需要运行程序和数据时,将它们成批 调入内存供CPU使用。CPU不能直接访问 辅助存储器。 • 辅助存储器属于外部设备,所以又称为 外存储器,简称外存或辅存。
写操作(存操作) 地址 (MAR) AB
MEM
CPU MEM MDR
MEM
CPU
CB 读命令 (Read)
MEM
存储单 元内容 (M)
DB
MEM
CB 写命令 MEM (Write) DB 存储单元 MDR M
2013-11-14
28
CPU与主存之间的数据传送控制方式
• 同步控制方式:数据传送在固定的时间间隔内 完成,即在一个存取周期内完成。 • 异步控制方式:数据传送的时间不固定,存储 器在完成读/写操作后,需向CPU回送“存储器 功能完成”信号(MFC),表示一次数据传送完 成。 • 目前多数计算机采用同步方式控制CPU与主存之 间的数据传送。 • 由于异步控制方式允许不同速度的设备进行信 息交换,所以多用于CPU与外设的数据传送中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
WR D7~D0
• • • • • • • •
A19 ... A13 A12 A11A10 A9...A0 × × × 0 0 0 0 000H : : 2114-1 × × × 0 0 1 1 3FFH × × × 0 1 0 0 400H : : 2114-2 × × × 0 1 1 1 7FFH ×表示可以任选值,在这里我们均选0。
• 2K RAM和8K ROM存储器系统连线图
Y2
译 码 器
A13 A12A11
M/IO A10
Y7 CS 2114 (2) WE CS 2114 (2) WE CS 2114 (1) WE CS 2114 (1) WE CE 2716 (4) OE CE 2716 (3) OE CE 2716 (2) OE CE 2716 (1) OE
0000H 2716-1 07FFH 0800H 2716-2 0FFFH 1000H 2716-3 17FFH 1800H 2716-4 1FFFH
• 3、同时进行位扩充与字扩充 • 适用场合:存储器芯片的字长和容量均不 符合存储器系统的要求,需要用多片进行 位扩充和字扩充,以满足系统的要求。 • 例3 用1K×4的2114芯片组成2K×8的存储 器系统。 • 分析:芯片的字长为4位,先用位扩充的方 法,用两片芯片组成1K×8的存储器。再用 字扩充的方法来扩充容量,使用两组经过 位扩充的芯片组来完成。
• 例1 用1K×4的2114芯片构成lK×8的存储器 系统。 • 分析: 每个芯片的容量为1K,满足容量要求。 每个芯片只能提供4位数据,需用2片芯片构成, 以满足8位字长的要求。 • 设计要点: • 将两芯片的地址线对应并联,接至系统地址总 线的低10位。 • 数据线则按芯片编号连接,1号芯片的4位数据 线依次接至系统数据总线的D0-D3; • 2号芯片的4位数据线依次接至系统数据总线的 D4-D7。
• 用2114 组成2K×8的存储器连线
2:4 译 码 器
1 0
A11 A10 A0~A9 M/IO
A0~A9 CS 2114 WE (1) D7~D4
A0~A9 CS 2114 WE (1) D3~D0
A0~A9 CS 2114 WE (2) D7~D4
A0~A9 CS 2114 WE (2) D3~D0
• 用2716组成8K×8的存储器连线
译 码 器
A12 A11 M/IO A10 A0 8088 RD D0 . . . D7 . . .
Y3 Y2 Y1 Y0 A10 CE A0 2176 (1) OE O .0 . . O7 . . . A10 CE A0 2176 (2) OE O .0 . . O7 . . . A10 CE A0 2176 (3) OE O0 . . . O7 . . . A10 CE A0 2176 (4) OE O0 . . . O7
• 设计要点:芯片10根地址信号引脚并接接至 系统地址总线的低10位,每组两个芯片的4 位数据线分别接至系统数据总线的高/低四位。 地址的A10、A11经译码后的输出,作为两 组芯片的片选信号,每个芯片的控制端直接 接到CPU的读/写控制端上,以实现对存储 器的读/写控制。 • 高位地址的不同,系统通过译码器分别选中 不同的芯片组,低位地址码则同时到达每一 个芯片组,选中它们的相应单元。在读/写信 号的作用下,选中芯片组的数据被读出,送 上系统数据总线,产生一个字节的输出,或 者将来自数据总线上的字节数据写入芯片组。
2716-1
17 F F H 18 0 0 H 2716-2
1F F F H 2000H
2716-3 27FFH 2800H
2716-4
2FFFH 3000H 2114-1
33FFH 3800H
2114-2 3BFFH
习题: 1、画出容量为2K*8的RAM连接图(CPU用 8088,RAM用2114,RAM地址区为 0800H~0FFFH)。 2、画出容量为8K*8的ROM连接图(CPU用 8088,EPROM用2716,ROM地址区从 4000H开始)。 3、8088CPU内存16K。ROM 8K,RAM8K。 ROM选用EPROM2716,RAM选用2114, 地址空间从0000H开始,ROM在低地址, RAM在高地址。画出存储器组构图,并写出 各芯片的存储分配范围。
• 用2114组成1K×8的存储器连线
译 Y0 码 器
A11 M/IO A10 A9 . . . A0 8088 WR D0 D3 D4 D7
. . .
A9 . . . A0
CS 2114 (1) . . .
A9 . . . A0
CS 2114 (2)
WE I/O . . . I/O . . . . ..
• • • • • • • • • • • • •
A19 ... A13 A12 A11A10 A9 ... A0 × × 0 0 0 0 0 : : × × 0 0 1 1 1 × × 0 1 0 0 0 : : × × 0 1 1 1 1 × × 1 0 0 0 0 : : × × 1 0 1 1 1 × × 1 1 0 0 0 : : × × 1 1 1 1 1
• 两个芯片的WE*端并在一起后接至系统控 制总线的存储器写信号(如CPU为 8086/8088,也可和M / IO *或M */ IO的组 合来承担)。 • CS*引脚也分别并联后接至地址译码器的输 出,而地址译码器的输入则由系统地址总 线的高位来承担。 • 当存储器工作时,根据高位地址译码结果 同时选中两个芯片,地址的低位同时到达 每个芯片,选中它们相同序号单元。在读/ 写信号的作用下,两个芯片的数据同时读/ 写,输出/写入一个字节。
• 采用的片选控制的译码方式称为全译码方 式,这种译码电路较复杂,由此选中的每 一组的地址是确定且唯一的。有时,为方 便起见,也可以直接用高位地址(如A10— A19中的任一位)来控制片选端。例如用 A10来控制,粗看起来,这两组的地址分配 与全译码时相同,但是当用A10这一个信号 作为片选控制时,只要A10=0,A11—A19 可为任意值都选中第一组;而只要A10=1, A11—A19可为任意值都选中第二组。这种 选片控制方式称为线选法。
• 2、CPU的时序和存储器的存取速度配合问题 • CPU在取指和存储器读或写操作时有固定时序, 要根据这些要求确定存储器存取速度,或在存储 器已经确定的情况下,考虑是否加Tw周期,以 及如何实现。 • 3、存储器的地址分配和片选问题 • 内存通常分成RAM和ROM两大部分,而RAM又 分为系统区(即机器的监控程序或操作系统占用 的区域)和用户区,用户区又要分成数据区和程 序区,ROM的分配也类似,所以内存的地址分 配很重要。存储器芯片的容量有限,通常由多片 组成一个存储器,这时就考虑如何产生片选信号 的问题。
Hale Waihona Puke 线选法示例线选法节省译码电路,设计简单,但须 注意芯片的地址分布以及各自的地址重叠 区
A10
去后一页
去前一页
MREQ
• 例4 一个存储器系统包括2K RAM和8K ROM,分别用1K×4的2114芯片和2K×8 的2716芯片组成。要求ROM的地址从 1000H开始,RAM的地址从3000H开始。 完成硬件连线及相应的地址分配表。 • 分析:该存储器的设计可以参考本节的例2 和例3。所不同的是,要根据题目的要求, 按规定的地址范围,设计各芯片或芯片组 片选信号的连接方式。整个存储器的硬件 连线如图所示。
• 2、存储器芯片的字扩充 • 适用场合:存储器芯片的字长符合存储 器系统的要求,但其容量太小。 • 例2 用2K×8的2716A存储器芯片组成 8K×8的存储器系统。 • 分析:每个芯片的字长为8位,满足存储 器系统的字长要求。每个芯片只能提供 2K个存储单元,需用4片这样的芯片,以 满足容量要求。
• 设计要点: • 将芯片的11位地址线对应并联,再按次序接 至系统地址总线低11位。 • 将各芯片的8位数据线依次接至系统数据总线 的D0-D7。 • 四个芯片的OE*端并在一起后接至系统控制总 线的存储器读信号,CE*引脚分别接至地址译 码器的不同输出。 • 高位地址不同,译码器选中不同的芯片,低 位地址码则同时到达每一个芯片,选中它们 的相应单元。在读信号作用下,只有被选中 芯片的数据被读出,送上系统数据总线,产 生一个字节的输出。
• 4、控制信号的连接 • CPU在与存储器交换信息时,通常有以 下几个控制信号(对8088/8086来说): M */ IO ( M / IO *),RD*,WR*以及 WAIT信号。把这些信号变成存储器要求 的控制信号,以实现所需的控制。 • 二、 存储器芯片的扩展 • 有两种存储器芯片扩展方法: • 1、存储器芯片的位扩充 • 适用场合:存储器芯片的容量满足要求 但字长不够。
A .9 A0
. .
8088
WR RD D .0 D7
.
根据硬件连线图,我们可以分析出该存储器的地址分配范围
A19 ... A14 A13 A12 A11 A10 A9 ... A0 0 0 0 1 0 0 0 0 : : 0 0 0 1 0 1 1 1 0 0 0 1 1 0 0 0 : : 0 0 0 1 1 1 1 1 0 0 1 0 0 0 0 0 : : 0 0 1 0 0 1 1 1 0 0 1 0 1 0 0 0 : : 0 0 1 0 1 1 1 1 0 0 1 1 0 0 0 0 : : 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 : : 0 0 1 1 1 0 1 1 1000H
WE I/O . . . I/O
• 根据硬件连线图,我们还可以进一步分析 出该存储器的地址分配范围如下: • A19 ... A12 A11 A10 A9 ... A0 • × × 0 0 0 0 0000H • : : • : : • × × 0 0 1 1 03FFH • ×表示可以任选值,在这里我们均选0。