北京市怀柔区2018年中考数学二模试题标准答案

合集下载

2018北京怀柔高三二模数学文试卷及答案 精品

2018北京怀柔高三二模数学文试卷及答案 精品

Q2017年怀柔区高三年级调研考试数 学(文科)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中, 有且只有一项是符合题目要求的.1.已知全集U={一l ,0,1,2},集合A={一l ,2},则=A C UA .{0,1}B .{2}C .{0,l ,2}D .φ2.已知i 为虚数单位,2=iz,则复数=zA .i -1B .i +1C .2iD .-2i 3.“a=2”是“直线ax 十2y=0与直线x+y=l 平行”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.一个四棱锥的三视图如图所示,其中主 视图是腰长为1的等腰直角三角形,则 这个几何体的体积是A .21B .1C .23D .2 5.函数2(sin cos )1y x x =+-是A .最小正周期为π2的奇函数B .最小正周期为π2的偶函数C .最小正周期为π的奇函数D .最小正周期为π的偶函数6.如图所示的方格纸中有定点 O P Q E F G H ,,,,,,,则 OP OQ +=A .OHB .OG主视图俯视图C .EOD .FO7.设x>1,S=min {log x 2,log 2(4x 3)},则S 的最大值为A .3B .4C . 5D .68.若函数()() y f x x R =∈满足()()2f x f x +=,且[]1,1x ∈-时,()21f x x =-,函数()()()lg 01 0x x g x x x ⎧>⎪=⎨-<⎪⎩,则函数()()()h x f x g x =-在区间[]5,5-内的零点的个数为 A .5B .7C .8D .10二、填空题:本大题共6小题,每小题5分,满分30分. 9.函数xx f )21(1)(-=的定义域是 . 10.如图给出的是计算2011151311+⋅⋅⋅+++的值 的一个程序框图,其中判断框内应填入的条件 是 . 11.如图为某质点在4秒钟内作直线运动时,速度函数()v v t =的图象,则该质点运动的总路程s = 厘米.12. 当(1,2)x ∈时,不等式2(1)log a x x -<恒成立,则实数a 的取值范围为 .13. 已知不等式组⎪⎩⎪⎨⎧>-≥-≤+122y y x y x 表示的平面区域为M ,若直线13+-=k kx y 与平面区域M 有公共点,则k 的取值范围是 .14.手表的表面在一平面上.整点1,2,…,12这12个数字等间隔地分布在半径为22的圆周上.从整点i 到整点(i +1)的向量记作1+i i t t ,则2111243323221t t t t t t t t t t t t ⋅+⋅⋅⋅+⋅+⋅= .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 15.(本小题满分13分)在△ABC 中,角A 、B 、C 的所对应边分别为a,b,c ,且.s i n 2s i n ,3,5A C b a === (Ⅰ)求c 的值; (Ⅱ)求)32sin(π-A 的值.-中,底面ABCD是正如图,在四棱锥S ABCD Array方形,其他四个侧面都是等边三角形,AC与BD的交点为O,E为侧棱SC上一点.(Ⅰ)当E为侧棱SC的中点时,求证:SA∥平面BDE;(Ⅱ)求证:平面BDE⊥平面SAC.对某校高三年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:(Ⅰ)求出表中,M p 及图中a 的值;(Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10, 15)内的人数;(Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25, 30)内的概率.设a ∈R ,函数233)(x ax x f -=.(Ⅰ)若2=x 是函数)(x f y =的极值点,求实数a 的值;(Ⅱ)若函数()()x g x e f x =在]2,0[上是单调减函数,求实数a 的取值范围.已知椭圆C 的两焦点为)0,1(1-F ,)0,1(2F ,并且经过点⎪⎭⎫ ⎝⎛23,1M . (Ⅰ)求椭圆C 的方程;(Ⅱ)已知圆O :122=+y x ,直线l :1=+ny mx ,证明当点()n m P ,在椭圆C 上运动时,直线l 与圆O 恒相交,并求直线l 被圆O 所截得的弦长的取值范围.对于给定数列{}n c ,如果存在实常数,p q 使得1n n c pc q +=+对于任意*n N ∈都成立,我们称数列{}n c 是“T 数列”.(Ⅰ)若n a n 2=,32n n b =⋅,*n N ∈,数列{}n a 、{}n b 是否为“T 数列”?若是,指出它对应的实常数,p q ,若不是,请说明理由;(Ⅱ)证明:若数列{}n a 是“T 数列”,则数列}{1++n n a a 也是“T 数列”; (Ⅲ)若数列{}n a 满足12a =,)(23*1N n t a a n n n ∈⋅=++,t 为常数.求数列{}n a 前2009项的和.参考答案及评分标准一、选择题:本大题共8个小题;每小题5分,共40分..9.),0[∞ 10.2011≤i 11.11 12.(]1,2 13.)0,31[- 14.936-三、解答题:本大题共6小题,满分80分.15.(本小题满分13分)在△ABC 中,角A 、B 、C 的所对应边分别为a,b,c ,且.s i n 2s i n ,3,5A C b a === (Ⅰ)求c 的值; (Ⅱ)求)32sin(π-A 的值.解:(Ⅰ)根据正弦定理,sin sin c a C A =,所以sin 2sin Cc a a A===分(Ⅱ)根据余弦定理,得222cos 2c b a A bc +-==于是sin A ==从而4sin 22sin cos 5A A A == 223cos 2cos sin 5A A A =-=………12分所以4sin(2)sin 2coscos 2sin33310A A A πππ--=-=-------------------13分16.(本小题满分14分)如图,在四棱锥S ABCD -中,底面ABCD 是正方形,其他四个侧面都是等边三角形,AC 与BD 的交点为O ,E 为侧棱SC 上一点.(Ⅰ)当E 为侧棱SC 的中点时,求证:SA ∥平面BDE ;(Ⅱ)求证:平面BDE ⊥平面SAC . 证明:(Ⅰ)连接OE ,由条件可得SA ∥OE . 因为SA Ë平面BDE ,OE Ì平面BDE ,所以SA ∥平面BDE(Ⅱ)证明:由已知可得,SB SD =,O 是BD 中点,所以BD SO ^,又因为四边形ABCD 是正方形,所以BD AC ^因为AC SO O = ,所以BD SAC ⊥面.又因为BD BDE ⊂面,所以平面BDE ⊥平面17.(本小题满分13分)对某校高三年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:(Ⅰ)求出表中,M p 及图中a 的值;(Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10, 15)内的人数;(Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25, 30)内的概率.解:(Ⅰ)由分组[10,15)内的频数是10,频率是0.25知,100.25M=, 所以40M =.------------------------------------------------------------------------------2分 因为频数之和为40,所以1024240m +++=,4m =.----------------------3分40.1040m p M ===.---------------------------------------------------------------------4分 因为a 是对应分组[15,20)的频率与组距的商,所以240.12405a ==⨯------6分 (Ⅱ)因为该校高三学生有240人,分组[10,15)内的频率是0.25,所以估计该校高三学生参加社区服务的次数在此区间内的人数为60人--------8分 (Ⅲ)这个样本参加社区服务的次数不少于20次的学生共有26m +=人, 设在区间[20,25)内的人为{}1234,,,a a a a ,在区间[25,30)内的人为{}12,b b . 则任选2人共有1213141112232421(,),(,),(,),(,),(,),(,),(,),(,),a a a a a a a b a b a a a a a b2234(,),(,)a b a a ,3132414212(,),(,),(,),(,),(,)a b a b a b a b b b 15种情况,-------------10分而两人都在[25,30)内只能是()12,b b 一种,------------------------------------------12分 所以所求概率为11411515P =-=.(约为0.93)--------------------------------------13分 18.(本小题满分13分)设a ∈R ,函数233)(x ax x f -=.(Ⅰ)若2=x 是函数)(x f y =的极值点,求实数a 的值;(Ⅱ)若函数()()xg x e f x =在]2,0[上是单调减函数,求实数a 的取值范围. 解:(Ⅰ)2()363(2)f x ax x x ax '=-=-.因为2x =是函数()y f x =的极值点,所以(2)0f '=,即6(22)0a -=, 所以1a =.经检验,当1a =时,2x =是函数()y f x =的极值点. 即1a =.----------------------------------------------------------------------------------6分(Ⅱ)由题设,'322()(336)x g x e ax x ax x =-+-,又0xe >,所以,(0,2]x ∀∈,3223360ax x ax x -+-≤,………………7分这等价于,不等式2322363633x x x a x x x x++≤=++对(0,2]x ∈恒成立.-------------9分令236()3x h x x x+=+((0,2]x ∈),则22'22223(46)3[(2)2]()0(3)(3)x x x h x x x x x ++++=-=-<++,---------------------------10分所以()h x 在区间0,2](上是减函数, 所以()h x 的最小值为6(2)5h =.----------------------------------------------------12分 所以65a ≤.即实数a 的取值范围为6(,]5-∞.-----------------------------------13分 19.(本小题满分14分)已知椭圆C 的两焦点为)0,1(1-F ,)0,1(2F ,并且经过点⎪⎭⎫ ⎝⎛23,1M . (Ⅰ)求椭圆C 的方程;(Ⅱ)已知圆O :122=+y x ,直线l :1=+ny mx ,证明当点()n m P ,在椭圆C 上运动时,直线l 与圆O 恒相交;并求直线l 被圆O 所截得的弦长的取值范围.解:(Ⅰ)解法一:设椭圆C 的标准方程为)0(12222>>=+b a by a x ,由椭圆的定义知:22224,1,3a c b a c ===-=得 3,2==b a故C 的方程为13422=+y x .-----------------------------------------------------------4分 解法二:设椭圆C 的标准方程为)0(12222>>=+b a by a x ,依题意,122=-b a ①, 将点⎪⎭⎫ ⎝⎛23,1M 坐标代入得12312222=⎪⎭⎫⎝⎛+b a ②由①②解得3,422==b a ,故C 的方程为13422=+y x .----------------------.4分 (Ⅱ)因为点()n m P ,在椭圆C 上运动,所以22143m n +=,则1342222=+>+n m n m , 从而圆心O 到直线1:=+ny mx l 的距离r nm d =<+=1122,所以直线l 与圆O 相交.------------------------------------------------------------------------8 分 直线l 被圆O 所截的弦长为22211212nm d L +-=-=341112413112222+-=⎪⎪⎭⎫ ⎝⎛-+-=m m m-----------------------------------------------------------------------------------------10 分,31341141,4341340222≤+≤≤+≤∴≤≤m m m 3362≤≤∴L .------------------------------------------------------------------------------14 分 20.(本题满分13分)对于给定数列{}n c ,如果存在实常数,p q 使得1n n c pc q +=+对于任意*n N ∈都成立,我们称数列{}n c 是 “T 数列”.(Ⅰ)若n a n 2=,32n n b =⋅,*n N ∈,数列{}n a 、{}n b 是否为“T 数列”?若是,指出它对应的实常数,p q ,若不是,请说明理由;(Ⅱ)证明:若数列{}n a 是“T 数列”,则数列}{1++n n a a 也是“T 数列”; (Ⅲ)若数列{}n a 满足12a =,)(23*1N n t a a n n n ∈⋅=++,t 为常数.求数列{}n a 前2009项的和.解:(Ⅰ)因为2,n a n =则有12,n n a a +=+*n N ∈故数列{}n a 是“T 数列”, 对应的实常数分别为1,2.---------------2分 因为32n n b =⋅,则有12n n b b += *n N ∈故数列{}n b 是“T 数列”, 对应的实常数分别为2,0.---------------4分 (Ⅱ)证明:若数列{}n a 是“T 数列”, 则存在实常数,p q , 使得1n n a pa q +=+对于任意*n N ∈都成立, 且有21n n a pa q ++=+对于任意*n N ∈都成立,因此()()1212n n n n a a p a a q ++++=++对于任意*n N ∈都成立,故数列{}1n n a a ++也是“T 数列”.对应的实常数分别为,2p q .-------------------------------------8分(Ⅲ)因为 *132()n n n a a t n N ++=⋅∈ 则有22332a a t +=⋅,44532a a t +=⋅ ,20062006200732a a t +=⋅, 20082008200932a a t +=⋅故数列{}n a 前2009项的和2009S =1a +()23a a ++()45a a +++()20062007a a ++()20082009a a +()24200620082010232323232224t t t t t =+⋅+⋅++⋅+⋅=+- ---------------13分。

中考二模测试《数学试题》含答案解析

中考二模测试《数学试题》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1. 下列图标,是轴对称图形的是( )A. B.C. D.2. 如图,若A、B分别是实数a、b在数轴上对应的点,则下列式子的值一定是正数的是()A. b+aB. b-aC. a bD. b a3. 关于代数式x+2的结果,下列说法一定正确的是()A. 比2大B. 比2小C. 比x大 D. 比x小4. 如图,二次函数y=ax2+bx+c的图象经过点(1,1)和点(3,0).关于这个二次函数的描述:①a<0,b>0,c<0;②当x=2时,y的值等于1;③当x>3时,y的值小于0.正确的是()A. ①②B. ①③C. ②③D. ①②③5. 计算999-93的结果更接近()A. 999B. 998C. 996D. 9336. 如图,点P是⊙O外任意一点,PM、PN分别是⊙O的切线,M、N是切点.设OP与⊙O交于点K.则点K是△PMN的( )A. 三条高线的交点B. 三条中线的交点C. 三个角的角平分线的交点D. 三条边的垂直平分线的交点二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)7. 13的相反数是______,13的倒数是______.8. 若△ABC∽△DEF,请写出2个不同类型的正确的结论:______,______.9. 如果﹣2x m y3与xy n是同类项,那么2m﹣n的值是_____.10. 分解因式2x2y-4xy+2y的结果是_____.11. 已知x1、x2是一元二次方程x2+x-3=0的两个根,则x1+x2-x1x2=______.12. 用半径为4的半圆形纸片恰好折叠成一个圆锥侧面,则这个圆锥的底面半径为______.13. 如图,点A在函数y=kx(x>0)的图像上,点B在x轴正半轴上,△OAB是边长为2的等边三角形,则k的值为______.14. 如图,在□ABCD中,E、F分别是AB、CD的中点.当□ABCD满足____时,四边形EHFG是菱形.15. 如图,一次函数y=-43x+8的图像与x轴、y轴分别交于A、B两点.P是x轴上一个动点,若沿BP将△OBP翻折,点O恰好落在直线AB上的点C处,则点P的坐标是______.16. 如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB 的位置保持不动,将三角板DCE 绕其直角顶点C 顺时针旋转一周.当△DCE 一边与AB 平行时,∠ECB 的度数为_________________________.三、解答题(本大题共11小题,共88分.请在答题..卡指定区域.....内作答,解答时应写出文字说明、证明过程或演算步骤)17. 求不等式3x ≤1+12x -的负整数解. 18. (1)化简:244x --12x -;(2)解方程244x --12x -=12. 19. 小莉妈妈支付宝用来生活缴费和网购.如图是小莉妈妈2017年9月至12月支付宝消费情况的统计图(单位:元).(1)11月支出较多,请你写出一个可能的原因.(2)求这4个月小莉妈妈支付宝平均每月消费多少元.(3)用(2)中求得的平均数来估计小莉妈妈支付宝2018年平均每月消费水平,你认为合理吗?为什么?20. 转转盘和摸球是等可能概率下的经典模型.(1)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.小莉让转盘自由转动2次,求指针2次都落在黑色区域的概率.(2)小刚在一个不透明的口袋中,放入除颜色外其余都相同的18个小球,其中4个白球,6个红球,8个黄球.搅匀后,随机摸1个球,若事件A的概率与(1)中概率相同,请写出事件A.21. 春天来了,石头城边,秦淮河畔,鸟语花香,柳条飘逸.为给市民提供更好的休闲锻炼环境,决定对一段总长为1800米的外秦淮河沿河步行道出新改造,该任务由甲、乙两工程队先后接力完成.甲工程队每天改造12米,乙工程队每天改造8米,共用时200天.(1)根据题意,小莉、小刚两名同学分别列出尚不完整的方程组如下:小莉:___128_____x yx y+=⎧⎨+=⎩小刚:________128x yx y+=⎧⎪⎨+=⎪⎩根据两名同学所列的方程组,请你分别指出未知数x、y表示的意义,然后在方框中补全小莉、小刚两名同学所列的方程组:小莉:x表示,y表示;小刚:x表示,y表示.(2)求甲、乙两工程队分别出新改造步行道多少米.22. 如图,爸爸和小莉在两处观测气球的仰角分别为α、β,两人的距离(BD)是100 m,如果爸爸的眼睛离地面的距离(AB)为1.6 m,小莉的眼睛离地面的距离(CD)为1.2 m,那么气球的高度(PQ)是多少?(用含α、β的式子表示)23. 南京、上海相距约300 km,快车与慢车速度分别为100 km/ h和50 km/ h,两车同时从南京出发,匀速行驶,快车到达上海后,原路返回南京,慢车到达上海后停止.设两车出发后的时间为x h,快车、慢车行驶过程中离南京的路程为y1、y2 km.(1)求y1、y2与x之间的函数关系式,并在下列平面直角坐标系中画出它们的图像;(2)若镇江、南京相距约80 km,求两车经过镇江的时间间隔;(3)直接写出出发多长时间,两车相距100 km.24. 如图,△ABC中,AD⊥BC,垂足是D.小莉说:当AB+BD=AC+CD时,则△ABC是等腰三角形.她说法正确吗,如正确,请证明;如不正确,请举反例说明.25. 某景区内有一块矩形油菜花田地(数据如图示,单位:m.)现在其中修建一条观花道(图中阴影部分)供游人赏花.设改造后剩余油菜花地所占面积为ym2.(1)求y与x的函数表达式;(2)若改造后观花道的面积为13m2,求x的值;(3)若要求0.5≤ x ≤1,求改造后剩余油菜花地所占面积的最大值.26. 如图1,点O为正方形ABCD 的中心,E为AB 边上一点,F为BC边上一点,△EBF的周长等于BC 的长.(1)求∠EOF 的度数.(2)连接OA、OC(如图2).求证:△AOE∽△CFO.(3)若OE=52OF,求AECF的值.27. 在解决数学问题时,我们常常从特殊入手,猜想结论,并尝试发现解决问题的策略与方法.【问题提出】求证:如果一个定圆内接四边形对角线互相垂直,那么这个四边形的对边的平方和是一个定值.从特殊入手】我们不妨设定圆O的半径是R,⊙O的内接四边形ABCD中,AC⊥BD.请你在图①中补全特殊殊位置时的图形,并借助于所画图形探究问题的结论.【问题解决】已知:如图②,定圆⊙O的半径是R,四边形ABCD是⊙O的内接四边形,AC⊥BD.求证:.证明:答案与解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1. 下列图标,是轴对称图形的是( ) A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的定义逐项进行分析判断即可得.【详解】A 、不是轴对称图形,故不符合题意;B 、不是轴对称图形,故不符合题意;C 、不是轴对称图形,故不符合题意;D 、是轴对称图形,故符合题意,故选D.【点睛】本题考查了轴对称图形,熟知轴对称图形是一定要沿某直线折叠后直线两旁的部分互相重合的图形是解题的关键.2. 如图,若A 、B 分别是实数a 、b 在数轴上对应的点,则下列式子的值一定是正数的是( )A. b +aB. b -aC. a bD. b a【答案】B【解析】 分析:根据数轴上数的大小以及各种计算法则即可得出答案.详解:根据数轴可得:a+b <0;b -a >0;0b a;计算b a 时,如果b 为偶数,则结果为正数,b 为奇数时,结果为负数.故本题选B.点睛:本题主要考查的是数轴以及各种计算法则,属于基础题型.理解各种计算法则是解决这个问题的关键.3. 关于代数式x+2结果,下列说法一定正确的是()A. 比2大B. 比2小C. 比x大 D. 比x小【答案】C【解析】【分析】分情况讨论:当x<0时;当x>0时;x取任何值时,就可得出答案.【详解】当x<0时,则x+2比2小,则A不符合题意;当x>0时,则x+2比2大,则B不符合题意;x取任何值时,x+2比x大,则D不符合题意,故选C.【点睛】本题考查了实数大小的比较,正确地分类讨论是解题的关键.4. 如图,二次函数y=ax2+bx+c的图象经过点(1,1)和点(3,0).关于这个二次函数的描述:①a<0,b>0,c<0;②当x=2时,y的值等于1;③当x>3时,y的值小于0.正确的是()A. ①②B. ①③C. ②③D. ①②③【答案】B【解析】分析:根据二次函数的开口方向、对称轴与y轴的交点得出①、根据对称性得出②、根据函数图像得出③.详解:根据图像可得:a<0,b>0,c<0,故正确;∵对称轴大于1.5,∴x=2时的值大于x=1的函数值,故错误;根据图像可得:当x>3时,y的值小于0,故正确;故选B.点睛:本题主要考查的是二次函数的图象与系数之间的关系,属于中等难度的题型.理解函数图像与系数之间的关系是解题的关键.5. 计算999-93的结果更接近()A. 999B. 998C. 996D. 933【答案】A【解析】分析:根据幂的大小进行求值,从而得出答案.详解:根据幂的性质可得:999-93最接近于999,故选A.点睛:本题主要考查的是幂的计算法则,属于中等难度的题型.明白幂的定义是解决这个问题的关键.6. 如图,点P是⊙O外任意一点,PM、PN分别是⊙O的切线,M、N是切点.设OP与⊙O交于点K.则点K是△PMN的( )A. 三条高线的交点B. 三条中线的交点C. 三个角的角平分线的交点D. 三条边的垂直平分线的交点【答案】C【解析】【分析】连接OM、ON,NK,根据切线的性质及角平分线的判定定理,可得出答案.【详解】如图,连接OM、ON,NK,∵PM、PN分别是⊙O的切线,∴ON⊥PN,OM⊥PM,MN⊥OP,∠OPN=∠OPM,∴∠1+∠ONK=90°,∠2+∠OKN=90°,∵OM=ON,∴∠OPN=∠OPM,∠ONK=∠OKN,∴∠1=∠2,∴点K是△PMN的角平分线的交点,故选C.【点睛】本题考查了切线长定理、角平分线定义,熟练掌握切线长定理的内容是解题的关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)7. 13的相反数是______,13的倒数是______.【答案】(1). -13(2). 3【解析】分析:当两数只有符号不同时,则两数互为相反数;当两数的积为1时,则两数互为倒数.根据定义即可得出答案.详解:13的相反数是13-,13的倒数是3.点睛:本题主要考查的是相反数和倒数的定义,属于基础题型.理解定义是解决这个问题的关键.8. 若△ABC∽△DEF,请写出2个不同类型的正确的结论:______,______.【答案】(1). ∠A=∠D (2). ∠B=∠E【解析】分析:相似三角形的对应角相等,对应边成比例.详解:∵△ABC∽△DEF,∴∠A=∠D,∠B=∠E,∠C=∠F,AB AC BC DE DF EF==.点睛:本题主要考查的是相似三角形的性质,属于基础题型.明白相似三角形的性质是解决这个问题的关键.9. 如果﹣2x m y3与xy n是同类项,那么2m﹣n的值是_____.【答案】-1【解析】【分析】同类项是指所含的字母相同,且相同字母的指数相同的单项式.根据定义求出m和n的值,从而得出答案.【详解】根据题意可得:m=1,n=3,∴2m-n=2×1-3=-1.故答案是:-1.【点睛】本题主要考查的是同类项的定义,属于基础题型.理解定义是解决这个问题的关键.10. 分解因式2x 2y -4xy +2y 的结果是_____.【答案】2y(x -1)2【解析】分析:首先提取公因式2y ,然后利用完全平方公式得出答案.详解:原式=2y(22x 1x -+)=()22y x 1-.点睛:本题主要考查的是因式分解,属于基础题型.因式分解的方法有:提取公因式、公式法和十字相乘法等,有公因式我们都需要进行提取公因式.11. 已知x 1、x 2是一元二次方程x 2+x -3=0的两个根,则x 1+x 2-x 1x 2=______.【答案】2【解析】分析:首先根据韦达定理求出两根之和和两根之积,从而得出答案.详解:∵121b x x a +=-=-,123c x x a==-, ∴原式=-1-(-3)=-1+3=2. 点睛:本题主要考查的是一元二次方程的韦达定理,属于基础题型.明白韦达定理的计算公式是解决这个问题的关键.12. 用半径为4的半圆形纸片恰好折叠成一个圆锥侧面,则这个圆锥的底面半径为______.【答案】2【解析】分析:根据圆锥的侧面展开图的圆心角的计算公式即可得出答案.详解:∵设圆锥的半径为r ,母线长为4,∴θ360r l =⨯︒,即1803604r ︒=⨯︒,解得:r=2. 点睛:本题主要考查的是圆锥的侧面展开图,属于中等难度题型.明白展开图的圆心角计算公式即可得出答案.13. 如图,点A 在函数y =k x(x >0)的图像上,点B 在x 轴正半轴上,△OAB 是边长为2的等边三角形,则k 的值为______.【答案】3【解析】【分析】首先过点A作AC⊥OB,根据等边三角形的性质得出点A的坐标,从而得出k的值.【详解】分析:解:过点A作AC⊥OB,∵△OAB为正三角形,边长为2,∴OC=1,AC=3,∴k=1×3=3.故答案为:3【点睛】本题主要考查的是待定系数法求反比例函数解析式以及等边三角形的性质,属于基础题型.得出点A的坐标是解题的关键.14. 如图,在□ABCD中,E、F分别是AB、CD的中点.当□ABCD满足____时,四边形EHFG是菱形.【答案】答案不唯一,如:∠ABC=90°等【解析】分析:首先根据题意得出四边形EHFG为平行四边形,然后根据直角三角形斜中线的性质得出EH=HF,从而得出菱形.详解:∵E、F为AB、CD的中点,∴EG∥HF,EH∥FG,∴四边形EHFG为平行四边形,当∠ABC=90°时,∴BH=EH=HF,∴四边形EHFG为菱形.点睛:本题主要考查的是平行四边形的性质以及菱形的判定定理,属于基础题型.理解菱形的判定定理是解决这个问题的关键.15. 如图,一次函数y =-43x +8图像与x 轴、y 轴分别交于A 、B 两点.P 是x 轴上一个动点,若沿BP 将△OBP 翻折,点O 恰好落在直线AB 上的点C 处,则点P 的坐标是______.【答案】(83,0),(-24,0) 【解析】【分析】根据题意得出OA ,OB 和AB 的长度,然后根据折叠图形的性质分两种情况来进行,即点P 在线段OA 上和点P 在x 轴的负半轴上,然后根据Rt △APC 的勾股定理求出点P 的坐标.【详解】根据题意可得:OA=6,OB=8,则AB=10,①、当点P 在线段OA 上时,设点P 的坐标为(x ,0),则AP=6-x ,BC=OB=8,CP=OP=x ,AC=10-8=2,∴根据勾股定理可得:()22226x x +=-,解得:x=83, ∴点P 的坐标为(83,0);②、当点P 在x 轴的负半轴上时,设OP 的长为x ,则AP=6+x ,BC=8,CP=OP=x ,AC=10+8=18,∴根据勾股定理可得:()222186x x +=+,解得:x=24,∴点P 的坐标为(-24,0);∴综上所述,点P 的坐标为(83,0),(-24,0). 【点睛】本题主要考查的是折叠图形的性质以及直角三角形的勾股定理的应用,属于中等难度的题型.解决这个问题的关键就是根据题意画出图形得出直角三角形.16. 如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB 的位置保持不动,将三角板DCE 绕其直角顶点C 顺时针旋转一周.当△DCE 一边与AB 平行时,∠ECB 的度数为_________________________.【答案】15°、30°、60°、120°、150°、165° 【解析】分析:根据CD ∥AB ,CE ∥AB 和DE ∥AB 三种情况分别画出图形,然后根据每种情况分别进行计算得出答案,每种情况都会出现锐角和钝角两种情况.详解:①、∵CD ∥AB , ∴∠ACD=∠A=30°, ∵∠ACD+∠ACE=∠DCE=90°, ∠ECB+∠ACE=∠ACB=90°,∴∠ECB=∠ACD=30°;CD ∥AB 时,∠BCD=∠B=60°,∠ECB=∠BCD+∠EDC=60°+90°=150°②如图1,CE ∥AB ,∠ACE=∠A=30°,∠ECB=∠ACB+∠ACE=90°+30°=120°;CE ∥AB 时,∠ECB=∠B=60°.③如图2,DE ∥AB 时,延长CD 交AB 于F , 则∠BFC=∠D=45°,在△BCF 中,∠BCF=180°-∠B-∠BFC ,=180°-60°-45°=75°, ∴ECB=∠BCF+∠ECF=75°+90°=165°或∠ECB=90°-75°=15°.点睛:本题主要考查的是平行线的性质与判定,属于中等难度的题型.解决这个问题的关键就是根据题意得出图形,然后分两种情况得出角的度数.三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17. 求不等式3x ≤1+12x -的负整数解. 【答案】-3、-2、-1.【解析】【分析】 首先根据解不等式的方法求出不等式的解,从而得出不等式的负整数解.【详解】解: 2x≤6+3(x - 1),2x≤6+3x -3,解得:x≥-3.所以这个不等式的负整数解为-3、-2、-1.【点睛】本题主要考查的是解不等式,属于基础题型.在解不等式的时候,如果两边同时乘以或除以一个负数时,不等符号需要改变.18. (1)化简:244x --12x -;(2)解方程244x --12x -=12. 【答案】(1)12x -+;(2)-4. 【解析】分析:(1)、首先将分式进行通分,然后进行减法计算得出答案;(2)、首先进行去分母将其转化为整式方程,从而求出方程的解,最后需要对方程的解进行检验.详解:(1)、解:-= - = = = =- .(2)、去分母可得:8-2(x+2)=(x+2)(x -2), 化简可得:22x 80x +-=,解得:1242x x =-=,,经检验:x=2是方程的增根,x=-4是方程的解.点睛:本题主要考查的是分式的化简以及解分式方程,属于基础题型.解决这个问题的关键就是学会将分式的分子和分母进行因式分解.19. 小莉妈妈的支付宝用来生活缴费和网购.如图是小莉妈妈2017年9月至12月支付宝消费情况的统计图(单位:元).(1)11月支出较多,请你写出一个可能的原因.(2)求这4个月小莉妈妈支付宝平均每月消费多少元.(3)用(2)中求得的平均数来估计小莉妈妈支付宝2018年平均每月消费水平,你认为合理吗?为什么?【答案】(1)见解析;(2)848元;(3)不合理,理由见解析.【解析】分析:(1)、这个只要回答的合情合理即可得出答案;(2)、根据平均数的计算法则得出答案;(3)、11月份出现了极端值,会较大的影响平均每月消费水平.详解:解:(1)、答案不唯一,学生说法只要合理均给分.如双11淘宝购物花费较多等.(2)、这4个月小莉妈妈支付宝每月平均消费为:=×(488.40+360.20+1942.60+600.80)= 848(元).(3)、用这个平均数来估计小莉妈妈支付宝平均每月消费水平不合理.因为这个平均数受极端值(11月数据)影响较大,不能代表平均每月消费水平.点睛:本题主要考查的是平均数的计算法则,属于基础题型.明白计算法则是解决这个问题的关键.20. 转转盘和摸球是等可能概率下的经典模型.(1)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.小莉让转盘自由转动2次,求指针2次都落在黑色区域的概率.(2)小刚在一个不透明的口袋中,放入除颜色外其余都相同的18个小球,其中4个白球,6个红球,8个黄球.搅匀后,随机摸1个球,若事件A的概率与(1)中概率相同,请写出事件A.【答案】(1)P(指针2次都落在黑色区域)=49;(2)事件A为摸得黄球.【解析】分析:(1)、根据题意列出所有可能出现的情况,然后得出概率;(2)、根据概率的计算法则得出所有情况的概率,然后得出答案.详解:解:(1)如图,把黑色扇形等分为黑1、黑2两个扇形,转盘自由转动2次,指针所指区域的结果如下:(白,白),(白,黑1),(白,黑2),(黑1,白),(黑1,黑1),(黑1,黑2),(黑2,白),(黑2,黑1),(黑2,黑2).所有可能的结果共9种,它们是等可能的,其中指针2次都落在黑色区域的结果有4种.所以P(指针2次都落在黑色区域)=.(2)事件A为摸得黄球.点睛:本题主要考查的是概率的计算法则,属于基础题型.理解概率的计算公式是解题的关键.21. 春天来了,石头城边,秦淮河畔,鸟语花香,柳条飘逸.为给市民提供更好的休闲锻炼环境,决定对一段总长为1800米的外秦淮河沿河步行道出新改造,该任务由甲、乙两工程队先后接力完成.甲工程队每天改造12米,乙工程队每天改造8米,共用时200天.(1)根据题意,小莉、小刚两名同学分别列出尚不完整的方程组如下:小莉:___128_____x yx y+=⎧⎨+=⎩小刚:________128x yx y+=⎧⎪⎨+=⎪⎩根据两名同学所列的方程组,请你分别指出未知数x、y表示的意义,然后在方框中补全小莉、小刚两名同学所列的方程组:小莉:x表示,y表示;小刚:x表示,y表示.(2)求甲、乙两工程队分别出新改造步行道多少米.【答案】(1)见解析;(2)甲、乙两工程队分别出新改造600米、1200米.【解析】分析:(1)、小莉:x表示甲工程队改造的天数,y表示乙工程队改造的天数;小刚:x表示甲工程队改造的长度,y表示乙工程队改造的长度;(2)、根据题意解方程组,从而得出答案.详解:解:(1)、小莉:小刚:小莉:x表示甲工程队改造的天数,y表示乙工程队改造的天数;小刚:x表示甲工程队改造的长度,y表示乙工程队改造的长度.(2)、解小莉方程组得所以12x=600,8y=1200.答:甲、乙两工程队分别出新改造600米、1200米.点睛:本题主要考查的是二元一次方程组的实际应用问题,属于基础题型.解决应用题的关键在于找出等量关系,列出方程组.22. 如图,爸爸和小莉在两处观测气球的仰角分别为α、β,两人的距离(BD)是100 m,如果爸爸的眼睛离地面的距离(AB)为1.6 m,小莉的眼睛离地面的距离(CD)为1.2 m,那么气球的高度(PQ)是多少?(用含α、β的式子表示)【答案】气球高度是100tan tan 1.2tan 1.6tantan tanαβαββα-+-m.【解析】分析:过点A作AE⊥PQ于点E,过点C作CF⊥PQ于点F,设PQ=x m,根据Rt△PEA的三角形函数得出AE的长度,根据Rt△PCF的三角函数得出CF的长度,最后根据BD=AE-CF求出x的值,得出答案.详解:解:过点A作AE⊥PQ于点E,过点C作CF⊥PQ于点F.设PQ=x m,则PE=(x-1.6)m,PF=(x-1.2)m.在△PEA中,∠PEA=90°.则tan∠PAE=.∴ AE=.在△PCF中,∠PFC=90°.则tan∠PCF=.∴ CF=.∵ AE-CF=BD.∴-=100.解得x=.答:气球的高度是m.点睛:本题主要考查的是解直角三角形的实际应用,属于基础题型.解决这个问题的关键在于构造出直角三角形.23. 南京、上海相距约300 km,快车与慢车的速度分别为100 km/ h和50 km/ h,两车同时从南京出发,匀速行驶,快车到达上海后,原路返回南京,慢车到达上海后停止.设两车出发后的时间为x h,快车、慢车行驶过程中离南京的路程为y1、y2 km.(1)求y1、y2与x之间的函数关系式,并在下列平面直角坐标系中画出它们的图像;(2)若镇江、南京相距约80 km,求两车经过镇江的时间间隔;(3)直接写出出发多长时间,两车相距100 km.【答案】(1)画图见解析;(2)两车经过镇江的时间间隔为0.8 h或3.6 h;(3)出发2 h或103h或143h后,两车相距100 km.【解析】分析:(1)、根据待定系数法求出函数解析式,然后再图中画出函数图像;(2)、将y=80代入函数解析式,分别求出x的值,从而得出时间差;(3)、根据函数值相差100列出一元一次方程(分三段来进行解答),从而得出答案.详解:解:(1)当0≤x≤3时,y1=100x,当3≤x≤6时,y1=600-100x;当0≤x≤6时,y2=50x.y1、y2与x的函数图像如下:(2)、当y1=80时,100x=80或600-100x=80.解得x=0.8或5.2;当y2=80时,50x=80.解得x=1.6.所以1.6-0.8=0.8,5.2-1.6=3.6.两车经过镇江的时间间隔为0.8 h或3.6 h.(3)、出发2 h或h或h后,两车相距100 km.点睛:本题主要考查的是一次函数的实际应用,属于中等难度的题型.得出函数解析式是解决这个问题的关键.24. 如图,△ABC中,AD⊥BC,垂足是D.小莉说:当AB+BD=AC+CD时,则△ABC是等腰三角形.她的说法正确吗,如正确,请证明;如不正确,请举反例说明.【答案】小莉说法正确,证明见解析.【解析】分析:延长CB至E,使AB=EB,延长BC至F,使AC=FC,连接AE、AF,然后证明△ADE和△ADF 全等,从而得出∠E=∠F,结合∠E=∠EAB=∠F=∠FAC得出∠ABC=∠ACB,从而得出答案.详解:小莉说法正确.证明:延长CB至E,使AB=EB,延长BC至F,使AC=FC,连接AE、AF.则∠E=∠EAB,∠F=∠FAC.∵ AB+BD=AC+CD,∴ DE=DF.∵ AD⊥BC,∴∠ADE=∠ADF=90°.∵ DE=DF,∠ADE=∠ADF=90°,AD=AD,∴△ADE≌△ADF(SAS).∴∠E=∠F.∴∠E=∠EAB=∠F=∠FAC.∴∠ABC=∠ACB.∴ AB=AC.即△ABC是等腰三角形.点睛:本题主要考查的是等腰三角形的判定与三角形全等,属于基础题型.解决这个问题的关键就是作出辅助线得出三角形全等.25. 某景区内有一块矩形油菜花田地(数据如图示,单位:m.)现在其中修建一条观花道(图中阴影部分)供游人赏花.设改造后剩余油菜花地所占面积为ym2.(1)求y与x的函数表达式;(2)若改造后观花道的面积为13m2,求x的值;(3)若要求0.5≤ x ≤1,求改造后剩余油菜花地所占面积的最大值.【答案】(1)y= x2-14x+48(0<x<6);(2)1;(3)改造后剩余油菜花地所占面积的最大值为41.25m2.【解析】【分析】(1)、利用三角形的面积计算公式得出y与x的函数关系式;(2)、将y=35代入函数解析式求出x的值;(3)、利用配方法将函数配成顶点式,然后根据函数的增减性得出最值.【详解】解:(1)y=(8-x)(6-x)=x2-14x+48.(2)由题意,得x2-14x+48=6×8-13,解得:x1=1,x2=13(舍去).所以x=1.(3)y=x2-14x+48=(x-7)2-1.因为a=1>0,所以函数图像开口向上,当x<7时,y随x增大而减小.所以当x=0.5时,y最大.最大值为41.25.答:改造后油菜花地所占面积的最大值为41.25 m2.【点睛】本题主要考查的是二次函数的实际应用问题,属于中等难度题型.根据题意列出函数解析式是解决这个问题的关键.26. 如图1,点O为正方形ABCD 的中心,E为AB 边上一点,F为BC边上一点,△EBF的周长等于BC 的长.(1)求∠EOF 的度数.(2)连接OA、OC(如图2).求证:△AOE∽△CFO.(3)若OE=52OF,求AECF的值.【答案】(1)45°;(2)证明见解析;(3)5 4【解析】【分析】(1).在BC上取一点G,使得CG=BE,连接OB、OC、OG,然后证明△OBE和△OCG全等,从而得出∠BOE=∠COG,∠BEO=∠CGO,OE=OG,根据三角形的周长得出EF=GF,从而得出△FOE和△GOF 全等,得出∠EOF的度数;(2)、连接OA,根据点O为正方形ABCD的中心得出∠OAE=∠FCO=45°,结合∠BOE=∠COG得出∠AEO=∠COF,从而得出三角形相似;(3)、根据相似得出线段比,根据相似比求出AE和CO的关系,CF和AO的关系,从而得出答案.【详解】解:(1).如图,在BC上取一点G,使得CG=BE,连接OB、OC、OG.∵点O为正方形ABCD的中心,∴ OB=OC,∠BOC=90°,∠OBE=∠OCG=45°.∴△OBE≌△OCG(SAS).∴∠BOE=∠COG,∠BEO=∠CGO,OE=OG.∴∠EOG=90°,∵△BEF的周长等于BC的长,∴ EF=GF.∴△EOF≌△GOF(SSS).∴∠EOF=∠GOF=45°.(2).连接OA.∵点O为正方形ABCD的中心,∴∠OAE=∠FCO=45°.∵∠BOE=∠COG,∠AEO=∠BOE+∠OBE=∠BOE+45°,∠COF=∠COG+∠GOF=∠COG+45°.∴∠AEO=∠COF,且∠OAE=∠FCO.∴△AOE∽△CFO.(3).∵△AOE∽△CFO,∴AOCF=OEFO=AECO.即AE=OEFO×CO,CF=AO÷OEFO.∵OE OF,∴ OEFO.∴AECO,CF.∴AECF=54.点睛:本题主要考查的是正方形的性质、三角形全等的判定与性质、三角形相似的判定与性质,综合性非常强,难度较大.熟练掌握正方形的性质是解决这个问题的关键.27. 在解决数学问题时,我们常常从特殊入手,猜想结论,并尝试发现解决问题的策略与方法.【问题提出】求证:如果一个定圆的内接四边形对角线互相垂直,那么这个四边形的对边的平方和是一个定值.【从特殊入手】我们不妨设定圆O的半径是R,⊙O的内接四边形ABCD中,AC⊥BD.请你在图①中补全特殊殊位置时的图形,并借助于所画图形探究问题的结论.【问题解决】已知:如图②,定圆⊙O的半径是R,四边形ABCD是⊙O的内接四边形,AC⊥BD.求证:.证明:。

北京市怀柔区—学中考二模数学试题及答案

北京市怀柔区—学中考二模数学试题及答案

怀柔区 2015—2016 学年初三数学模拟练习(二)数学试卷1.本试卷共8 页,共三道大题,29 道小题,满分120 分。

考试时间120 分钟。

考2.在试卷和答题卡上正确填写学校名称、姓名和准考证号。

生3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

须4.在答题卡上,选择题、作图题用2B 铅笔作答,其余试题用黑色笔迹署名笔作答。

知5.考试结束,将本试卷、答题卡和稿本纸一并交回。

一 .选择题(共有10 个小题,每题 3 分,共 30分)下边各题均有四个选项,此中只有一个..是吻合题意的 .1.进入春天后,杨树、柳树飞絮影响着人们的生活,本市将对现有的2000000 棵杨、柳树雌株进行治理,减少飞絮现象.将 2000000 用科学记数法表示为765D. 2004A. 2×10B. 2×10C. 20×10×10 2.在数轴上,与表示- 5 的点的距离是 2 的点表示的数是A. -3B.-7C.±3D.-3 或-73.从 0,π,1 ,2这四个数中随机拿出一个数,拿出的数是无理数的概率是321311A. B. C. D.44324.以下图形中,既是轴对称图形又是中心对称图形的是AB C D5.以下四个几何体中,主视图为圆的是()B.A B C D6.如图,BC ⊥AE于点C, CD ∥ AB ,∠ B=55°,则∠ 1 等于()A.35°B.45°C.55° D .65°7.甲、乙、丙、丁四人参加训练,近期10 次百米测试均匀成绩都是13.2 秒,方差如表:选手甲乙丙丁方差(秒2)则这四人中近期百米测试发挥最稳固的是()A .甲B.乙C.丙 D .丁8.如图,在地面上的点 A 处测得树顶 B 的仰角为α度,AC=7米,则树高BC为A . 7sinα米B.7cos α米C. 7tanα米D.( 7+α)米ABOC8 题图9 题图9. 如图,△ABC 内接于⊙ O,若⊙ O 的半径为⌒2,∠ A=45°,则 BC 的长为A .πB. 2πC. 3π D .4π10.如右图,点 M 从等边三角形的极点 A 出发,沿直线匀速运动到点 B, 再沿直线匀速运动到点 C,在整个过程中,设 M与 A 的距离为 y,点 M 的运动时间为 x,那么 y 与 x 的图象大体为A B C D二、填空题(本题共 6 个小题,每题 3 分,共18 分)11.若二次根式x3有意义,则x 的取值范围是.12.分解因式:3a2-6a+3=_________.13.我市某一周的日最高气温统计以下表:最高气温(℃)25天数(天)1则这组数据的中位数是,众数是14. 如图,用扳手拧螺母时,旋转中心为261.,旋转角为272.283A FB EC D14 题图15 题图15.如图,某校教课楼有一花坛,花坛由正六边形ABCDEF 和 6 个半径为 1 米、圆心分别在正六边形 ABCDEF 的极点上的⊙ A ,⊙ B,⊙ C,⊙ D,⊙ E,⊙ F 组合而成 .现要在暗影部分种植月季,则种植月季面积之和为米 2 .16.在数学课上,老师提出以下问题:如图,线段 AB , BC ,∠ ABC = 90°.求作:矩形ABCD.小明的作图过程以下:1.连接 AC ,作线段AC 的垂直均分线,交AC于M;2.连接 BM 并延长,在延长线上取一点D,使 MD=MB, 连接 AD,CD.∴四边形 ABCD 即为所求 .老师说:“小明的作法正确.”请回答:小明这样作图的依照是_________________________ .三、解答题(本题共72 分,第 17—26 题,每题 5 分,第 27 题 7 分,第 28 题 7 分,第 29 题 8分)17.计算:tan 608(1)1 3 2 .318. 先化简,再求值:2x1,此中 x= 2 1 .x21x119. 解分式方程:3x1.9x3x220.如图,在△ABC中,AB=AC,AD是△ABC点的中线,E是AC的中点,连接AC,DF ⊥ AB 于点 F.求证:∠ BDF= ∠ADE.F AEB D C21.某校组织学生种植芽苗菜,三个年级共种植909 盆,初二年级种植的数目比初一年级的 2 倍少3 盆 ,初三年级种植的数目比初二年级多 25盆 .初一、初二、初三年级各种植多少盆?22.已知:如图,在矩形ABCD中,E是BC边上一点,DE均分∠ADC,EF∥DC交AD边于点F,连接BD.(1)求证:四边形FECD是正方形;(2) 若BE=1,ED=2 2 ,求tan∠ DBC的值 .23.在平面直角坐标系xOy中,反比率函数y=k(k>0)的图象经过点A( 2, m),连接OA ,在xx 轴上有一点( 1)求 m 和 k ( 2)若过点 A B ,且 AO=AB ,△AOB 的面积为 2.的值;的直线与y 轴交于点C,且∠ ACO=30°,请直接写出点 C 的坐标.yA(2, m)xO24. 如图,在 Rt△ABC 中,∠ ACB=90°, BD是∠ ABC的均分线,点 O在 AB 上,⊙ O经过B, D两点,交 BC于点 E.C(1) 求证: AC是⊙ O 的切线;E D3,求 CD 的长.(2)若BC=6,tan A=A4BO25.阅读以下资料:我国以 2015 年 11月 1 日零时为标准时点进行了全国人口抽样检查.此次检查以全国人口为总体,抽取占全国总人口的 1.6% 的人口为检核对象.国家统计局在2016 年 4 月 20 日依据此次抽查结果计算的全国人口主要数据威望公布.明显同学感兴趣的数据以下:一、总人口全国大陆 31 个省、自治区、直辖市和现役军人的人口为13.7 亿人 .同第六次全国人口普查2010年 11月 1 日零时的133972 万人对比,五年共增添3377 万人 .二、年龄构成大陆 31 个省、自治区、直辖市和现役军人的人口中,0-14 岁人口为22696 万人,占 16.52% ;15-59 岁人口为92471 万人,占 67.33% ;60 岁及以上人口为22182 万人,占 16.15% ,此中 65岁及以上人口为14374 万人,占10.47%. 同 2010 年第六次全国人口普核对比,0-14 岁人口比重降落 0.08 个百分点, 15-59 岁人口比重降落 2.81 个百分点, 60 岁及以上人口比重上涨 2.89 个百分点, 65 岁及以上人口比重上涨 1.60 个百分点 .三、各种受教育程度人口大陆 31 个省、自治区、直辖市和现役军人的人口中,拥有大学(指大专以上)教育程度人口为 17093 万人;拥有高中(含中专)教育程度人口为21084 万人,;拥有初中教育程度人口为48942万人;拥有小学教育程度人口为 33453 万人,(以上各种受教育程度的人包含各种学校的毕业生、肄业生和在校生) .2010 年第六次全国人口普查时,拥有大学(指大专以上)文化程度的人口为11964 万人 ;拥有高中 (含中专 )文化程度的人口为 18799 万人 ;拥有初中文化程度的人口为 51966 万人;拥有小学文化程度的人口为 35876 万人 .依据以上资料回答以下问题:(1)2015 年 11 月 1 日零时为标准时点进行的全国人口抽样检查的样本容量万(保留整数);(2) 请你依据此次抽查检查结果计算的全国人口主要数据,写出一条全国年龄构成特色或年龄发展趋向;(3) 选择统计表或.统计图,将我国2010 年和 2015 年受教育程度人口表示出来.26.有这样一个问题:研究函数y=x的图象与性质.x+1小怀依据学习函数的经验,对函数y=x的图象与性质进行了研究.x+1下边是小怀的研究过程,请增补完成:(1)函数y=x的自量 x 的取范是 ___________ ;x+1(2)列出 y 与 x 的几.直接写出m 的, m=__________ ;x⋯-5-4-3-231012m45⋯--22y⋯5433-10123454322345⋯26(3)在平面直角坐系xOy 中,描出以上表中各坐的点,并画出函数的象;(4)合函数的象,写出函数xy=的一条性 .27.已知:二次函数 y1=x 2+bx+c 的象 A ( -1,0), B( 0, -3)两点 .(1)求 y1的表达式及抛物的点坐;7y(2)点 C( 4, m)在抛物上,直y2=kx+b(k ≠0)65A , C 两点,当 y1 >y 2,求自量x 的取范 ;43(3)将直 AC 沿 y 上下平移,当平移后的直与抛物只有一个公共点,求平移后直的表达式.21–5–4 –3 –2 –1 O1 2 3 4 5x–1–2–3–4–5–6–728.在△ABC 中,∠ABC=90°, D △ABC 内一点,BD=a,CD=b( 此中 a, b 常数,且a<b).将△CDB 沿 CB 翻折,获得△CEB. 接 AE.(1)在 1 中全形 ;(2) 若∠ ACB=α, AE ⊥ CE,∠ AEB=;(3)在 (2)的条件下,用含 a,b, α的式子表示 AE 的长 .C CDB A BA图 1备用图29.已知:x为实数,[x]表示不超出x的最大整数,如[3.14]=3 , [1]=1 , [-1.2]=-2 .请你在学习,理解上述定义的基础上,解决以下问题:7 y设函数 y=x-[x].(1)当 x=2.15 时,求 y=x-[x] 的值 ;(2)当 0<x<2 ,求函数y=x-[x] 的表达式,并画出函数图象 ;6 5 4 3 2 1(3)在 (2)的条件下,平面直角坐标系xOy 中,以O 为圆心,r 为半径作圆,且r ≤2,该圆与函数y=x-[x] 恰有一个公共点,请直接写出r 的取值范围.–5 –4 –3 –2 –1O1 2 3 4 5 x–1–2–3–4–5–6–7怀柔区 2015-2016 学年初三模拟练习(二)数学评分标准一、选择题(每题有且只有一个选项是正确的,请把正确的选项前的序号填在相应的表格内. 本题共有 10 个小题,每题 3 分,共 30 分)题号12345678910答案B D D A B A B C A A二、填空题(本题共 6 个小题,每题 3 分,共 18 分)11. x≥3 .12. 3(a-1)2.13. 27,28.14.螺丝(母)的中心,答案不独一.15. 2π.16.角相等的平行四形是矩形(答案不独一 ).三、解答(本共72 分,第 17—26,每小 5 分,第 27 7 分,第 28 7 分,第 29 8分)17.算:tan608(1)13 2 .3解:原式 =322323⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分= 52 2 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分18.先化,再求:2x1,此中 x= 2 1 .x 21x1解:2x1x21x1=2x x1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分1)(x-1)(x1)(x1)(x=2x - x - 11)(x-1)(x=x -11)(x-1)(x=1分. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3x1当 x= 2 1 ,原式=12. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分211=219.解分式方程:3x1.x 29x3解:方程两都乘以(x+3)( x 3),得3+ x( x+3) =x2 93+ x2+3 x=x2 93x=- 12⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分解得 x= 4⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分:把 x= 4 代入( x+3 )( x 3)≠0,∴ x= 4 是原分式方解.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分20.明:∵AB=AC,AD 是△ABC 点的中,∴∠ BAD= ∠CAD,∠ADB=∠ ADC=90° .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分∵E 是 AC 的中点,∴ DE=AE=EC. .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分∴∠ CAD= ∠ADE.在 Rt△ABD 中,∠ ADB=90° ,∴∠ B+∠ BAD=90° .FAE∵DF⊥AB ,B D C∴∠ B+∠ BDF=90°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分∴∠ BAD= ∠BDF. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分∴∠ BDF= ∠ CAD∴∠ BDF= ∠ ADE. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分21.解 :初一年种植x 盆,依意,得⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分x+(2x-3)+(2x-3+25)=909⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分解得, x=178.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分∴2x-3=3532x-3+25=378.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分答 : 初一、初二、初三年各种植178 盆、 353 盆、 378 盆.22.(1)明:∵矩形ABCD∴AD//BC ,∠ ADC= ∠ C=90°∵ EF//DC∴四形FECD 平行四形⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分∵DE 均分∠ ADC∴∠ ADE= ∠ CDE∵AD//BC∴∠ ADE= ∠ DEC∴∠ CDE= ∠ DEC∴ CD=CE⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯又∵∠ C=90°∴平行四形FECD 是正方形⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2)解:∵四形FECD 是正方形, ED= 2 2 ,∴CD=CE=2 ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯∴BC=BE+EC=1+2=3∴tan∠ DBC= DC=2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯BC 323.解:y (1)由意可知 B ( 4,0),⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分 A 作 AH ⊥ x 于 H .∵SAOB1, AH=m, OB=4OBAH 2214 m2,O∴2∴ m=1 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分∴A ( 2,1).∴k=2.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分.2分.3分分 .4分 .5A(2, m)x HB( 2)C( 0,1+ 2 3 )或C(0,1- 2 3 )⋯⋯⋯⋯⋯5分24. (1) 明: 如 , 接 OD , ∵⊙ O B ,D 两点,∴ OB=OD.∴∠ OBD= ∠ODB. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分又∵ BD 是∠ ABC 的均分 ,C∴∠ OBD= ∠CBD. ED∴∠ ODB= ∠CBD.A∴OD ∥BC ,BO∵∠ ACB=90° ,即 BC ⊥ AC , ∴ OD ⊥ AC. 又 OD 是⊙ O 的半径,∴ AC 是⊙ O 的切 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分(2) 解:在 Rt △ABC 中,∠ ACB=90° ,∵ BC=6,tan ∠ BAC= BC3,,AC 4∴ AC=8. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分∵OD ∥BC ,∴△ AOD ∽△ABC.∴ ODOA ,即 R 10 R6.BC AB10解得: R15. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分4∴ OD15. 4在 Rt △ABC 中, OD ⊥AC , ∴ tan ∠ A=OD3 . AD4∴ AD=5.∴ CD=3. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分25.(1) 2192 ; ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分(2) 答案不独一; ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分(3)我国 2010 年和 2015 年受教育程度人口 表受教育程度人口数目 ( 万人 ) 大学高中初中小学年度2010 11964 18799 51966 35876201517093210844894233453我国2010年和2015年受教育程度人口统计图60000519664894250000人) 40000 35876万人 33453(2010年万量30000⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分26.(1) x-≠1;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分(2) 3;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分(3)y7654321-8 -7 -6 -5 -4 -3 -2-1O12345678x-1-2-3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(4)(略 ).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分27.解:(1) 把 A (-1,0)、 B( 0, -3)两点入y1得:y1=x 2-2x- 3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分点坐( 1, -4)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分(2) 把 C( 4,m)代入 y1, m=5,因此 C( 4,5),⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分把A 、C 两点代入y2得: y 2 =x+1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分如所示: x 的取范: x<-1 或 x>4 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(3)直 AC 平移后的表达式 y=x+k得:x2-2x- 3=x+k⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分21令=0,k=-4因此平移后直的表达式:y=x- 21.⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分428.(1)如 1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分(2)∠ AEB= α. ⋯⋯⋯⋯⋯⋯⋯⋯2分(3)∵AE ⊥CE∴∠ AEC= 90°∵∠ AEB= α,∴∠ BEC=90° +α⋯⋯⋯⋯⋯⋯⋯⋯3分点 B 作BF⊥BE,交 AE 于点 F,有∠ FBE=90°.即∠ EBC+∠ CBF=90°.∵∠ ABC= ∠ FBA+ ∠CBF=90°, ∴∠ EBC=∠ FBA.∵∠ BFA= ∠ AEB+ ∠ EBF=90°+α.∴∠ BEC=∠ BFA∴△ EBC∽△ FBA.⋯⋯⋯⋯⋯⋯⋯⋯4分∴ BA BF FA=tanα.BC BE EC ∵BD=a,CD=b,∴BE=a,EC=b.CE DB A1CE DFB A∴ EF=. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分AF=btan. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分∴ AE=EF+AF=btan . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分29.解:(1) 当y=x-[x]=2.15-[2.15]⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分(2)①当 0<x<1 , [x]=0∵y=x-[x]∴ y=x⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分②当 1≤x<2, [x]=1∵y=x-[x]∴ y=x - 1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分y21xO1 2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分( 3) 0<r<1 或 2 ≤r≤2.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分。

怀柔二模数学试卷答案

怀柔二模数学试卷答案

k<5
7
n2
6
n1
2
13.解:原式 = 1 2 2 2
3 ………………………………4 分
2
= 4 2 . ………………………………………………5 分
14.解:由①得 x≥- 2.………………………………… 1 分
由②得 x< 3.…………………………………… 2 分
不等式组的解集在数轴上表示如下:
·
设直线 x=4 与 x 轴交于点 M ,
∵ PM∥ OD, ∴∠ BPM= ∠ BDO ,
又∠ PBM= ∠DBO ,∴△ BPM ∽△ BDO ,
∴ PM DO
BM , ∴ PM BO
7 33
9 7
3, 3
∴点 P 的坐标为 (4, 3 )………………………4 分 3
( 3)由⑴可知, C(4, 3 ),又∵ AM=3 ,
第二种情况:当 BA D =90°,
∵四边形 ADA E 是菱形,∴点 A 必在 DE 垂直平分线上,即直线 AM 上,
∵ AN
AN
y
4x , AM
4 ,∴ A M
8 4 x,
5
5
在 Rt△ BA M 中 BA 2 在 Rt△ BA D 中 A B 2
2
2
2
BM MA 3 (4
BD2 DA 2 (5 x)2
1 2
2 23
23 2
π.
3
2 3.
……………5分
21. 解: (1)
50
-------2 分
-----4 分
怀柔区 2012 年二模试卷答案
第 2 页,共 5 页
(2) 全体学生家庭月人均用水量为

北京市八区2018届中考二模分类汇编:反比例函数函数(含参考答案)

北京市八区2018届中考二模分类汇编:反比例函数函数(含参考答案)
北京市八区 2018 届中考二模分类汇编:反比例函数函数(含答案) 东城 22. 已知函数 y 1 的图象与函数 y kx k 0 的图象交于点 P m, n.
x (1)若 m 2n ,求 k 的值和点 P 的坐标; (2)当 m ≤ n 时,结合函数图象,直接写出实数 k 的取值范围.
22.
.…….……5 分
石景山 22.在平面直角坐标系 xOy 中,直线 l1 : y 2x b 与 x 轴, y 轴分别交于点
A( 1 , 0) ,B,与反比例函数图象的一个交点为 M a, 3.
(2)0< n<1 或者 n> 5. ………………………………………5 分
丰台 22.在平面直角坐标系 xOy 中,直线 l: y mx 2m 1(m 0) .
(1)判断直线 l 是否经过点 M(2,1),并说明理由;
(2)直线 l 与反比例函数 y k 的图象的交点分别为点 M,N,当 OM=ON 时,直 x
∴ 点 C 的坐标为 C(4, n) .
∵ AB⊥x 轴于点 B,CD⊥x 轴于点 D, ∴ B,D 两点的坐标分别为 B(4,0) , D(4,0) .

△ABD 的面积为 8, SABD
1 AB BD 2
1 (n) 8 4n , 2
∴ 4n 8 . 解得 n 2 .…………………………………………………………… 2 分 ∵ 函数 y m ( x 0 )的图象经过点 A(4, n) ,
解:(1)
k
1 2

P
2, 2 2
,或
P
2,
2 2
;---------------------------3

(2) k≥1.

北京市八区2018届中考二模数学分类汇编:概率统计(含答案)

北京市八区2018届中考二模数学分类汇编:概率统计(含答案)

北京市八区2018届中考二模数学分类汇编:概率统计(含答案)【东城二模】24.十八大报告首次提出建设生态文明,建设美丽中国. 十九大报告再次明确,到2035年美丽中国目标基本实现.森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键.截止到2013年,我国已经进行了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下:表1 全国森林面积和森林覆盖率表2 北京森林面积和森林覆盖率(以上数据来源于中国林业网)请根据以上信息解答下列问题:(1) 从第________次清查开始,北京的森林覆盖率超过全国的森林覆盖率;(2) 补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;(3) 第八次清查的全国森林面积20768.73(万公顷)记为a,全国森林覆盖率21.63%记为b,到2018年第九次森林资源清查时,如果全国森林覆盖率达到27.15%,那么全国森林面积可以达到________万公顷(用含a和b的式子表示).24. 解:(1)四;---------------------------------------------------------------------1分(2)如图:---------------------------------------------------------------------3分(3)5432000ab.------------------------------------------------------5分【西城二模】22.阅读下列材料:材料一:早在2011年9月25日,北京故宫博物院就开始尝试网络预售门票,2011年全年网络售票仅占1.68%.2012年至2014年,全年网络售票占比都在2%左右.2015年全年网络售票占17.33%,2016年全年网络售票占比增长至41.14%.2017年8月实现网络售票占比77%.2017年10月2日,首次实现全部网上售票.与此同时,网络购票也采用了“人性化”的服务方式,为没有线上支付能力的观众提供代客下单服务.实现全网络售票措施后,在北京故宫博物院的精细化管理下,观众可以更自主地安排自己的行程计划,获得更美好的文化空间和参观体验.材料二:以下是某同学根据网上搜集的数据制作的2013-2017年度中国国家博物馆参观人数及年增长率统计表.他还注意到了如下的一则新闻:2018年3月8日,中国国家博物馆官方微博发文,宣布取消纸质门票,观众持身份证预约即可参观. 国博正在建设智慧国家博物馆,同时馆方工作人员担心的是:“虽然有故宫免(纸质)票的经验在前,但对于国博来说这项工作仍有新的挑战.参观故宫需要观众网上付费购买门票,他遵守预约的程度是不一样的.但(国博)免费就有可能约了不来,挤占资源,所以难度其实不一样.” 尽管如此,国博仍将积极采取技术和服务升级,希望带给观众一个更完美的体验方式.根据以上信息解决下列问题:(1)补全以下两个统计图;(2)请你预估2018年中国国家博物馆的参观人数,并说明你的预估理由.22.解:(1)补全统计图如图3.…………………………………………………………………4分(2)答案不唯一,预估理由合理,支撑预估数据即可.………………………6分【海淀二模】24.如图是甲、乙两名射击运动员的10次射击测试成绩的折线统计图.图3(1)根据折线图把下列表格补充完整;(2)根据上述图表运用所学统计知识对甲、乙两名运动员的射击水平进行评价并说明理由.24.(1)补充表格:(2)答案不唯一,可参考的答案如下:甲选手:和乙选手的平均成绩相同,中位数高于乙,打出9环及以上的次数更多,打出7环的次数较少,说明甲选手相比之下发挥更加稳定;乙选手:与甲选手平均成绩相同,打出10环次数和7环次数都比甲多,说明乙射击时起伏更大,但也更容易打出10环的成绩.【朝阳二模】24.“绿水青山就是金山银山”,北京市民积极参与义务植树活动.小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵):1 123 2 3 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6(1)对以上数据进行整理、描述和分析:①绘制如下的统计图,请补充完整②这30户家庭2018年4月份义务植树数量的平均数是 ,众数是 ;(2)“互联网+全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有 户. 24. 解: (1)①……………2分② 3.4, 3 ………………………………………………………4分 (2)70 ……………………………………………………5分【丰台二模】23.某校七年级6个班的180名学生即将参加北京市中学生开放性科学实践活动送课到校课程的学习.学习内容包括以下7个领域:A.自然与环境,B.健康与安全,C.结构与机械,D.电子与控制,E.数据与信息,F.能源与材料,G.人文与历史.为了解学生喜欢的课程领域,学生会开展了一次调查研究,请将下面的过程补全.收集数据 学生会计划调查30名学生喜欢的课程领域作为样本,下面抽样调查的对象选择合理的是___________;(填序号)① 选择七年级1班、2班各15名学生作为调查对象 ② 选择机器人社团的30名学生作为调查对象③ 选择各班学号为6的倍数的30名学生作为调查对象调查对象确定后,调查小组获得了30名学生喜欢的课程领域如下:A ,C ,D ,D ,G ,G ,F ,E ,B ,G ,C ,C ,G ,D ,B ,A ,G ,F ,F ,A , G ,B ,F ,G ,E ,G ,A ,B ,G ,G整理、描述数据 整理、描述样本数据,绘制统计图表如下,请补全统计表和统计图.某校七年级学生喜欢的课程领域统计表某校七年级学生喜欢的课程领域统计图分析数据、推断结论 请你根据上述调查结果向学校推荐本次送课到校的课程领域,你的推荐是__________(填A-G 的字母代号),估计全年级大约有_________名学生喜欢这个课程领域.23.收集数据 抽样调查对象选择合理的是③. ………………………1分整理、描述数据 如下: ………………………4分某校七年级学生喜欢的课程领域统计图分析数据、推断结论 G ,60.………………………6分【石景山二模】23.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有 人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐.23.解: (1)1000; ………………2分 (2)E F CDGA B 剩大量60%不剩剩少量剩一半部分同学用餐剩余情况统计图餐余情况剩大量不剩………………4分(3)50180009001000⨯=. ………………6分 答:估计该校18000名学生一餐浪费的食物可供900人食用一餐.【昌平二模】23.某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,过程如下,请补充完整. 收集数据从八、九两个年级各随机抽取20名学生,进行了体质健康测试,测试成绩(百分制)如下: 八年级78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77九年级93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40 整理、描述数据按如下分数段整理、描述这两组样本数据:(说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格) 分析数据两组样本数据的平均数、中位数、众数、方差如下表所示:请将以上两个表格补充完整; 得出结论餐余情况剩大量不剩(1)估计九年级体质健康优秀的学生人数为__________;(2)可以推断出_______年级学生的体质健康情况更好一些,理由为__________________.(至少从两个不同的角度说明推断的合理性).23.解:(1)分析数据两组样本数据的平均数、中位数、众数、方差如下表所示:…………………………………2分(2)108;………………………………3分(3)答案不唯一,理由需支撑推断结论………………………………………6分【房山二模】24. 某商场甲、乙两名业务员10个月的销售额(单位:万元)如下:甲7.2 9.6 9.6 7.8 9.3 4 6. 5 8.5 9.9 9.6乙 5.8 9.7 9.7 6.8 9.9 6.9 8.2 6.7 8.6 9.7根据上面的数据,将下表补充完整:(说明:月销售额在8.0万元及以上可以获得奖金,7.0~7.9万元为良好,6.0~6.9万元为合格,6.0万元以下为不合格)两组样本数据的平均数、中位数、众数如下表所示:结论(1)估计乙业务员能获得奖金的月份有个;(2)可以推断出业务员的销售业绩好,理由为.(至少从两个不同的角度说明推断的合理性)24. 解:……………………………………………………………………………………2′(1)6;………………………………………………………………………………………4′(2)答案不唯一,理由结合数据支撑选项即可…………………………………………6′。

北京市怀柔区中考第二次模拟练习数学试卷及答案

第6题图7题图A .B .C .D . 2009年北京市怀柔区中考第二次模拟练习 数 学 试 卷考 生 须 知 1.本试卷共6页,九道大题,25个小题,满分120分.考试时间为120分钟. 2.请在试卷和答题卡上认真填写学校名称、姓名和准考证号.3.试题答案一律用黑色钢笔、签字笔按要求填涂或书写在答题卡划定的区域 内,在试卷上作答无效;作图题可以使用黑色铅笔作答.4.考试结束后,请将本试卷和答题卡一并交回.一、选择题(共8道小题,每小题4分,共32分) 在每个小题给出的四个备选答案中,只有一个是正确的,请将所选答案前的字母按规定要求填涂在“机读答题卡”第1—8题的相应位置上. 1.25的算术平方根是( )A .±5B .5C .-5D .152.下列各式计算错误的是( )A .5x -2x =3xB .a2b+a2b=2a2bC .235a a a += D .a2?a3=a53.已知⊙O1的半径为3cm ,⊙O2的半径为4cm ,且两圆内切. 则O1O2的长为( ) A .7cm B .1cm C .1cm 或7 cm D .以上都不对4.对称现象无处不在,请你观察下面的五个图形,其中是轴对称图形的有( ) A .2个 B .3个 C .4个 D .5个5.函数x k1y -=的图象与直线x y =没有交点,那么k 的取值范围是A .1k >B . 1k <C .1k ->D .1k -<6.如图,在△ABC 中,∠C =90°,若沿图中虚线剪去∠C ,则∠1+∠2等于( ) A .315° B .270° C .180° D .135°7.我们从不同的方向观察同一物体时,可以看到不同的平面图形,由6个小正方体按如图所示的方式摆放,则这个图形的左视图是( )8.某城市2007年春季已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2009年春季增加到363公顷.设绿化面积平均每年的增长率为x ,由题意,所列方程正确的是( )A .300(1+x)=363B .363(1-x)2=300C .300(1+2x)=363D .300(1+x)2=363第Ⅱ卷(非选择题,共88分) 二、填空题(本大题共4道小题,每小题4分,共16分) 9.如果∠A=35°,那么∠A 的补角的度数=_________.题号 一 二 三 四 五 六 七 八 九 总 分 分数10.若实数x, y 满足0322=-+-)(y x ,则代数式xy y -2的值为 . 11.如图,从边长为a 的大正方形纸板中间挖去一个边长为b 的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证我们学过的什么公式?答:_________ .12.若多项式m x x +-2在有理数范围内能分解因式,把你发现字母m 的取值规律用含字母n (n 为正整数)的式子表示为 . 三、解答题(共5道小题,共25分)13.(本小题满分5分)计算:13.计算:2)32(60sin 41122-+︒-+--π. 解:14.(本小题满分5分) 15.(本小题满分5分)如果代数式21-x 不大于x -4. 已知2m+n=0,求分式 222n m nm -+.(m+n)的值.①求x 的取值范围; 解: ②将x 的取值范围用数轴表示出来. 解:16.(本小题满分5分)已知,在同一直角坐标系中,反比例函数5y x =与二次函数22y x x c =-++的图象交 于点(1)A m -,.(1)求m 、c 的值;(2)求二次函数图像的对称轴和顶点坐标. 解:17.(本小题满分5分)如图,等腰直角△ABC 中,∠ABC=90°,点D 在AC 上,将△ABD 绕顶点B 沿顺时针方向旋转90°后得到△CBE. ⑴求∠DCE 的度数;⑵当AB=4,AD ∶DC=1∶3时,求DE 的长. 解:四、解答题(共2道小题,共10分) 18.(本小题满分5分) 如图,在梯形ABCD 中, AB 23解:19.(本小题满分5分)如图,已知AB 、AC 分别为⊙O 的直径和弦,D 为弧BC 的中点, DE ⊥AC 于E 。

北京市怀柔区2018年中考一模试题标准答案

2017-2018学年度初三一模数学试卷评分标准一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个二、填空题(本题共16分,每小题2分)9.311>.10. 6. 11. 1. 12.51. 13. (1,-3). 14. ①③. 15. ⎩⎨⎧=++=+.165,54y x x y y x16. 到角两边距离相等的点在角平分上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线.三、解答题(本题共68分,第17—23、25每题5分,第24题6分,第26、27每题7分,第28题8分)解答应写出文字说明、演算步骤或证明过程. 17. 解:原式1132=-+- …………………………………………………4分 .…………………………………………………………………5分18.解:由①得:3x < . ………………………………………………………………………2分由②得:9x >- …………………………………………………………………………4分 原不等式组的解集为93x -<< 19. (1)答案不唯一.例如:先沿y 轴翻折,再向右平移1个单位,向下平移3个单位;先向左平移1个单位,向下平移3个单位,再沿y 轴翻折. ……………3分(2)如图所示………………………………………4分(3)π .………………………………………………5分20.(1)∵△=(-6m)2-4(9m 2-9) ……………………………………………………………………1分=36m 2-36m 2+364==36>0.∴方程有两个不相等的实数根……………………………………………………………2分 (2)6663322m m x m ±±===±.……………………………………………………3分 ∵3m+3>3m-3,∴x 1=3m+3,x 2=3m-3, …………………………………………………………………………4分 ∴3m+3=2(3m-3) .∴m=3. …………………………………………………………………………………………5分 21.(1)∵AB=AD ,∴∠ABD=∠ADB ,………………………………1分 ∵∠ADB=∠CDE ,∴∠ABD=∠CDE. ∵∠BAC=90°,∴∠ABD+∠ACB=90°. ∵CE ⊥AE ,∴∠DCE+∠CDE=90°.∴∠ACB=∠DCE. …………………………………2分 (2)补全图形,如图所示: …………………………3分 ∵∠BAD=45°, ∠BAC=90°, ∴∠BAE=∠CAE=45°, ∠F=∠ACF=45°, ∵AE ⊥CF, BG ⊥CF,∴AD ∥BG . ∵BG ⊥CF, ∠BAC=90°,且∠ACB=∠DCE, ∴AB=BG.∵AB=AD ,∴BG=AD.∴四边形ABGD 是平行四边形. ∵AB=AD∴平行四边形ABGD 是菱形.…………………………………………………………………4分设AB=BG=GD=AD=x ,∴BF=2BG=2x.∴AB+BF=x+2x=2+2. ∴x=2, 过点B 作BH ⊥AD 于H.∴BH=22AB=1. ∴S 四边形ABDG =AD×BH=2. ……………………………………………………………………5分 22.(1)∵双曲线x m y =过A (3,-2),将A (3,-2)代入xmy =,解得:m= -6.∴所求反比例函数表达式为: y=x6-. …………………………………1分 ∵点A (3,-2)点B (0,1)在直线y=kx+b 上,∴-2=3k+1. …………………………………………………………………………………2分 ∴k=-1.∴所求一次函数表达式为y=-x+1. …………………………………………………………3分 (2)C(0,123+ )或 C(0,231- ). ……………………………………………………5分 23.(1)∵BA=BC ,AO=CO, ∴BD ⊥AC.∵CE 是⊙O 的切线, ∴CE ⊥AC.∴CE ∥BD. ……………………………………1分 ∴∠ECB=∠CBD. ∵BC 平分∠DBE, ∴∠CBE=∠CBD. ∴∠ECB=∠CBE.∴BE=CE. …………………………………………2分 (2)解:作EF ⊥BC 于F. …………………………3分 ∵⊙O 的直径长8, ∴CO=4.∴sin ∠CBD= sin ∠BCE= 45=OC BC. …………………………………………………………4分 ∴BC=5,OB=3. ∵BE=CE, ∴BF=1522BC =. ∵∠BOC=∠BFE=90°,∠CBO=∠EBF, ∴△CBO ∽△EBF.∴BE BFBC OB=. ∴BE=256. ……………………………………………………………………………………5分24. 补全表格:Exy–1123456–1123456O分 (1)130;…………………………………………………………………………………………4分 (2)答案不唯一,理由需支持判断结论. ………………………………………………………6分 25.(1)约1.1; ………………………………………………………………………………………1分 (2)如图:…………………………………………………………………………………………………4分(3)约1.7. ………………………………………………………………………………………5分 26.(1)M(2,-1); ………………………………………………………………………………2分 (2)B(4,3); …………………………………………………………………………………3分 (3)∵抛物线y=mx 2-4mx+4m-1(m ≠0)与y 轴交于点A (0,3), ∴4n-1=3.∴n=1. ……………………………………………………………………………………4分∴抛物线的表达式为342+-=x x y .由34212++=+x x m x . 由△=0,得: 161-=m ……………………………………………………………………5分∵抛物线342+-=x x y 与x 轴的交点C 的坐标为(1,0),∴点C 关于y 轴的对称点C 1的坐标为(-1,0).把(-1,0)代入m x y +=21,得:21=m .……………………………………………6分 把(-4,3)代入m x y +=21,得:5=m .∴所求m 的取值范围是161-=m 或21<m ≤ 5. …………………………………………7分27. (1)B图 …………………………………………………………………………………………1分 (2) ∵线段AD 绕点A 逆时针方向旋转90°,得到线段AE. ∴∠DAE=90°,AD=AE. ∴∠DAC+∠CAE =90°. ∵∠BAC=90°, ∴∠BAD+∠DAC =90°.∴∠BAD=∠CAE . …………………………………………………………………………2分 又∵AB=AC,∴△ABD ≌△ACE. ∴∠B=∠ACE.∵△ABC 中,∠A=90°,AB=AC,∴∠B=∠ACB=∠ACE=45°.∴∠ECD=∠ACB+∠ACE=90°. ……………………………………………………………4分 (3)Ⅰ.连接DE,由于△ADE 为等腰直角三角形,所以可求DE=2;……………………5分 Ⅱ.由∠ADF=60°,∠CAE=7.5°,可求∠EDC 的度数和∠CDF 的度数,从而可知DF 的长; …………………………………………………………………………………………………6分 Ⅲ.过点A 作AH ⊥DF 于点H ,在Rt △ADH 中, 由∠ADF=60°,AD=1可求AH 、DH 的长; Ⅳ. 由DF 、DH 的长可求HF 的长;Ⅴ. 在Rt △AHF 中, 由AH 和HF,利用勾股定理可求AF 的长.…………………………7分 28.(1)①P 1(2,0)、P 2(0,2)…………………………………………………………………2分 ②如图, 在y=x+b 上,若存在⊙O 的“特征点”点P ,点O 到直线y=x+b 的距离m ≤2. 直线y=x+b 1交y 轴于点E ,过O 作OH ⊥直线y=x+b 1于点H. 因为OH=2,在Rt △DOE 中,可知OE=22. 可得b 1=22.同理可得b 2=-22.∴b 的取值范围是:22 ≤b ≤22. …………………………………………………6分(2)x>3或 3-<x . …………………………………………………………………………8分。

【精品】2018-2019学年北京市怀柔区初三数学二模试卷及答案


D
A
E
C
B
28.在平面直角坐标系 xOy 中,对于两个点 A , B 和图形 , 如果在图形 上存在点 P,
Q( P, Q 可以重合) ,使得 AP =2BQ ,那么称点 A 与点 B 是图形 的一对“倍点”.
已知⊙ O的半径为 1,点 B ( 0, 3).
( 1)①点 B 到⊙ O的最大值
,最小值
A.
B.
C.
D.
3.如下图,将三角板的直角顶点放在直尺的一边上,如果
A . 10
B. 15°
C. 20°
D . 65°
∠ 1=25 °,那么 ∠ 2 的度数为
4. 已知 a2 3 2a ,那么代数式 (a 2)2 2(a 1) 的值为
A. 9
B. 1
5. 如下图所示, 某同学的家在 她选择一条最近的路线
.
17.计算: 12 3tan 30 (2019
)0
1 ()
1
.
2
x 18.解方程:
1 3.
x2 2x
D
19.如图, E 为 AB中点, CE⊥AB 于点 E, AD=5,CD=4, BC=3, 求证 : ∠ ACD=90°.
A
4
C
E
B
20.研究发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的
的值为 0,则实数 x 的值为
.
x1
10. 写出一.个.满足 2 a 10 的整数 a 的值为

C
E
11. 如图,在 O 中,直径 AB ⊥ GH 于点 M ,N 为直径上一点, 且 G
A
F
N
D
O H
M

最新-2018年北京市怀柔区中考二模数学试题及答案 精品

北京市怀柔区2018年高级中等学校招生模拟考试(二)数 学 试 卷 2018.6一、选择题(本题共32分,每小题4分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.4的算术平方根是A .±2B .2C .-2D .22.APEC 峰会是亚太经合组织最高级别的会议,据网上公布的数据,2018年金秋将有来自数十个亚太地区经济界领导人、媒体记者及全球各界名流超过8000人齐聚怀柔,参加APEC 峰会.将8000用科学计数法表示应为A .3108⨯B .4108.0⨯C .21080⨯D .4108⨯ 3.下面的几何体中,主视图为三角形的是A. B. C. D.4.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:则这四人中成绩发挥最稳定的是A .甲B .乙C .丙D .丁 5.如图,点A 、B 、O 是正方形网格上的三个格点,⊙O 的半径为OA ,点P 是优弧AmB 上的一点,则tan APB ∠的值是A .1 BD6.下列多边形中,内角和是外角和2倍的是A.四边形B.五边形C.六边形D.八边形 7.已知一元二次方程x 2-6x +c =0有一个根为2,则另一根为A .2B .3C .4D .8 8.方程22410x x +-=的根可视为函数24y x =+的图象与函数xy 1=的图象交点的横坐标,则方程3210x x +-=的实根0x 所在的范围是 A .4100<<x B .31410<<x C .21310<<x D .1210<<x二、填空题(本题共16分,每小题4分)9. 已知点P的坐标是(2,-3),则点P关于y轴对称点的坐标是 .10.如图,在□ABCD中,E在DC上,若DE:EC=1:2,则BF:EF= .11.写出一个能用提取公因式和平方差公式分解因式的多项式:.12.如图(a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径的半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图(b).则半圆被覆盖部分(阴影部分)的面积为_____________.三、解答题(本题共30分,每小题5分)13.+︒30tan32-+212--()14.如图,点E 、F 分别是AD 上的两点,AB ∥CD ,AB=CD ,AF=DE .求证:CE=BF .15.解方程:11312=-+-xx x .16.已知20+5+4=x x ,求代数式2(21)(1)(-2)2x x x -+--的值.17.某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y (元)与印刷份数x (份)之间的关系如图所示:(1)填空:甲种收费的函数表达式是 . 乙种收费的函数表达式是 .(2)该校某年级每次需印制320~350份学案,选择哪种印刷方式较合算?18. 如图,四边形ABCD为菱形,已知A(0,4),B(-3,0).⑴求点D的坐标;⑵求经过点C的反比例函数表达式.四、解答题(本题共20分,每小题5分)19.如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.20.从2018年1月7日起,中国中东部大部分地区持续出现雾霾天气。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

M
怀柔区2018年高级中等学校招生模拟考试(二)
数学试卷评分标准
一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个
二、填空题(本题共16分,每小题2分) 9.答案不唯一,例如:26.
10. 18.
11.⎩

⎧=-=+.2,
7435y x y x
12. -1,5.
13. (3,-1).
14. 3. 15.甲,理由为:中位数高,高分多;乙,理由为:方差小,成绩稳定.
16.到线段两端距离相等的点在线段的垂直平分线上;线段的垂直平分线上的点到线段两端距离相等;两点确定一条直线;圆的定义;直径所对的圆周角为90°. 三、解答题(本题共68分,第17—20、22—24每题5分,第21、25题每题6分,第26—28题每题7分) 17. 解:原式=)
4211-+-+
=411-+,
=2-……………………………………………………………………………………………5分 18.解:由①得:1x ≤,………………………………………………………………………2分 由②得:x<4,………………………………………………………………………………4分 原不等式组的解集为1x ≤,非负整数解为0,1.……………………………………………5分 19.
证明:∵∠ACB =90°, ∴∠1+∠2=90°.
∵AD ⊥CE ,BE ⊥CE , ∴∠4=∠E =90°. …………………………………1分 ∴∠2+∠3=90°.
∴∠3=∠1. ………………………………………2分 又∵AC =BC . ……………………………………3分 ∴△ACD ≌△CBE . ………………………………4分 ∴BE =CD . ………………………………………5分 20.
M
(1)补全图形如图所示
…………………………………………………………………………………………………1分证明:
连接DB,
∵四边形ABCD是菱形,
∴DB⊥AC,
∵E,F分别是AB,AD的中点,
∴EF∥BD.
∴EF⊥AC.……………………………………………………………………………………3分解:(2)∵四边形ABCD是菱形,
∴AB=BC.
∵∠B=60°,
∴△ABC是等边三角形,
∵E是AB的中点,
∴CE⊥AB,CE⊥MC.
即△EMC是直角三角形,且CE=BC×sin60°=3.
由(1)得MD=AE=1
2
AB=1.∴MC=MD+DC=3.
∴S△EMC=1
2
MC×CE=
2
3
3
……………………………………………………………………5分
21.
解:(1)a=32,b=8,c=0.1;……………………………………………………………………3分
(2)96;……………………………………………………………………………………………4分
(3)不同意.张老师取的样本全是本校学生,不能反映出全区学生使用不同阅读方法的情况,样本不具有普遍性. ………………………………………………………………………………6分22.
解:(1)∵一元二次方程(k-2)x2-4x+2=0有两个不相等的实数根,
∴△=16-8(k-2)=32-8k>0且k-2≠0.
∴k<4且k≠2.…………………………………………………………………………………2分(2)由(1)得k=3, 方程x2-4x+3=0的解为x1=1,x2=3. ……………………………………3分
E
B
当x =1时,代入方程x 2+mx -1=0,有1+m -1=0,解得m =0. 当x =3时,代入方程x 2+mx -1=0,有9+3m -1=0,解得m =3
8-. ∴m =0或m =3
8
-………………………………………………………………………………5分 23.
解:(1)∵双曲线)0(≠=
m x
m
y 过A (-3,2)
,解得:m =-6; ∴所求反比例函数表达式为x y 6
-=.……………………………………………………1分
∵B (n,-3)在反比例函数x
y 6
-=的图像上,
∴n=2.…………………………………………………………………………………………2分 ∵点A (-3,2)与点B (2,-3)在直线y=kx+b 上, ∴⎩⎨
⎧-=+=+-3
22
3b k b k
∴⎩
⎨⎧-=-=11b k
∴所求一次函数表达式为1--=x y . …………………………………………………3分 (2)P (-3,0)或P (1,0).……………………………………………………………………5分 24.
(1)证明:连结OC ,
∵DE 与⊙O 相切于点C ,∴OC ⊥DE .
∵BD ⊥DE ,∴OC ∥BD . .…….………………………………………………………………1分 ∴∠1=∠2,
∵OB =OC ,∴∠1=∠3, ∴∠2=∠3,
即BC 平分∠DBA . .……………………………2分 (2)解:∵OC ∥BD ,
∴△EBD ∽△EOC ,△DBM ∽△OCM ,.……………………………………………………3分 ∴EO EB CO BD =,MO
DM
CO BD =
. ∴
EO EB =MO
DM
.……………………………………………………………………………………4分
–1
1
2312345
6O ∵
3
2
=AO EA , 设EA =2k ,AO =3k ,∴OC =OA =OB =3k .

58
==EO EB MO DM ..……………………………….……………………………………………5分 25.
(1)2.5.……………………………….………….……………………………………………1分 (2)
……………………………….…………………….……………………………………………5分 (3) 4.7……………………………….……………….…………………………………………6分 26.
(1)A (-1,0);C (0,-3);………………………………………………………………2分 (2)①
∵AB =4,A (-1,0),∴抛物线对称轴为:x =1. ∴123
=--
m
m . ∴ m =1.
∴抛物线的表达式为322--=x x y . ②
∵点A (-1,0)关于对称轴x =1的对称点B 的坐标为(3,0) ∴直线BC 的表达式为 y =x -3. 把x =1代入y =x-3得y =-2,
∴D (1,-2)…………………………………………….………………………………………5分 (3)设抛物线C 2的表达式为 n x x y +--=322 当抛物线C 2经过点(
25,0)时,得n =4
7.
B 当抛物线
C 2经过点(0,0)时,得n=3. ∴
4
7
≤n <3 . 当n =4时,当抛物线C 2与x 轴只有一个公共点. ………………………………………7分 综上所述,n 的取值范围是4
7
≤n <3或n=4. 27.
(1)①补全图形,如图:
…………………………………………….………………….…………………………………1分 ②点M 在线段BC 上运动的过程中,∠MCN 的度数确定,为120°理由如下:
在AB 上取点P ,使得BP=BM ,连结PM ……………………………………………………2分 ∵BP =BM ,∠B =60º,
∴△BPM 是等边三角形. ∴∠BPM =∠BMP =60º. ∴∠APM =120º.
∴∠P AM +∠AMP =60º.
∴∠P AM +∠AMP +∠BMP =120º.
即∠P AM +∠AMB =120º.
∵AB=BC ,
∴AP=MC . ∵∠AMN =60º, ∴∠AMB +∠NMC =120º.
∴∠P AM =∠NMC . 又∵AM=MN , ∴△APM ≌△NMC .
∴∠MCN =∠APM =120º………………5分 (2) 补全图形,如图
……………………………………………………………….…………………………………6分 ∠MCN =60º……………………………………………………………….……………………7分
28.解:(1)①D (3,0),E (4, 1);……………………….…………………………………2分
B
②∵直线3
3
33-
=x y 过A (1,0),且与x 轴正方向夹角为30°, 设直线3
3
33-
=x y 与以(2,0)为圆心,1为半径的圆交于点P 1,与⊙C 交于点P 2 . ∴1
P
x =2
5,2
P
x =
2
11.
∴25≤x <2
11
.……………………………………………………………….…………………5分
(2)-2≤x <3.……………………………………….…………………………………7分
x。

相关文档
最新文档